1
|
Shen K, Chen B, Yang L, Gao W. KYNU as a Biomarker of Tumor-Associated Macrophages and Correlates with Immunosuppressive Microenvironment and Poor Prognosis in Gastric Cancer. Int J Genomics 2023; 2023:4662480. [PMID: 37954130 PMCID: PMC10635752 DOI: 10.1155/2023/4662480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Background Kynureninase (KYNU) is a potential prognostic marker for various tumor types. However, no reports on the biological effects and prognostic value of KYNU in gastric cancer (GC) exist. Methods GC-associated single-cell RNA sequencing and bulk RNA sequencing (bulk-seq) data were obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases, respectively. The differential expression of KYNU between GC and normal gastric tissues was first analyzed based on the bulk-seq data, followed by an exploration of the relationship between KYNU and various clinicopathological features. The Kaplan-Meier survival and Cox regression analyses were performed to determine the prognostic value of KYNU. The relationship between KYNU expression and immune cell infiltration and immune checkpoints was also explored. The biological function of KYNU was further examined at the single-cell level, and in vitro experiments were performed to examine the effect of KYNU on GC cell proliferation and invasion. Results KYNU expression was significantly elevated in GC samples. Clinical features and survival analysis indicated that high KYNU expression was associated with poor clinical phenotypes and prognosis, whereas Cox analysis showed that KYNU was an independent risk factor for patients with GC. Notably, high expression of KYNU induced a poor immune microenvironment and contributed to the upregulation of immune checkpoints. KYNU-overexpressing macrophages drove GC progression through unique ligand-receptor pairs and transcription factors and were associated with adverse clinical phenotypes in GC. KYNU was overexpressed in GC cells in vitro, and KYNU knockout significantly inhibited GC cell proliferation and invasion. Conclusion High KYNU expression promotes an adverse immune microenvironment and low survival rates in GC. KYNU and KYNU-related macrophages may serve as novel molecular targets in the treatment of GC.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Binyu Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
2
|
Sun J, Li Q, Ding Y, Wei D, Hadisurya M, Luo Z, Gu Z, Chen B, Tao WA. Profiling Phosphoproteome Landscape in Circulating Extracellular Vesicles from Microliters of Biofluids through Functionally Tunable Paramagnetic Separation. Angew Chem Int Ed Engl 2023; 62:e202305668. [PMID: 37216424 PMCID: PMC11019431 DOI: 10.1002/anie.202305668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Many biological processes are regulated through dynamic protein phosphorylation. Monitoring disease-relevant phosphorylation events in circulating biofluids is highly appealing but also technically challenging. We introduce here a functionally tunable material and a strategy, extracellular vesicles to phosphoproteins (EVTOP), which achieves one-pot extracellular vesicles (EVs) isolation, extraction, and digestion of EV proteins, and enrichment of phosphopeptides, with only a trace amount of starting biofluids. EVs are efficiently isolated by magnetic beads functionalized with TiIV ions and a membrane-penetrating peptide, octa-arginine R8 + , which also provides the hydrophilic surface to retain EV proteins during lysis. Subsequent on-bead digestion concurrently converts EVTOP to TiIV ion-only surface for efficient enrichment of phosphopeptides for phosphoproteomic analyses. The streamlined, ultra-sensitive platform enabled us to quantify 500 unique EV phosphopeptides with only a few μL of plasma and over 1200 phosphopeptides with 100 μL of cerebrospinal fluid (CSF). We explored its clinical application of monitoring the outcome of chemotherapy of primary central nervous system lymphoma (PCNSL) patients with a small volume of CSF, presenting a powerful tool for broad clinical applications.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Qing Li
- Department of Hematology, Huashan Hospital, Shanghai, China
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Marco Hadisurya
- Department of Biochemistry, Department of Biochemistry, Purdue University, West Lafayette, IN 47907; Institute for Cancer ResearchPurdue University West Lafayette, IN47907
| | - Zhuojun Luo
- Department of Biochemistry, Department of Biochemistry, Purdue University, West Lafayette, IN 47907; Institute for Cancer ResearchPurdue University West Lafayette, IN47907
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Bobin Chen
- Department of Hematology, Huashan Hospital, Shanghai, China
| | - W. Andy Tao
- Department of Biochemistry, Department of Biochemistry, Purdue University, West Lafayette, IN 47907; Institute for Cancer ResearchPurdue University West Lafayette, IN47907
| |
Collapse
|
3
|
Okuda-Ashitaka E, Matsumoto KI. Tenascin-X as a causal gene for classical-like Ehlers-Danlos syndrome. Front Genet 2023; 14:1107787. [PMID: 37007968 PMCID: PMC10050494 DOI: 10.3389/fgene.2023.1107787] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Tenascin-X (TNX) is an extracellular matrix glycoprotein for which a deficiency results in a recessive form of classical-like Ehlers-Danlos syndrome (clEDS), a heritable connective tissue disorder with hyperextensible skin without atrophic scarring, joint hypermobility, and easy bruising. Notably, patients with clEDS also suffer from not only chronic joint pain and chronic myalgia but also neurological abnormalities such as peripheral paresthesia and axonal polyneuropathy with high frequency. By using TNX-deficient (Tnxb−/−) mice, well-known as a model animal of clEDS, we recently showed that Tnxb−/− mice exhibit hypersensitivity to chemical stimuli and the development of mechanical allodynia due to the hypersensitization of myelinated A-fibers and activation of the spinal dorsal horn. Pain also occurs in other types of EDS. First, we review the underlying molecular mechanisms of pain in EDS, especially that in clEDS. In addition, the roles of TNX as a tumor suppressor protein in cancer progression have been reported. Recent in silico large-scale database analyses have shown that TNX is downregulated in various tumor tissues and that high expression of TNX in tumor cells has a good prognosis. We describe what is so far known about TNX as a tumor suppressor protein. Furthermore, some patients with clEDS show delayed wound healing. Tnxb−/− mice also exhibit impairment of epithelial wound healing in corneas. TNX is also involved in liver fibrosis. We address the molecular mechanism for the induction of COL1A1 by the expression of both a peptide derived from the fibrinogen-related domain of TNX and integrin α11.
Collapse
Affiliation(s)
- Emiko Okuda-Ashitaka
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
- *Correspondence: Emiko Okuda-Ashitaka, ; Ken-ichi Matsumoto,
| | - Ken-ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Head Office for Research and Academic Information, Shimane University, Izumo, Japan
- *Correspondence: Emiko Okuda-Ashitaka, ; Ken-ichi Matsumoto,
| |
Collapse
|
4
|
Lu X, Fu Y, Gu L, Zhang Y, Liao AY, Wang T, Jia B, Zhou D, Liao L. Integrated proteome and phosphoproteome analysis of gastric adenocarcinoma reveals molecular signatures capable of stratifying patient outcome. Mol Oncol 2022; 17:261-283. [PMID: 36520032 PMCID: PMC9892830 DOI: 10.1002/1878-0261.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Metastasis is one of the main causes of low survival rate of gastric cancer patients. Exploring key proteins in the progression of gastric adenocarcinoma (GAC) may provide new candidates for prognostic biomarker development and therapeutic intervention. We applied quantitative mass spectrometry to compare the proteome and phosphoproteome of primary tumor tissues between GAC patients with and without lymph node metastasis (LNM). We then performed an integrated analysis of the proteomic and transcriptomic data to reveal the molecular features. We quantified a total of 5536 proteins, and we found 218 upregulated and 49 downregulated proteins in tumor samples from patients with LNM compared to those without LNM. Clustering analysis identified a number of hub proteins that have been previously shown to play important roles in gastric cancer progression. We also found that two extracellular proteins, TNXB and SPON1, are overexpressed in patients with LNM, which correlates with poor survival of GAC patients. Overexpression of TNXB and SPON1 was validated by western blotting and immunohistochemistry. Furthermore, treating gastric cancer cells with anti-TNXB antibody significantly reduced cell migration. Finally, quantitative phosphoproteomic analysis combined with activity-based kinase capture revealed a number of activated kinases in primary tumor tissues from patients with LNM, among which GSK3 might be a new target that warrants further study. Our study provides a snapshot of the proteome and phosphoproteome of GAC tumor tissues that have metastatic potential, and identifies potential biomarkers for GAC progression.
Collapse
Affiliation(s)
- Xue Lu
- Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yunyun Fu
- Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Lei Gu
- Department of General Surgery, Shanghai Tenth People's Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yunpeng Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesEast China Normal UniversityShanghaiChina
| | | | | | - Bin Jia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityChina
| | - Donglei Zhou
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterChina,Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, School of Life SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
5
|
Tucker RP, Degen M. Revisiting the Tenascins: Exploitable as Cancer Targets? Front Oncol 2022; 12:908247. [PMID: 35785162 PMCID: PMC9248440 DOI: 10.3389/fonc.2022.908247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
For their full manifestation, tumors require support from the surrounding tumor microenvironment (TME), which includes a specific extracellular matrix (ECM), vasculature, and a variety of non-malignant host cells. Together, these components form a tumor-permissive niche that significantly differs from physiological conditions. While the TME helps to promote tumor progression, its special composition also provides potential targets for anti-cancer therapy. Targeting tumor-specific ECM molecules and stromal cells or disrupting aberrant mesenchyme-cancer communications might normalize the TME and improve cancer treatment outcome. The tenascins are a family of large, multifunctional extracellular glycoproteins consisting of four members. Although each have been described to be expressed in the ECM surrounding cancer cells, tenascin-C and tenascin-W are currently the most promising candidates for exploitability and clinical use as they are highly expressed in various tumor stroma with relatively low abundance in healthy tissues. Here, we review what is known about expression of all four tenascin family members in tumors, followed by a more thorough discussion on tenascin-C and tenascin-W focusing on their oncogenic functions and their potential as diagnostic and/or targetable molecules for anti-cancer treatment purposes.
Collapse
Affiliation(s)
- Richard P. Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
- *Correspondence: Martin Degen,
| |
Collapse
|
6
|
Epigenome-Wide DNA Methylation Profiling in Colorectal Cancer and Normal Adjacent Colon Using Infinium Human Methylation 450K. Diagnostics (Basel) 2022; 12:diagnostics12010198. [PMID: 35054365 PMCID: PMC8775085 DOI: 10.3390/diagnostics12010198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 01/20/2023] Open
Abstract
The aims were to profile the DNA methylation in colorectal cancer (CRC) and to explore cancer-specific methylation biomarkers. Fifty-four pairs of CRCs and the adjacent normal tissues were subjected to Infinium Human Methylation 450K assay and analysed using ChAMP R package. A total of 26,093 differentially methylated probes were identified, which represent 6156 genes; 650 probes were hypermethylated, and 25,443 were hypomethylated. Hypermethylated sites were common in CpG islands, while hypomethylated sites were in open sea. Most of the hypermethylated genes were associated with pathways in cancer, while the hypomethylated genes were involved in the PI3K-AKT signalling pathway. Among the identified differentially methylated probes, we found evidence of four potential probes in CRCs versus adjacent normal; HOXA2 cg06786372, OPLAH cg17301223, cg15638338, and TRIM31 cg02583465 that could serve as a new biomarker in CRC since these probes were aberrantly methylated in CRC as well as involved in the progression of CRC. Furthermore, we revealed the potential of promoter methylation ADHFE1 cg18065361 in differentiating the CRC from normal colonic tissue from the integrated analysis. In conclusion, aberrant DNA methylation is significantly involved in CRC pathogenesis and is associated with gene silencing. This study reports several potential important methylated genes in CRC and, therefore, merit further validation as novel candidate biomarker genes in CRC.
Collapse
|
7
|
Morani F, Bisceglia L, Rosini G, Mutti L, Melaiu O, Landi S, Gemignani F. Identification of Overexpressed Genes in Malignant Pleural Mesothelioma. Int J Mol Sci 2021; 22:ijms22052738. [PMID: 33800494 PMCID: PMC7962966 DOI: 10.3390/ijms22052738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a fatal tumor lacking effective therapies. The characterization of overexpressed genes could constitute a strategy for identifying drivers of tumor progression as targets for novel therapies. Thus, we performed an integrated gene-expression analysis on RNAseq data of 85 MPM patients from TCGA dataset and reference samples from the GEO. The gene list was further refined by using published studies, a functional enrichment analysis, and the correlation between expression and patients' overall survival. Three molecular signatures defined by 15 genes were detected. Seven genes were involved in cell adhesion and extracellular matrix organization, with the others in control of the mitotic cell division or apoptosis inhibition. Using Western blot analyses, we found that ADAMTS1, PODXL, CIT, KIF23, MAD2L1, TNNT1, and TRAF2 were overexpressed in a limited number of cell lines. On the other hand, interestingly, CTHRC1, E-selectin, SPARC, UHRF1, PRSS23, BAG2, and MDK were abundantly expressed in over 50% of the six MPM cell lines analyzed. Thus, these proteins are candidates as drivers for sustaining the tumorigenic process. More studies with small-molecule inhibitors or silencing RNAs are fully justified and need to be undertaken to better evaluate the cancer-driving role of the targets herewith identified.
Collapse
Affiliation(s)
- Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
| | - Luisa Bisceglia
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
| | - Giulia Rosini
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
| | - Luciano Mutti
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Ombretta Melaiu
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
- Correspondence: ; Tel.: +39-050-221-1528
| | - Federica Gemignani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (F.M.); (L.B.); (G.R.); (O.M.); (F.G.)
| |
Collapse
|
8
|
Genome wide methylation profiling of selected matched soft tissue sarcomas identifies methylation changes in metastatic and recurrent disease. Sci Rep 2021; 11:667. [PMID: 33436720 PMCID: PMC7804318 DOI: 10.1038/s41598-020-79648-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
In this study we used the Illumina Infinium Methylation array to investigate in a cohort of matched archival human tissue samples (n = 32) from 14 individuals with soft tissue sarcomas if genome-wide methylation changes occur during metastatic and recurrent (Met/Rec) disease. A range of sarcoma types were selected for this study: leiomyosarcoma (LMS), myxofibrosarcoma (MFS), rhabdomyosarcoma (RMS) and synovial sarcoma (SS). We identified differential methylation in all Met/Rec matched samples, demonstrating that epigenomic differences develop during the clonal evolution of sarcomas. Differentially methylated regions and genes were detected, not been previously implicated in sarcoma progression, including at PTPRN2 and DAXX in LMS, WT1-AS and TNXB in SS, VENTX and NTRK3 in pleomorphic RMS and MEST and the C14MC / miR-379/miR-656 in MFS. Our overall findings indicate the presence of objective epigenetic differences across primary and Met/Rec human tissue samples not previously reported.
Collapse
|
9
|
Matsumoto KI, Aoki H. The Roles of Tenascins in Cardiovascular, Inflammatory, and Heritable Connective Tissue Diseases. Front Immunol 2020; 11:609752. [PMID: 33335533 PMCID: PMC7736112 DOI: 10.3389/fimmu.2020.609752] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Tenascins are a family of multifunctional extracellular matrix (ECM) glycoproteins with time- and tissue specific expression patterns during development, tissue homeostasis, and diseases. There are four family members (tenascin-C, -R, -X, -W) in vertebrates. Among them, tenascin-X (TNX) and tenascin-C (TNC) play important roles in human pathologies. TNX is expressed widely in loose connective tissues. TNX contributes to the stability and maintenance of the collagen network, and its absence causes classical-like Ehlers-Danlos syndrome (clEDS), a heritable connective tissue disorder. In contrast, TNC is specifically and transiently expressed upon pathological conditions such as inflammation, fibrosis, and cancer. There is growing evidence that TNC is involved in inflammatory processes with proinflammatory or anti-inflammatory activity in a context-dependent manner. In this review, we summarize the roles of these two tenascins, TNX and TNC, in cardiovascular and inflammatory diseases and in clEDS, and we discuss the functional consequences of the expression of these tenascins for tissue homeostasis.
Collapse
Affiliation(s)
- Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| | - Hiroki Aoki
- Cardiovascular Research Institute, Kurume University, Kurume, Japan
| |
Collapse
|
10
|
Genome-Wide Open Chromatin Methylome Profiles in Colorectal Cancer. Biomolecules 2020; 10:biom10050719. [PMID: 32380793 PMCID: PMC7277229 DOI: 10.3390/biom10050719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
The methylome of open chromatins was investigated in colorectal cancer (CRC) to explore cancer-specific methylation and potential biomarkers. Epigenome-wide methylome of open chromatins was studied in colorectal cancer tissues using the Infinium DNA MethylationEPIC assay. Differentially methylated regions were identified using the ChAMP Bioconductor. Our stringent analysis led to the discovery of 2187 significant differentially methylated open chromatins in CRCs. More hypomethylated probes were observed and the trend was similar across all chromosomes. The majority of hyper- and hypomethylated probes in open chromatin were in chromosome 1. Our unsupervised hierarchical clustering analysis showed that 40 significant differentially methylated open chromatins were able to segregate CRC from normal colonic tissues. Receiver operating characteristic analyses from the top 40 probes revealed several significant, highly discriminative, specific and sensitive probes such as OPLAH cg26256223, EYA4 cg01328892, and CCNA1 cg11513637, among others. OPLAH cg26256223 hypermethylation is associated with reduced gene expression in the CRC. This study reports many open chromatin loci with novel differential methylation statuses, some of which with the potential as candidate markers for diagnostic purposes.
Collapse
|
11
|
Yang N, Tian J, Wang X, Mei S, Zou D, Peng X, Zhu Y, Yang Y, Gong Y, Ke J, Zhong R, Chang J, Miao X. A functional variant in TNXB promoter associates with the risk of esophageal squamous-cell carcinoma. Mol Carcinog 2020; 59:439-446. [PMID: 32056283 DOI: 10.1002/mc.23166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/23/2019] [Accepted: 02/04/2020] [Indexed: 11/11/2022]
Abstract
Our previous study identified a tag single-nucleotide polymorphism (SNP) rs204900 in TNXB associated with risk of esophageal squamous-cell carcinoma (ESCC) in the Chinese population. However, the functional role of TNXB and causal variants had not been interrogated in that study. In the present study, we explored the effects of TNXB expression in the development of ESCC and searched for functional variants in this gene. We found TNXB was downregulated in ESCC tumors. Using small interfering RNAs and CRISPR-Cas9 methods, we identified that both knockdown and knockout of TNXB significantly promoted ESCC cell growth in vitro, suggesting a tumor suppressor role of this gene in ESCC. Through further fine-mapping analysis, we identified that a noncoding variant in the promoter of TNXB, rs411337, predisposed to ESCC risk (odds ratio = 1.36, 95% confidence interval: 1.22-1.51, P = 9.10 × 10-9 ). These findings revealed the functional mechanism of TNXB in the development of ESCC and may contribute to the prevention and treatment of this disease in the future.
Collapse
Affiliation(s)
- Nan Yang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Mei
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Liot S, Aubert A, Hervieu V, Kholti NE, Schalkwijk J, Verrier B, Valcourt U, Lambert E. Loss of Tenascin-X expression during tumor progression: A new pan-cancer marker. Matrix Biol Plus 2020; 6-7:100021. [PMID: 33543019 PMCID: PMC7852205 DOI: 10.1016/j.mbplus.2020.100021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is a systemic disease involving multiple components produced from both tumor cells themselves and surrounding stromal cells. The pro- or anti-tumoral role of the stroma is still under debate. Indeed, it has long been considered the main physical barrier to the diffusion of chemotherapy by its dense and fibrous nature and its poor vascularization. However, in murine models, the depletion of fibroblasts, the main ExtraCellular Matrix (ECM)-producing cells, led to more aggressive tumors even though they were more susceptible to anti-angiogenic and immuno-modulators. Tenascin-C (TNC) is a multifunctional matricellular glycoprotein (i.e. an ECM protein also able to induce signaling pathway) and is considered as a marker of tumor expansion and metastasis. However, the status of other tenascin (TN) family members and particularly Tenascin-X (TNX) has been far less studied during this pathological process and is still controversial. Herein, through (1) in silico analyses of the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases and (2) immunohistochemistry staining of Tissue MicroArrays (TMA), we performed a large and extensive study of TNX expression at both mRNA and protein levels (1) in the 6 cancers with the highest incidence and mortality in the world (i.e. lung, breast, colorectal, prostate, stomach and liver) and (2) in the cancers for which sparse data regarding TNX expression already exist in the literature. We thus demonstrated that, in most cancers, TNX expression is significantly downregulated during cancer progression and we also highlighted, when data were available, that high TNXB mRNA expression in cancer is correlated with a good survival prognosis.
Collapse
Key Words
- CAF, Cancer-Associated Fibroblast
- Cancers
- D.E.G., Differentially Expressed Genes
- ECM, Extracellular Matrix
- EDS, Ehlers-Danlos syndrome
- FBG, fibrinogen
- FNIII, fibronectin type III
- GEO, Gene Expression Omnibus
- GSE, GEO Series
- HDAC1, histone deacetylase-1
- MMP, Matrix Metalloproteinase
- MPNST, Malignant Peripheral Nerve Sheath Tumors
- Meta-analysis
- Prognosis marker
- TCGA, The Cancer Genome Atlas
- TMA, Tissue MicroArray
- TME, Tumor MicroEnvironment
- TN, Tenascin
- TNC, Tenascin-C
- TNR, Tenascin-R
- TNW, Tenascin-W
- TNX, Tenascin-X
- TSS, Transcription Start Site
- Tenascin-X
- Tissue MicroArray
- lncRNA, long non-coding RNA
- mRNA and protein levels
Collapse
Affiliation(s)
- Sophie Liot
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Alexandre Aubert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Valérie Hervieu
- Service d'Anatomopathologie, Groupement Hospitalier Est, Hospices Civils de Lyon, Lyon, France
| | - Naïma El Kholti
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Joost Schalkwijk
- Radboud Institute for Molecular Life Sciences, Faculty of Medical Sciences, 370 Geert Grooteplein-Zuid 26 28, 6525 GA Nijmegen, Netherlands
| | - Bernard Verrier
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Ulrich Valcourt
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Elise Lambert
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique (LBTI), UMR CNRS 5305, Université Lyon 1, Institut de Biologie et Chimie des Protéines, 7, passage du Vercors, F-69367 Lyon Cedex 07, France
| |
Collapse
|
13
|
Identification of important invasion and proliferation related genes in adrenocortical carcinoma. Med Oncol 2019; 36:73. [DOI: 10.1007/s12032-019-1296-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
|
14
|
Yan SP, Chu DX, Qiu HF, Xie Y, Wang CF, Zhang JY, Li WC, Guo RX. LncRNA LINC01305 silencing inhibits cell epithelial-mesenchymal transition in cervical cancer by inhibiting TNXB-mediated PI3K/Akt signalling pathway. J Cell Mol Med 2019; 23:2656-2666. [PMID: 30697971 PMCID: PMC6433725 DOI: 10.1111/jcmm.14161] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 12/14/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) remains one of the leading malignancies afflicting females worldwide, with its aetiology associated with long‐term papillomavirus infection. Recent studies have shifted their focus and research attention to the relationship between long non‐coding RNAs (lncRNAs) and CC therapeutic. Thus, the aim of the current study was to investigate the underlying mechanism of lncRNA LINC01305 on the cell invasion, migration and epithelial‐mesenchymal transition (EMT) of CC cells via modulation of the PI3K/Akt signalling pathway by targeting tenascin‐X B (TNXB). The expressions of LINC01305, TNXB, MMP2, MMP9, E‐cadherin, vimentin, PI3K, Akt, p‐PI3K, p‐Akt and TNXB were detected in this study. After which, the cell invasion and migration abilities of the CC cells were determined respectively. Bioinformatics and the application of a dual luciferase reporter gene assay provided verification indicating that TNXB is the target gene of lncRNA LINC01305. Reverse transcription quantitative polymerase chain reaction (RT‐qPCR) and western blot analysis methods revealed that the expressions of MMP2, MMP9, vimentin, PI3K, Akt, p‐PI3K and p‐Akt were decreased following the down‐regulation of LncRNA LINC01305 or overexpression of TNXB. LncRNA LINC01305 silencing or TNXB overexpression was noted to decrease the migration and invasion of SiHa cells. Taken together, the key findings of the current study present evidence suggesting that lncRNA LINC01305 silencing suppresses EMT, invasion and migration via repressing the PI3K/Akt signalling pathway by means of targeting TNXB in CC cells, which ultimately provides novel insight and identification of potential therapeutic targets for CC.
Collapse
Affiliation(s)
- Shu-Ping Yan
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, P.R. China.,Henan Key Laboratory for Tumor Pathology, Zhengzhou, Henan Province, P.R. China
| | - Dan-Xia Chu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Hai-Feng Qiu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Ya Xie
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Chun-Fang Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Jian-Ying Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Wen-Cai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, P.R. China.,Henan Key Laboratory for Tumor Pathology, Zhengzhou, Henan Province, P.R. China
| | - Rui-Xia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| |
Collapse
|
15
|
Rubicz R, Zhao S, Geybels M, Wright JL, Kolb S, Klotzle B, Bibikova M, Troyer D, Lance R, Ostrander EA, Feng Z, Fan JB, Stanford JL. DNA methylation profiles in African American prostate cancer patients in relation to disease progression. Genomics 2019; 111:10-16. [PMID: 26902887 PMCID: PMC4992660 DOI: 10.1016/j.ygeno.2016.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/02/2015] [Accepted: 02/18/2016] [Indexed: 12/25/2022]
Abstract
This study examined whether differential DNA methylation is associated with clinical features of more aggressive disease at diagnosis and prostate cancer recurrence in African American men, who are more likely to die from prostate cancer than other populations. Tumor tissues from 76 African Americans diagnosed with prostate cancer who had radical prostatectomy as their primary treatment were profiled for epigenome-wide DNA methylation levels. Long-term follow-up identified 19 patients with prostate cancer recurrence. Twenty-three CpGs were differentially methylated (FDR q≤0.25, mean methylation difference≥0.10) in patients with vs. without recurrence, including CpGs in GCK, CDKL2, PRDM13, and ZFR2. Methylation differences were also observed between men with metastatic-lethal prostate cancer vs. no recurrence (five CpGs), regional vs. local pathological stage (two CpGs), and higher vs. lower tumor aggressiveness (one CpG). These results indicate that differentially methylated CpG sites identified in tumor tissues of African American men may contribute to prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Rohina Rubicz
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Milan Geybels
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jonathan L Wright
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Department of Urology, University of Washington School of Medicine, Seattle, WA, United States
| | - Suzanne Kolb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | | | | | - Dean Troyer
- Department of Pathology, Eastern Virginia Medical School, Norfolk, VA, United States; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Raymond Lance
- Department of Urology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, United States
| | - Ziding Feng
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
16
|
The diagnostic role of BAP1 in serous effusions. Hum Pathol 2018; 79:122-126. [PMID: 29802871 DOI: 10.1016/j.humpath.2018.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Accepted: 05/20/2018] [Indexed: 01/05/2023]
Abstract
The aim of this study was to analyze the diagnostic role of BAP1 in effusion cytology. Effusions (n = 258), consisting of 53 malignant mesotheliomas and 205 other cancers, the majority carcinomas (62 breast, 60 ovarian, 31 lung, 51 carcinomas of other origin, 1 melanoma), were analyzed for BAP1 expression using immunohistochemistry. BAP1 was lost in 46 (87%) mesotheliomas compared with 4 (2%) of 205 other cancers (P < .001), resulting in sensitivity and specificity of 87% and 98%, respectively. There was no significant difference between peritoneal (n = 14) and pleural (n = 39) mesotheliomas. The 4 carcinomas with loss of BAP1 included 1 ovarian, 1 breast, 1 uterine cervical, and 1 gastric carcinoma. The present study supports the role of BAP1 as a highly sensitive and specific marker for malignant mesothelioma in serous effusions and argues for inclusion of this test in all specimens in which this diagnosis is considered.
Collapse
|
17
|
Kesselmeier M, Pütter C, Volckmar AL, Baurecht H, Grallert H, Illig T, Ismail K, Ollikainen M, Silén Y, Keski-Rahkonen A, Bulik CM, Collier DA, Zeggini E, Hebebrand J, Scherag A, Hinney A. High-throughput DNA methylation analysis in anorexia nervosa confirms TNXB hypermethylation. World J Biol Psychiatry 2018; 19:187-199. [PMID: 27367046 DOI: 10.1080/15622975.2016.1190033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Patients with anorexia nervosa (AN) are ideally suited to identify differentially methylated genes in response to starvation. METHODS We examined high-throughput DNA methylation derived from whole blood of 47 females with AN, 47 lean females without AN and 100 population-based females to compare AN with both controls. To account for different cell type compositions, we applied two reference-free methods (FastLMM-EWASher, RefFreeEWAS) and searched for consensus CpG sites identified by both methods. We used a validation sample of five monozygotic AN-discordant twin pairs. RESULTS Fifty-one consensus sites were identified in AN vs. lean and 81 in AN vs. population-based comparisons. These sites have not been reported in AN methylation analyses, but for the latter comparison 54/81 sites showed directionally consistent differential methylation effects in the AN-discordant twins. For a single nucleotide polymorphism rs923768 in CSGALNACT1 a nearby site was nominally associated with AN. At the gene level, we confirmed hypermethylated sites at TNXB. We found support for a locus at NR1H3 in the AN vs. lean control comparison, but the methylation direction was opposite to the one previously reported. CONCLUSIONS We confirm genes like TNXB previously described to comprise differentially methylated sites, and highlight further sites that might be specifically involved in AN starvation processes.
Collapse
Affiliation(s)
- Miriam Kesselmeier
- a Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital , Jena , Germany
| | - Carolin Pütter
- b Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen , Essen , Germany
| | - Anna-Lena Volckmar
- c Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Hansjörg Baurecht
- d Department of Dermatology, Allergology, and Venereology , University Hospital Schleswig-Holstein , Campus Kiel, Kiel , Germany
| | - Harald Grallert
- e Research Unit of Molecular Epidemiology , Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg , Germany.,f German Center for Diabetes Research , Neuherberg , Germany
| | - Thomas Illig
- e Research Unit of Molecular Epidemiology , Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg , Germany.,g Hannover Unified Biobank , Hannover Medical School , Hannover , Germany.,h Institute of Human Genetics , Hannover Medical School , Hannover , Germany
| | - Khadeeja Ismail
- i Department of Public Health , University of Helsinki , Helsinki , Finland
| | - Miina Ollikainen
- i Department of Public Health , University of Helsinki , Helsinki , Finland
| | - Yasmina Silén
- i Department of Public Health , University of Helsinki , Helsinki , Finland
| | | | - Cynthia M Bulik
- j Department of Psychiatry , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,k Department of Nutrition , The University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - David A Collier
- l Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London , London , UK.,m Eli Lilly and Company, Erl Wood Manor , Windlesham , UK
| | - Eleftheria Zeggini
- n Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus , Hinxton , Cambridge , UK
| | - Johannes Hebebrand
- c Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - André Scherag
- a Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital , Jena , Germany
| | - Anke Hinney
- c Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | | |
Collapse
|
18
|
Davidson B, Pinamonti M, Cuevas D, Holth A, Zeppa P, Hager T, Wohlschlaeger J, Tötsch M. The diagnostic role of PTEN and ARID1A in serous effusions. Virchows Arch 2017; 472:425-432. [DOI: 10.1007/s00428-017-2273-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/07/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022]
|
19
|
Hui L, Zhang J, Ding X, Guo X, Jang X. Identification of potentially critical differentially methylated genes in nasopharyngeal carcinoma: A comprehensive analysis of methylation profiling and gene expression profiling. Oncol Lett 2017; 14:7171-7178. [PMID: 29344148 PMCID: PMC5754830 DOI: 10.3892/ol.2017.7083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to identify potentially critical differentially methylated genes associated with the progression of nasopharyngeal carcinoma (NPC). Methylation profiling data of GSE62336 deposited in the Gene Expression Omnibus database were used to identify differentially methylated regions (DMRs) and differentially methylated CpG islands (DMIs). Concurrently, differentially expressed genes (DEGs) were identified using a meta-analysis of three gene expression datasets (GSE53819, GSE13597 and GSE12452). Subsequently, methylated DEGs were identified by comparing DMRs and DEGs. Furthermore, functional associations of these methylated DEGs were analyzed via constructing a functional network using GeneMANIA prediction server. In total, 1,676 hypermethylated genes, 28 hypomethylated genes, 17 DMIs and 2,983 DEGs (1,655 upregulated and 1,328 downregulated) were identified. Among these DEGs, 135 downregulated genes were hypermethylated; of these, dual specificity phosphatase 6 (DUSP6) and tenascin XB (TNXB) contained DMIs. In the functional network, 154 genes and 1,651 association pairs were included. DUSP6 was predicted to exhibit genetic interactions with other hypermethylated DEGs such as malic enzyme 3 and ST3 β-galactoside α-2,3-sialyltransferase 5; TNXB was predicted to be co-expressed with a set of hypermethylated DEGs, including EPH receptor B6, aldehyde dehydrogenase 1 family, member L1 and glutathione peroxidase 3. The hypermethylated DEGs may be involved in the progression of NPC, and they may become novel therapeutic targets for NPC.
Collapse
Affiliation(s)
- Lian Hui
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jingru Zhang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaoxu Ding
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xing Guo
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuejun Jang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
20
|
Lončar-Brzak B, Klobučar M, Veliki-Dalić I, Sabol I, Kraljević Pavelić S, Krušlin B, Mravak-Stipetić M. Expression of small leucine-rich extracellular matrix proteoglycans biglycan and lumican reveals oral lichen planus malignant potential. Clin Oral Investig 2017; 22:1071-1082. [PMID: 28779221 DOI: 10.1007/s00784-017-2190-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/21/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study was to examine molecular alterations on the protein level in lesions of oral lichen planus (OLP), oral squamous cell carcinoma (OSCC) and healthy mucosa. MATERIALS AND METHODS Global protein profiling methods based on liquid chromatography coupled to mass spectrometry (LC-MS) were used, with a special emphasis on evaluation of deregulated extracellular matrix molecules expression, as well as on analyses of IG2F and IGFR2 expression in healthy mucosa, OLP and OSCC tissues by comparative semi-quantitative immunohistochemistry. RESULTS Mass spectrometry-based proteomics profiling of healthy mucosa, OLP and OSCC tissues (and accompanied histologically unaltered tissues, respectively) identified 55 extracellular matrix proteins. Twenty among identified proteins were common to all groups of samples. Expression of small leucine-rich extracellular matrix proteoglycans lumican and biglycan was found both in OSCC and OLP and they were validated by Western blot analysis as putative biomarkers. A significant increase (p < 0.05) of biglycan expression in OLP-AT group was determined in comparison with OLP-T group, while lumican showed significant up-regulation (p < 0.05) in OLP-T and OSCC-T groups vs. adjacent and control tissue groups. Biglycan expression was only determined in OSCC-AT group. Immunohistochemical analysis of IGF2 and IG2FR expression revealed no significant difference among groups of samples. CONCLUSION/CLINICAL RELEVANCE Biglycan and lumican were identified as important pathogenesis biomarkers of OLP that point to its malignant potential.
Collapse
Affiliation(s)
- Božana Lončar-Brzak
- School of Dental Medicine, Department of Oral Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Klobučar
- Department of Biotechnology and Centre for High-throughput technologies, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Irena Veliki-Dalić
- Department of Pathology, Clinical Hospital for Tumours, Clinical Hospital Centre Sisters of Mercy, Zagreb, Croatia
| | - Ivan Sabol
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sandra Kraljević Pavelić
- Department of Biotechnology and Centre for High-throughput technologies, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia.
| | - Božo Krušlin
- School of Medicine, Department of Pathology, Clinical Hospital Centre Sisters of Mercy, University of Zagreb, Zagreb, Croatia
| | - Marinka Mravak-Stipetić
- School of Dental Medicine, Department of Oral Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
21
|
Davidson B. CD24 is highly useful in differentiating high-grade serous carcinoma from benign and malignant mesothelial cells. Hum Pathol 2016; 58:123-127. [PMID: 27589896 DOI: 10.1016/j.humpath.2016.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/30/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022]
Abstract
CD24 was previously shown to be overexpressed in high-grade serous carcinoma (HGSC) effusions compared to malignant mesothelioma (MM) in gene expression array analysis. The present study validated this observation in a large series consisting of both effusions and surgical specimens. Effusions (n = 206; 100 HGSC, 16 ovarian carcinomas of other histological types, 54 breast carcinomas, 36 MM) and surgical specimens (n = 182; 117 ovarian carcinomas, 65 MM) were analyzed for CD24 expression using immunohistochemistry. CD24 was expressed in 105/116 (91%) ovarian carcinoma and 16/54 (30%) breast carcinoma effusions, while it was uniformly absent in MM (0/36; 0%; P < .001). Reactive mesothelial cells were CD24-negative in all carcinoma specimens. Comparative analysis of 117 solid primary (n = 43) and metastatic (n = 74) ovarian carcinomas and 65 solid MM specimens showed CD24 expression in 46% (54/117) of the former compared to 3% (2/65) of the latter (P < .001). Comparative analysis of ovarian carcinomas at different anatomic sites showed significantly higher CD24 expression in effusions compared to solid ovarian and metastatic lesions (P < .001), with similar results when analysis was limited to HGSC (P < .001). In conclusion, CD24 is a highly sensitive and specific marker of ovarian carcinoma in the differential diagnosis from MM and reactive mesothelium in effusions. CD24 is similarly a specific marker in surgical specimens, though with lower sensitivity. The overexpression of CD24 in ovarian carcinoma effusions compared to solid lesions may be due to the acquisition of cancer stem cell characteristics.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316, Oslo, Norway.
| |
Collapse
|
22
|
Michael CW, Davidson B. Pre-analytical issues in effusion cytology. Pleura Peritoneum 2016; 1:45-56. [PMID: 30911607 DOI: 10.1515/pp-2016-0001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/23/2016] [Indexed: 12/13/2022] Open
Abstract
Effusions or body cavity fluids are amongst the most commonly submitted samples to the cytology laboratory. Knowledge of proper collection, storage, preservation and processing techniques is essential to ensure proper handling and successful analysis of the sample. This article describes how the effusions should be collected and proper conditions for submission. The different processing techniques to extract the cellular material and prepare slides satisfactory for microscopic evaluation are described such as direct smears, cytospins, liquid based preparations and cell blocks. The article further elaborates on handling the specimens for additional ancillary testing such as immunostaining and molecular tests, including predictive ones, as well as future research approaches.
Collapse
Affiliation(s)
- Claire W Michael
- Department of Pathology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
23
|
Abstract
Extracellular matrix proteins of the tenascin family resemble each other in their domain structure, and also share functions in modulating cell adhesion and cellular responses to growth factors. Despite these common features, the 4 vertebrate tenascins exhibit vastly different expression patterns. Tenascin-R is specific to the central nervous system. Tenascin-C is an “oncofetal” protein controlled by many stimuli (growth factors, cytokines, mechanical stress), but with restricted occurrence in space and time. In contrast, tenascin-X is a constituitive component of connective tissues, and its level is barely affected by external factors. Finally, the expression of tenascin-W is similar to that of tenascin-C but even more limited. In accordance with their highly regulated expression, the promoters of the tenascin-C and -W genes contain TATA boxes, whereas those of the other 2 tenascins do not. This article summarizes what is currently known about the complex transcriptional regulation of the 4 tenascin genes in development and disease.
Collapse
Key Words
- AKT, v-akt murine thymoma viral oncogene homolog
- ALK, anaplastic lymphoma kinase
- AP-1, activator protein-1
- ATF, activating transcription factor
- BMP, bone morphogenetic protein
- CBP, CREB binding protein
- CREB, cAMP response element-binding protein
- CREB-RP, CREB-related protein
- CYP21A2, cytochrome P450 family 21 subfamily A polypeptide 2
- ChIP, chromatin immunoprecipitation
- EBS, Ets binding site
- ECM, extracellular matrix
- EGF, epidermal growth factor
- ERK1/2, extracellular signal-regulated kinase 1/2
- ETS, E26 transformation-specific
- EWS-ETS, Ewing sarcoma-Ets fusion protein
- Evx1, even skipped homeobox 1
- FGF, fibroblast growth factor
- HBS, homeodomain binding sequence
- IL, interleukin
- ILK, integrin-linked kinase
- JAK, Janus kinase
- JNK, c-Jun N-terminal kinase
- MHCIII, major histocompatibility complex class III
- MKL1, megakaryoblastic leukemia-1
- NFκB, nuclear factor kappa B
- NGF, nerve growth factor; NFAT, nuclear factor of activated T-cells
- OTX2, orthodenticle homolog 2
- PDGF, platelet-derived growth factor
- PI3K, phosphatidylinositol 3-kinase
- POU3F2, POU domain class 3 transcription factor 2
- PRRX1, paired-related homeobox 1
- RBPJk, recombining binding protein suppressor of hairless
- ROCK, Rho-associated, coiled-coil-containing protein kinase
- RhoA, ras homolog gene family member A
- SAP, SAF-A/B, Acinus, and PIAS
- SCX, scleraxix
- SEAP, secreted alkaline phosphatase
- SMAD, small body size - mothers against decapentaplegic
- SOX4, sex determining region Y-box 4
- SRE, serum response element
- SRF, serum response factor
- STAT, signal transducer and activator of transcription
- TGF-β, transforming growth factor-β
- TNC, tenascin-C
- TNF-α, tumor necrosis factor-α
- TNR, tenascin-R
- TNW, tenascin-W
- TNX, tenascin-X
- TSS, transcription start site
- UTR, untranslated region
- WNT, wingless-related integration site
- cancer
- cytokine
- development
- extracellular matrix
- gene promoter
- gene regulation
- glucocorticoid
- growth factor
- homeobox gene
- matricellular
- mechanical stress
- miR, micro RNA
- p38 MAPK, p38 mitogen activated protein kinase
- tenascin
- transcription factor
Collapse
Affiliation(s)
- Francesca Chiovaro
- a Friedrich Miescher Institute for Biomedical Research ; Basel , Switzerland
| | | | | |
Collapse
|
24
|
Takeuchi S, Seike M, Noro R, Soeno C, Sugano T, Zou F, Uesaka H, Nishijima N, Matsumoto M, Minegishi Y, Kubota K, Gemma A. Significance of osteopontin in the sensitivity of malignant pleural mesothelioma to pemetrexed. Int J Oncol 2014; 44:1886-94. [PMID: 24714722 DOI: 10.3892/ijo.2014.2370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/10/2014] [Indexed: 11/05/2022] Open
Abstract
Pemetrexed (PEM) is currently recommended as one of the standard anticancer drugs for malignant pleural mesothelioma (MPM). However, the mechanism of the sensitivity of MPM to PEM remains unclear. We analyzed the antitumor effects of PEM in six MPM cell lines by MTS assay. To identify genes associated with drug sensitivity, we conducted gene expression profiling on the same set of cell lines using GeneChips and pathway analysis. Three cell lines were sensitive to PEM. A total fo 18 transcripts and 14 genes identified by GeneChips were significantly correlated with sensitivity to PEM. Pathway analysis revealed that osteopontin (SPP1/OPN) was an important target in PEM sensitivity. Overexpression of SPP1/OPN was observed in the sensitive cells by quantitative PCR and western blot analysis. Introduction of SPP1/OPN by lentiviral vector significantly enhanced the invasion activities of MPM cells. PEM treatment with SPP1/OPN knockdown inhibited the PEM-induced cell growth-inhibitory effect in PEM-sensitive cells. Expression of SPP1/OPN and AKT phosphorylation significantly decreased after PEM treatment of the PEM-sensitive cells. High immunohistochemical expression of SPP1/OPN was observed in two of three MPM patients who had a partial response to PEM-based chemotherapy. PEM has antitumor effects in MPM cells dependent on SPP1/OPN overexpression resulting in AKT activation. Our results suggest that SPP1 may be used as a single predictive biomarker of the effectiveness of PEM treatment in MPM.
Collapse
Affiliation(s)
- Susumu Takeuchi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Chie Soeno
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Teppei Sugano
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Fenfei Zou
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | | | - Nobuhiko Nishijima
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yuji Minegishi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
25
|
Stavnes HT, Nymoen DA, Langerød A, Holth A, Børresen Dale AL, Davidson B. AZGP1 and SPDEF mRNA expression differentiates breast carcinoma from ovarian serous carcinoma. Virchows Arch 2012; 462:163-73. [PMID: 23242172 DOI: 10.1007/s00428-012-1347-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/14/2012] [Accepted: 11/20/2012] [Indexed: 01/08/2023]
Abstract
The ANPEP, AZGP1, and SPDEF genes were previously found to be overexpressed in breast compared to ovarian carcinoma effusions. The present study validated this finding in a larger cohort consisting of both primary and metastatic tumors. ANPEP, AZGP1, and SPDEF mRNA expression was investigated in 83 breast carcinomas (57 primary carcinomas and 26 effusions) and 40 ovarian carcinomas (20 primary carcinomas and 20 effusions) using qPCR. ANPEP protein expression was immunohistochemically analyzed in 53 breast carcinoma effusions and patient-matched primary carcinomas (n = 25) and lymph node metastases (n = 16). mRNA and protein levels were studied for association with tumor type and anatomic site, and for clinical role in breast carcinoma. AZGP1 and SPDEF mRNA was overexpressed in breast compared to ovarian carcinoma (both p < 0.001). AZGP1 mRNA was overexpressed in primary breast carcinoma compared to effusions (p < 0.001), with opposite findings for ANPEP (p = 0.044). AZGP1 mRNA expression correlated with positive ER status (p = 0.032) and grade 1 histology (p = 0.011), whereas SPDEF mRNA levels were associated with positive ER (p = 0.002) and PR (p = 0.013) status and tamoxifen treatment (p = 0.004). ANPEP protein expression was higher in breast carcinoma effusions compared to primary tumors and lymph node metastases (both p = 0.001). ANPEP, AZGP1, and SPDEF levels were unrelated to disease-free or overall survival. This is the first study documenting ANPEP, AZGP1, and SPDEF expression in breast carcinoma effusions. AZGP1 and SPDEF may be novel molecular markers for the differentiation of breast from ovarian carcinoma. ANPEP may be involved in breast carcinoma progression in view of its overexpression in effusions compared to solid specimens.
Collapse
Affiliation(s)
- Helene Tuft Stavnes
- Division of Pathology, Norwegian Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Malignant pleural mesothelioma (MPM) can be a challenging diagnosis for clinicians to make as it is often difficult to distinguish from benign asbestos pleural effusions and metastatic carcinomas. In this review, we present a case of MPM and discuss clinical manifestations, traditional diagnostic techniques, and the role of cytopathologic immunostains and serum biomarkers in the diagnosis of MPM.
Collapse
|
27
|
Ordóñez NG. Application of immunohistochemistry in the diagnosis of epithelioid mesothelioma: a review and update. Hum Pathol 2012; 44:1-19. [PMID: 22963903 DOI: 10.1016/j.humpath.2012.05.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 01/12/2023]
Abstract
A large number of immunohistochemical markers that can assist in the differential diagnosis of epithelioid mesotheliomas are currently available. Because these markers are expressed differently in the various types of carcinomas that can metastasize to the serosal membranes and can potentially be confused with epithelioid mesothelioma, their selection for inclusion in a diagnostic panel largely depends on the differential diagnosis, as well as on which ones work the best in a given laboratory. Traditionally, the panels used in the differential diagnosis of epithelioid mesothelioma have consisted of a combination of positive mesothelioma markers and broad-spectrum carcinoma markers. At present, a wide variety of organ-associated carcinoma markers such as thyroid transcription factor-1 and napsin A for the lung, PAX 8 and PAX 2 for the kidney, and Müllerian-derived tumors; gross cystic disease fluid protein-15 and mammaglobin for the breast; and CDX2 for intestinal differentiation are available, which can assist in establishing the site of origin of an adenocarcinoma when included in a diagnostic panel. This article provides updated information on the composition of the panels of markers recommended in the various differential diagnoses.
Collapse
Affiliation(s)
- Nelson G Ordóñez
- The University of Texas MD Anderson Cancer Center, Department of Pathology, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Chua TC, Chong CH, Morris DL. Peritoneal mesothelioma: current status and future directions. Surg Oncol Clin N Am 2012; 21:635-43. [PMID: 23021721 DOI: 10.1016/j.soc.2012.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peritoneal mesothelioma is a rare malignancy where life expectancy with systemic chemotherapy remains poor. Most patients with this disease are diagnosed late with extensive peritoneal disease burden leading to nausea, pain, and abdominal distention as a result of ascites and a partial bowel obstruction. A newly proposed staging system comprising elements of the tumor burden measured by the peritoneal cancer index, abdominal nodal status, and extra-abdominal metastases has been demonstrated to reliably stratify patient outcomes based on staging subgroups after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. This new staging system may form the basis of selecting patients for radical surgery and improve survival outcomes.
Collapse
Affiliation(s)
- Terence C Chua
- Department of Surgery, University of New South Wales, St George Hospital, Sydney, NSW 2217, Australia.
| | | | | |
Collapse
|
29
|
O'Brien JH, Vanderlinden LA, Schedin PJ, Hansen KC. Rat mammary extracellular matrix composition and response to ibuprofen treatment during postpartum involution by differential GeLC-MS/MS analysis. J Proteome Res 2012; 11:4894-905. [PMID: 22897585 DOI: 10.1021/pr3003744] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Breast cancer patients diagnosed within five years following pregnancy have increased metastasis and decreased survival. A hallmark of postpartum biology that may contribute to this poor prognosis is mammary gland involution, involving massive epithelial cell death and dramatic stromal remodeling. Previous studies show pro-tumorigenic properties of extracellular matrix (ECM) isolated from rodent mammary glands undergoing postpartum involution. More recent work demonstrates systemic ibuprofen treatment during involution decreases its tumor-promotional nature. Utilizing a proteomics approach, we identified relative differences in the composition of mammary ECM isolated from nulliparous rats and those undergoing postpartum involution, with and without ibuprofen treatment. GeLC-MS/MS experiments resulted in 20327 peptide identifications that mapped to 884 proteins with a <0.02% false discovery rate. Label-free quantification yielded several ECM differences between nulliparous and involuting glands related to collagen-fiber organization, cell motility and attachment, and cytokine regulation. Increases in known pro-tumorigenic ECM proteins osteopontin, tenascin-C, and laminin-α1 and pro-inflammatory proteins STAT3 and CD68 further identify candidate mediators of breast cancer progression specific to the involution window. With postpartum ibuprofen treatment, decreases in tenascin-C and three laminin chains were revealed. Our data suggest novel ECM mediators of breast cancer progression and demonstrate a protective influence of ibuprofen on mammary ECM composition.
Collapse
Affiliation(s)
- Jenean H O'Brien
- School of Medicine, Division of Medical Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States
| | | | | | | |
Collapse
|
30
|
Niu H, Jiang H, Cheng B, Li X, Dong Q, Shao L, Liu S, Wang X. Stromal proteome expression profile and muscle-invasive bladder cancer research. Cancer Cell Int 2012; 12:39. [PMID: 22920603 PMCID: PMC3489783 DOI: 10.1186/1475-2867-12-39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/17/2012] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND To globally characterize the cancer stroma expression profile of muscle-invasive transitional cell carcinoma and to discuss the cancer biology as well as biomarker discovery from stroma. Laser capture micro dissection was used to harvest purified muscle-invasive bladder cancer stromal cells and normal urothelial stromal cells from 4 paired samples. Two-dimensional liquid chromatography tandem mass spectrometry was used to identify the proteome expression profile. The differential proteins were further analyzed using bioinformatics tools and compared with the published literature. RESULTS We identified 868/872 commonly expressed proteins and 978 differential proteins from 4 paired cancer and normal stromal samples using laser capture micro dissection coupled with two-dimensional liquid chromatography tandem mass spectrometry. 487/491 proteins uniquely expressed in cancer/normal stroma. Differential proteins were compared with the entire list of the international protein index (IPI), and there were 42/42 gene ontology (GO) terms exhibited as enriched and 8/5 exhibited as depleted in cellular Component, respectively. Significantly altered pathways between cancer/normal stroma mainly include metabolic pathways, ribosome, focal adhesion, etc. Finally, descriptive statistics show that the stromal proteins with extremes of PI and MW have the same probability to be a biomarker. CONCLUSIONS Based on our results, stromal cells are essential component of the cancer, biomarker discovery and network based multi target therapy should consider neoplastic cells itself and corresponding stroma as whole one.
Collapse
Affiliation(s)
- Haitao Niu
- Department of Urology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Haiping Jiang
- Department of Oncology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Bo Cheng
- Department of Urology, The Central Hospital of Shengli Oil Field, Dondying, China
| | - Xinhui Li
- Department of Urology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Qian Dong
- Department of Pediatric Surgery, The Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Leping Shao
- Department of Nephrology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| | - Shiguo Liu
- Gout Laboratory, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Xinsheng Wang
- Department of Urology, The Affiliated Hospital of Medical College Qingdao University, Qingdao, China
| |
Collapse
|
31
|
Betta PG, Magnani C, Bensi T, Trincheri NF, Orecchia S. Immunohistochemistry and Molecular Diagnostics of Pleural Malignant Mesothelioma. Arch Pathol Lab Med 2012; 136:253-61. [DOI: 10.5858/arpa.2010-0604-ra] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context.—The pathologic approach to pleural-based lesions is stepwise and uses morphologic assessment, correlated with clinical and imaging data supplemented by immunohistochemistry (IHC), and more recently, molecular tests, as an aid for 2 main diagnostic problems: malignant mesothelioma (MM) versus other malignant tumors and malignant versus reactive mesothelial proliferations.
Objective.—To present the current knowledge regarding IHC and molecular tests with respect to MM diagnosis, and in particular, the differentiation of the epithelioid type of MM from carcinoma metastatic to the pleural cavity.
Data Sources.—A review of immunohistochemical features of 286 consecutive MMs from 459 cases of pleural pathology, diagnosed during routine practice from 2003 to 2009. A survey of biomedical journal literature from MedLine/PubMed (US National Library of Medicine) focused on MM and associated tissue-based diagnostic IHC markers and molecular tests.
Conclusions.—The search for a single diagnostic marker of MM has so far been discouraging, given the biologic and phenotypic tumor heterogeneity of MM. The use of antibody panels has gained unanimous acceptance especially in the differential diagnosis between MM and metastatic carcinoma, whereas the usefulness of IHC is more limited when dealing with spindle cell malignancies or distinguishing malignant from reactive mesothelium. A great degree of interlaboratory variability in antibody combinations and clone selection within diagnostic panels still exists. Current investigations aim at selecting the most suitable and cost-effective combination of antibodies by using novel statistical approaches for assessing diagnostic performance beyond the traditional measures of sensitivity and specificity.
Collapse
|
32
|
Abstract
Context.—Diagnosing epithelioid serosal lesions remains a challenge because numerous different processes—primary or secondary, benign or malignant—occur in body cavities, some of which are very rare.
Objectives.—To review the newest literature and to describe the morphologic criteria and immunohistochemical markers that are useful for distinguishing epithelioid serosal lesions.
Data Sources.—Previously published literature concentrating on the newest research findings. Earlier reviews are principally referred to for established diagnostic criteria.
Conclusions.—Immunohistochemistry with a panel of antibodies has made the diagnosis of epithelioid serosal lesions very reliable. When deciding on antibodies used in differential diagnosis, it is important to consider tumor location, clinical and radiologic information, and morphologic features. Immunohistochemistry is less useful in the differential diagnosis of benign versus malignant mesothelial lesions. The diagnosis of benign versus malignant mesothelial proliferations still relies on the histologic criteria of invasion.
Collapse
|
33
|
Brenne K, Nymoen DA, Reich R, Davidson B. PRAME (preferentially expressed antigen of melanoma) is a novel marker for differentiating serous carcinoma from malignant mesothelioma. Am J Clin Pathol 2012; 137:240-7. [PMID: 22261449 DOI: 10.1309/ajcpga95kvsaudmf] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The PRAME (preferentially expressed antigen of melanoma) gene was previously shown to be overexpressed in ovarian/primary peritoneal serous carcinoma compared with malignant mesothelioma using gene expression arrays. The objective of this study was to validate this finding at the messenger RNA (mRNA) and protein levels. Quantitative real-time polymerase chain reaction analysis of 126 müllerian carcinomas and 23 malignant mesotheliomas showed significantly higher PRAME mRNA expression in the former tumor (P < .001; test sensitivity and specificity, 89% and 91%, respectively). PRAME protein was expressed in 41 of 50 müllerian carcinomas and 0 of 30 mesotheliomas using Western blotting (P < .001; test sensitivity and specificity, 82% and 100%, respectively). PRAME levels in müllerian carcinoma were unrelated to survival; however, PRAME protein expression was up-regulated in solid metastases compared with primary carcinoma and effusions (P < .001). Our data confirm that PRAME effectively differentiates müllerian carcinoma from malignant mesothelioma at the mRNA and protein levels, suggesting a role in the diagnostic workup of serosal cancers.
Collapse
|
34
|
Brusegard K, Stavnes HT, Nymoen DA, Flatmark K, Trope CG, Davidson B. Rab25 is overexpressed in Müllerian serous carcinoma compared to malignant mesothelioma. Virchows Arch 2012; 460:193-202. [DOI: 10.1007/s00428-011-1191-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/15/2011] [Accepted: 12/26/2011] [Indexed: 10/14/2022]
|
35
|
Anani W, Bruggeman R, Zander DS. β-catenin expression in benign and malignant pleural disorders. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2011; 4:742-747. [PMID: 22135721 PMCID: PMC3225785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/26/2011] [Indexed: 05/31/2023]
Abstract
Benign and malignant pleural processes display a large and overlapping spectrum of morphological appearances, and can be difficult to distinguish, histologically, from each other. β-catenin, a participant in the wingless-type (Wnt) transduction pathway, is involved in the pathogenesis of malignant mesothelioma and has received limited evaluation for its ability to serve as a diagnostic aid for distinguishing between individual pleural disorders. We performed immunohistochemistry for β-catenin on 10 pleural malignant mesotheliomas, 10 examples of mesothelial hyperplasia and 18 cases of organizing pleuritis. Although differences were noted in staining intensity between the mesothelioma and mesothelial hyperplasia groups, extensiveness and cellular location were similar. Staining intensity (mean +/- s.d.) in mesotheliomas (2.00 +/- 0.67) was significantly less intense than in mesothelial hyperplasia cases (3.00 +/- 0.00) (p=0.0005). Stromal cell staining was cytoplasmic in all cases, and endothelial cell staining was membranous, submembranous and cytoplasmic. Nuclear expression of β-catenin was not observed in any of the cases studied. This lack of nuclear staining in the stromal cells of organizing pleuritis differs markedly from the previously reported high frequencies of nuclear β-catenin expression in other pleural spindle cell proliferations (desmoid tumors and solitary fibrous tumors). In summary, the current study adds to previous work indicating a role for β-catenin in the genesis of pleural conditions including organizing pleuritis, mesothelial hyperplasia and malignant mesothelioma. Although IHC for β-catenin does not appear to be conclusive for separating benign from malignant mesothelial proliferations, it may be valuable for assisting in the differential diagnosis of mesothelial and spindle cell proliferations in the pleura.
Collapse
Affiliation(s)
| | - Richard Bruggeman
- Department of Pathology, Penn State College of Medicine/Penn State M. S. Hershey Medical CenterHershey, PA, USA
| | - Dani S Zander
- Department of Pathology, Penn State College of Medicine/Penn State M. S. Hershey Medical CenterHershey, PA, USA
| |
Collapse
|
36
|
Brenne K, Nymoen DA, Hetland TE, Trope' CG, Davidson B. Expression of the Ets transcription factor EHF in serous ovarian carcinoma effusions is a marker of poor survival. Hum Pathol 2011; 43:496-505. [PMID: 21855111 DOI: 10.1016/j.humpath.2011.05.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 12/17/2022]
Abstract
The EHF (Ets homologous factor) gene was previously shown to be overexpressed in ovarian/primary peritoneal serous carcinoma compared to malignant mesothelioma using gene expression arrays. The objective of this study was to validate this finding at the mRNA level in a larger series. We analyzed the diagnostic role of EHF in 98 ovarian serous carcinoma effusions, 23 malignant mesothelioma specimens (20 effusions, 3 surgical specimens), and 28 primary ovarian serous carcinomas using quantitative real-time polymerase chain reaction. Expression levels of EHF in ovarian carcinoma were additionally investigated for association with clinicopathologic parameters and survival. Quantitative real-time polymerase chain reaction analysis showed significantly higher expression of EHF mRNA in ovarian carcinoma effusions and in primary ovarian carcinoma compared to malignant mesothelioma effusions (P < .001 for both). EHF mRNA expression was additionally higher in primary ovarian carcinomas compared to effusions of this cancer (P < .001). In univariate analysis for all patients with effusions, higher EHF mRNA levels were associated with a trend for shorter progression-free survival (P = .066), which became significant in analysis of 45 patients with primary diagnosis pre-chemotherapy effusions (P = .01). In Cox multivariate analysis, EHF mRNA expression was an independent predictor of poor progression-free survival for all patients and patients with primary diagnosis pre-chemotherapy effusions (P = .033 and P = .009, respectively). EHF mRNA levels differentiate ovarian carcinoma from malignant mesothelioma and may thus be of diagnostic value in this setting. EHF may be a novel prognostic marker in ovarian carcinoma.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Ascitic Fluid/pathology
- Biomarkers, Tumor/genetics
- Cohort Studies
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/mortality
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/therapy
- Diagnosis, Differential
- Disease-Free Survival
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Humans
- Mesothelioma/genetics
- Mesothelioma/mortality
- Mesothelioma/pathology
- Mesothelioma/therapy
- Middle Aged
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Pleural Effusion, Malignant/pathology
- Prognosis
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- Survival Rate
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Kjersti Brenne
- Division of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0424 Oslo, Norway
| | | | | | | | | |
Collapse
|
37
|
Bock AJ, Nymoen DA, Brenne K, Kærn J, Davidson B. SCARA3 mRNA is overexpressed in ovarian carcinoma compared with breast carcinoma effusions. Hum Pathol 2011; 43:669-74. [PMID: 21855113 DOI: 10.1016/j.humpath.2011.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/27/2011] [Accepted: 06/01/2011] [Indexed: 11/27/2022]
Abstract
Scavenger receptor class A, member 3 (SCARA3) was previously found to be overexpressed in ovarian/primary peritoneal carcinoma (OC/PPC) compared with breast carcinoma effusions by global gene expression analysis. The present study aimed to validate this finding applying quantitative PCR and analyzing the association between SCARA3 expression and clinicopathologic parameters in a large OC cohort. SCARA3 messenger RNA (mRNA) expression was analyzed in 127 effusions (103 ovarian/peritoneal/fallopian tube carcinomas, 9 breast carcinomas, 15 malignant mesotheliomas [MM]), and 30 solid primary OCs. The association between OC SCARA3 levels and clinicopathologic parameters was investigated. SCARA3 mRNA was expressed in all effusions, irrespective of tumor type. However, transcript levels were significantly higher in OC compared with breast carcinoma (P < .001) and MM (P = .011) effusions. Primary OCs and effusions had comparable expression levels. Higher SCARA3 expression was found in disease recurrence postchemotherapy compared with primary diagnosis prechemotherapy OC effusions (P = .001), and this difference was significant for treatment with both platinum agents (P = .006) and paclitaxel (P = .002). SCARA3 levels in effusions and primary carcinomas were unrelated to patient age, tumor grade, FIGO stage, residual tumor volume after surgery, response to chemotherapy, or survival (P > .05 for all). In conclusion, SCARA3 mRNA by quantitative PCR is highly expressed in OC and may aid in differentiating this tumor from other cancers, particularly breast carcinoma, in effusions. The consistently high SCARA3 levels in both primary carcinomas and metastatic cells in effusions, and its up-regulation along disease progression from diagnosis to recurrence, suggest a role in ovarian cancer biology.
Collapse
Affiliation(s)
- Annika J Bock
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0424 Oslo, Norway
| | | | | | | | | |
Collapse
|
38
|
Turtoi A, Musmeci D, Wang Y, Dumont B, Somja J, Bevilacqua G, De Pauw E, Delvenne P, Castronovo V. Identification of novel accessible proteins bearing diagnostic and therapeutic potential in human pancreatic ductal adenocarcinoma. J Proteome Res 2011; 10:4302-13. [PMID: 21755970 DOI: 10.1021/pr200527z] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreas ductal adenocarcinoma (PDAC) remains a deadly malignancy with poor early diagnostic and no effective therapy. Although several proteomic studies have performed comparative analysis between normal and malignant tissues, there is a lack of clear characterization of proteins that could be of clinical value. Systemically reachable ("potentially accessible") proteins, suitable for imaging technologies and targeted therapies represent a major group of interest. The current study explores potentially accessible proteins overexpressed in PDAC, employing innovative proteomics technologies. In the discovery phase, potentially accessible proteins from fresh human normal and PDAC tissues were ex vivo biotinylated, isolated and identified using 2D-nano-HPLC-MS/MS method. The analysis revealed 422 up-regulated proteins in the tumor, of which 83 (including protein isoforms) were evaluated as potentially accessible. Eleven selected candidates were further confirmed as up-regulated using Western blot and multiple reaction monitoring protein quantification. Of these, transforming growth factor beta-induced (TGFBI), latent transforming growth factor beta binding 2 (LTBP2), and asporin (ASPN) were further investigated by employing large scale immunohistochemistry-based validations. They were found to be significantly expressed in a large group of clinical PDAC samples compared to corresponding normal and inflammatory tissues. In conclusion, TGFBI, LTBP2, and ASPN are novel, overexpressed, and potentially accessible proteins in human PDAC. They bear the potential to be of clinical value for diagnostic and therapeutic applications and merit further studies using in vivo models.
Collapse
Affiliation(s)
- Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University Hospital CHU, University of Liege, Bat B23, 4000 Liege, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Yuan Y, Dong HP, Nymoen DA, Nesland JM, Wu C, Davidson B. PINCH-2 expression in cancers involving serosal effusions using quantitative PCR. Cytopathology 2011; 22:22-9. [PMID: 20500520 DOI: 10.1111/j.1365-2303.2010.00757.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The PINCH-2 gene was previously shown to be overexpressed in malignant mesothelioma compared with ovarian/peritoneal serous carcinoma in Affymetrix array analysis. The objective of the present study was to validate this finding at the mRNA and protein level. METHODS Effusions (n = 91; 71 ovarian and 10 breast carcinomas, 10 malignant mesotheliomas) were assayed for PINCH-2 mRNA expression using quantitative PCR. PINCH-2 protein expression was analysed in 37 effusions using flow cytometry. RESULTS Quantitative PCR analysis showed significantly higher PINCH-2 mRNA levels in mesotheliomas compared with carcinomas (P = 0.004). Values of <10 copies were found exclusively in carcinoma effusions (25.4% of ovarian and 50% of breast carcinomas). However, PINCH-2 protein expression by flow cytometry did not differ significantly between the three cancer types. No association was observed between PINCH-2 levels and patient survival or expression of previously-studied molecules related to adhesion, metastasis and apoptosis inhibition in ovarian carcinoma. CONCLUSIONS Our data suggest that PINCH-2 mRNA is overexpressed in malignant mesothelioma compared with carcinomas involving serosal cavities, and that low levels of this gene argue against the diagnosis of mesothelioma. The frequent PINCH-2 protein expression in all three studied cancers suggests a role for this molecule in cancer cell biology in effusions and merits further research.
Collapse
Affiliation(s)
- Y Yuan
- Division of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
41
|
Sriram KB, Relan V, Clarke BE, Duhig EE, Yang IA, Bowman RV, Lee YCG, Fong KM. Diagnostic molecular biomarkers for malignant pleural effusions. Future Oncol 2011; 7:737-52. [DOI: 10.2217/fon.11.45] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Malignant pleural effusions (MPEs) are a common and important cause of cancer-related mortality and morbidity. Prompt diagnosis using minimally invasive tests is important because the median survival after diagnosis is only 4–9 months. Pleural fluid cytology is pivotal to current MPE diagnostic algorithms but has limited sensitivity (30–60%). Consequently, many patients need to undergo invasive diagnostic tests such as thoracoscopic pleural biopsy. Recent genomic, transcriptomic, methylation and proteomic studies on cells within pleural effusions have identified novel molecular diagnostic biomarkers that demonstrate potential in complementing cytology in the diagnosis of MPEs. Several challenges will need to be addressed prior to the incorporation of these molecular tests into routine clinical diagnosis, including validation of molecular diagnostic markers in well-designed prospective, comparative and cost–effectiveness studies. Ultimately, minimally invasive diagnostic tests that can be performed quickly will enable clinicians to provide the most effective therapies for patients with MPEs in a timely fashion.
Collapse
Affiliation(s)
| | - Vandana Relan
- University of Queensland Thoracic Research Centre, School of Medicine, The University of Queensland, Queensland, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Queensland, Australia
| | - Belinda E Clarke
- Department of Anatomical Pathology, The Prince Charles Hospital, Queensland, Australia
| | - Edwina E Duhig
- Department of Anatomical Pathology, The Prince Charles Hospital, Queensland, Australia
| | - Ian A Yang
- University of Queensland Thoracic Research Centre, School of Medicine, The University of Queensland, Queensland, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Queensland, Australia
| | - Rayleen V Bowman
- University of Queensland Thoracic Research Centre, School of Medicine, The University of Queensland, Queensland, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Queensland, Australia
| | - YC Gary Lee
- School of Medicine & Pharmacology & CAARR, University of Western Australia, Perth, Australia
- Respiratory Department, Sir Charles Gairdner Hospital, Perth, Australia
- Pleural Disease Unit, Lung Institute of Western Australia, Perth, Australia
| | - Kwun M Fong
- University of Queensland Thoracic Research Centre, School of Medicine, The University of Queensland, Queensland, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Queensland, Australia
| |
Collapse
|
42
|
Association of malignant mesothelioma and asbestos related conditions with ovarian cancer: shared biomarkers and a possible etiological link? Clin Chem Lab Med 2011; 49:5-7. [DOI: 10.1515/cclm.2011.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Davidson B. The diagnostic and molecular characteristics of malignant mesothelioma and ovarian/peritoneal serous carcinoma. Cytopathology 2010; 22:5-21. [DOI: 10.1111/j.1365-2303.2010.00829.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Abstract
Ovarian serous neoplasms can have morphologic overlap with malignant mesothelioma. The distinction is clinically important, yet most studies have failed to identify immunostains that reliably distinguish these 2 tumor types. Recently, transcription factor PAX8 was shown to be a sensitive and relatively specific marker for Müllerian tumors. In addition, some studies suggest that h-caldesmon is sensitive and specific for mesothelioma when compared with serous ovarian tumors. The goal of this study was to evaluate whether PAX8 and h-caldesmon expression can successfully distinguish mesothelioma from serous ovarian tumors. Immunohistochemistry was carried out using PAX8 and h-caldesmon antibodies on archival tissue from 254 ovarian serous tumors and 50 mesothelial tumors. Nuclear and cytoplasmic immunoreactivity were considered positive for PAX8 and h-caldesmon, respectively. PAX8 staining was present in 99% of high-grade serous ovarian carcinomas and all (100%) low-grade ovarian carcinomas and serous borderline tumors; however, only 74% of these cases (188/254) were diffusely positive in more than 50% of tumors cells, and intensity ranged from strong to weak. None of the pleural malignant mesotheliomas were reactive with PAX8. However, 2/23 (9%) peritoneal malignant mesotheliomas showed focal and/or weak staining for PAX8; the remaining cases were negative. Two well-differentiated papillary mesotheliomas and 1 multicystic mesothelioma each showed some staining for PAX8. h-caldesmon was negative in all serous neoplasms and all mesothelial neoplasms, except 1 pleural malignant mesothelioma which showed patchy immunoreactivity. Strong PAX8 staining is highly specific (P<0.00001) for ovarian serous tumors when compared with malignant mesotheliomas of the peritoneum and pleura. The presence of weak staining for PAX8 in the 3 "noninvasive" mesotheliomas questions the use for PAX8 in this differential diagnosis. On the basis of this study, h-caldesmon is not a useful marker for mesothelioma.
Collapse
|
45
|
Abstract
Malignant mesothelioma (MM) is a rare primary malignant tumor of the surface serosal cells. The diagnosis of MM is challenging with a broad differential diagnosis. For many decades, studies have focused on distinguishing MM from other types of cancer; however, benign mesothelial cell hyperplasia, especially in small biopsies, has emerged as a major problem. The features of pleural lesions are somewhat different from peritoneal diseases, and this article primarily focuses on pleural diseases. Thorough interpretation and correlation of clinical, radiologic, and pathologic findings are essential for a correct diagnosis.
Collapse
Affiliation(s)
- E Handan Zeren
- Department of Pathology, Faculty of Medicine, Çukurova University, Adana 01330, Turkey; Department of Pathology, Acıbadem Medical Group, Maslak Hospital, Büyükdere Caddesi 40, Istanbul 34457, Turkey.
| | - Funda Demirag
- Department of Pathology, Atatürk Chest Diseases and Chest Surgery Education and Research Hospital, Ankara 06280, Turkey
| |
Collapse
|