1
|
Imasawa T, Murayama K, Hirano D, Nozu K. Comprehensive review of mitochondrial nephropathy-a renal phenotype in mitochondrial disease: causative genes, clinical and pathological features, diagnosis, prognosis, and treatment. Clin Exp Nephrol 2025; 29:39-56. [PMID: 39625678 PMCID: PMC11928409 DOI: 10.1007/s10157-024-02554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/19/2024] [Indexed: 02/09/2025]
Abstract
Mitochondrial nephropathy is a genetic renal disease characterized by oxidative phosphorylation abnormalities in the mitochondrial respiratory chain in kidney cells, caused by pathogenic gene variants located on mitochondrial or nuclear DNA. Recent advancements in genetic diagnostic techniques and their widespread adoption have led to the identification of various genes associated with mitochondrial nephropathy. This review investigates the causative genes and clinicopathological features of mitochondrial nephropathy, including the various phenotypes and associated complications, and suggests potential pathogenic mechanisms. Furthermore, the diagnostic methods of the disease are explained with particular emphasis on characteristic pathological findings and genetic analysis. We also analyze the available long-term observational prognostic data. Although there is currently no evidence-based treatment for mitochondrial nephropathy, an overview of the existing treatment options is discussed, including future expectations. The choice of renal replacement therapy in cases with progression to end-stage renal disease has also been discussed. Overall, this review highlights the importance of raising awareness about mitochondrial nephropathy and establishing appropriate diagnostic systems to facilitate rapid and effective treatment.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chibahigashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba, 206-8712, Japan.
| | - Kei Murayama
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Daishi Hirano
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
2
|
Lan Q, Li J, Zhang H, Zhou Z, Fang Y, Yang B. Mechanistic complement of autosomal dominant polycystic kidney disease: the role of aquaporins. J Mol Med (Berl) 2024; 102:773-785. [PMID: 38668786 DOI: 10.1007/s00109-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Autosomal dominant polycystic kidney disease is a genetic kidney disease caused by mutations in the genes PKD1 or PKD2. Its course is characterized by the formation of progressively enlarged cysts in the renal tubules bilaterally. The basic genetic explanation for autosomal dominant polycystic kidney disease is the double-hit theory, and many of its mechanistic issues can be explained by the cilia doctrine. However, the precise molecular mechanisms underpinning this condition's occurrence are still not completely understood. Experimental evidence suggests that aquaporins, a class of transmembrane channel proteins, including aquaporin-1, aquaporin-2, aquaporin-3, and aquaporin-11, are involved in the mechanism of autosomal dominant polycystic kidney disease. Aquaporins are either a potential new target for the treatment of autosomal dominant polycystic kidney disease, and further study into the physiopathological role of aquaporins in autosomal dominant polycystic kidney disease will assist to clarify the disease's pathophysiology and increase the pool of potential treatment options. We primarily cover pertinent findings on aquaporins in autosomal dominant polycystic kidney disease in this review.
Collapse
Affiliation(s)
- Qiumei Lan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jie Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Hanqing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zijun Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yaxuan Fang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bo Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
- Department of Nephrology, The First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No.88, Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
3
|
Naganuma T, Imasawa T, Nukui I, Wakasugi M, Kitamura H, Yatsuka Y, Kishita Y, Okazaki Y, Murayama K, Jinguji Y. Focal segmental glomerulosclerosis with a mutation in the mitochondrially encoded NADH dehydrogenase 5 gene: A case report. Mol Genet Metab Rep 2023; 35:100963. [PMID: 36941957 PMCID: PMC10024046 DOI: 10.1016/j.ymgmr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
NADH dehydrogenase 5 (ND5) is one of 44 subunits composed of Complex I in mitochondrial respiratory chain. Therefore, a mitochondrially encoded ND5 (MT-ND5) gene mutation causes mitochondrial oxidative phosphorylation (OXPHOS) disorder, resulting in the development of mitochondrial diseases. Focal segmental glomerulosclerosis (FSGS) which had podocytes filled with abnormal mitochondria is induced by mitochondrial diseases. An MT-ND5 mutation also causes FSGS. We herein report a Japanese woman who was found to have proteinuria and renal dysfunction in an annual health check-up at 29 years old. Because her proteinuria and renal dysfunction were persistent, she had a kidney biopsy at 33 years of age. The renal histology showed FSGS with podocytes filled with abnormal mitochondria. The podocytes also had foot process effacement and cytoplasmic vacuolization. In addition, the renal pathological findings showed granular swollen epithelial cells (GSECs) in tubular cells, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells (AiDIVs), and red-coloured podocytes (ReCPos) by acidic dye. A genetic analysis using peripheral mononuclear blood cells and urine sediment cells detected the m.13513 G > A variant in the MT-ND5 gene. Therefore, this patient was diagnosed with FSGS due to an MT-ND5 gene mutation. Although this is not the first case report to show that an MT-ND5 gene mutation causes FSGS, this is the first to demonstrate podocyte injuries accompanied with accumulation of abnormal mitochondria in the cytoplasm.
Collapse
Key Words
- ATP, adenosine triphosphate
- AiDIVs, age-inappropriately disarranged and irregularly sized vascular smooth muscle cells
- COX IV, cytochrome c oxidase subunit 4
- Case report
- Cr, creatinine
- FSGS, focal segmental glomerulosclerosis
- Focal segmental glomerulosclerosis
- GSECs, granular swollen epithelial cells
- MELAS, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes
- MRC, mitochondrial respiratory chain
- MT-ND5, mitochondrially encoded ND5
- Mitochondrial nephropathy
- NADH dehydrogenase 5
- ND5, NADH dehydrogenase 5
- OXPHOS:, oxidative phosphorylation
- Podocyte
- ReCPos, red-coloured podocytes
- eGFR, estimated glomerular filtration rate
- mtDNA, mitochondrial DNA
- nDNA, nuclear DNA
- sCr, serum creatinine
Collapse
Affiliation(s)
- Tsukasa Naganuma
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
- Corresponding author.
| | - Ikuo Nukui
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Masakiyo Wakasugi
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Hiroshi Kitamura
- Department of Clinical Pathology, National Hospital Organization Chiba-Higashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba-city, Chiba 206-8712, Japan
| | - Yukiko Yatsuka
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1, Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Yoshimi Jinguji
- Division of Nephrology, Department of Internal Medicine, Yamanashi Prefectural Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-0027, Japan
| |
Collapse
|
4
|
Clinicopathological Features of Mitochondrial Nephropathy. Kidney Int Rep 2022; 7:580-590. [PMID: 35257070 PMCID: PMC8897298 DOI: 10.1016/j.ekir.2021.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction The clinicopathologic characteristics of nephropathy associated with mitochondrial disease (MD) remain unknown. We retrospectively analyzed a cohort of patients with proteinuria, decreased glomerular filtration rate, or Fanconi syndrome who had a genetic mutation confirmed as the cause of MD, defined as mitochondrial nephropathy. Methods This nationwide survey included 757 nephrology sections throughout Japan, and consequently, data on 81 cases of mitochondrial nephropathy were collected. Results The most common renal manifestation observed during the disease course was proteinuria. Hearing loss was the most common comorbidity; a renal-limited phenotype was observed only in mitochondrial DNA (mtDNA) point mutation and COQ8B mutation cases. We found a median time delay of 6.0 years from onset of renal manifestations to diagnosis. Focal segmental glomerular sclerosis (FSGS) was the most common pathologic diagnosis. We then focused on 63 cases with the m.3243A>G mutation. The rate of cases with diabetes was significantly higher among adult-onset cases than among childhood-onset cases. Pathologic diagnoses were more variable in adult-onset cases, including diabetic nephropathy, nephrosclerosis, tubulointerstitial nephropathy, and minor glomerular abnormalities. During the median observation period of 11.0 years from the first onset of renal manifestations in patients with m.3243A>G, renal replacement therapy (RRT) was initiated in 50.8% of patients. Death occurred in 25.4% of the patients during the median observation period of 12.0 years. The median estimated glomerular filtration rate (eGFR) decline was 5.4 ml/min per 1.73 m2/yr in the cases, especially 8.3 ml/min per 1.73 m2/yr in FSGS cases, with m.3243A>G. Conclusion Here, we described the clinicopathologic features and prognosis of mitochondrial nephropathy using large-scale data.
Collapse
|
5
|
Tanaka K, Ueno T, Yoshida M, Shimizu Y, Ogawa T, Nishisaka T, Kurashige T, Masaki T. Chronic kidney disease caused by maternally inherited diabetes and deafness: a case report. CEN Case Rep 2020; 10:220-225. [PMID: 33125665 DOI: 10.1007/s13730-020-00547-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022] Open
Abstract
Maternally inherited diabetes and deafness (MIDD) is a mitochondrial genetic disorder with variable clinical presentations, which can delay its diagnosis. Herein, we report the case of a 57-year-old Japanese man with MIDD who developed chronic kidney disease. He developed proteinuria long before his diabetes and deafness; at the age of 36 years, a renal biopsy showed minor glomerular abnormality and electron microscopy showed mild mitochondrial degeneration in the distal tubular epithelial cells. Twenty years later, a second renal biopsy showed nephrosclerosis with interstitial fibrosis and arteriolar hyaline thickening, despite the absence of hypertension and relatively good glycemic control. Granular swollen epithelial cells were found in the medullary collecting duct epithelium. Electron microscopy showed accumulating mitochondria in podocytes and tubular cells, leading to the diagnosis of MIDD. A muscle biopsy also showed ragged-red fibers, despite the absence of muscle weakness. Mitochondrial DNA analysis revealed an m.3243A > G mutation, and taurine supplementation was initiated. Our findings suggest that mitochondrial dysfunction is mainly associated with progressive renal damage.
Collapse
Affiliation(s)
- Kenta Tanaka
- Department of Nephrology, Hiroshima Prefectural Hospital, 1-5-54, Ujinakanda, Minami-ku, Hiroshima, 734-8530, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima Prefectural Hospital, 1-5-54, Ujinakanda, Minami-ku, Hiroshima, 734-8530, Japan.
| | - Maria Yoshida
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuka Shimizu
- Department of Nephrology, Hiroshima Prefectural Hospital, 1-5-54, Ujinakanda, Minami-ku, Hiroshima, 734-8530, Japan
| | - Takahiko Ogawa
- Department of Nephrology, Hiroshima Prefectural Hospital, 1-5-54, Ujinakanda, Minami-ku, Hiroshima, 734-8530, Japan
| | - Takashi Nishisaka
- Department of Pathology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
6
|
Maeoka Y, Doi T, Aizawa M, Miyasako K, Hirashio S, Masuda Y, Kishita Y, Okazaki Y, Murayama K, Imasawa T, Hara S, Masaki T. A case report of adult-onset COQ8B nephropathy presenting focal segmental glomerulosclerosis with granular swollen podocytes. BMC Nephrol 2020; 21:376. [PMID: 32859164 PMCID: PMC7456044 DOI: 10.1186/s12882-020-02040-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/23/2020] [Indexed: 11/29/2022] Open
Abstract
Background Primary coenzyme Q10 (CoQ10) deficiency of genetic origin is one of a few treatable focal segmental glomerulosclerosis (FSGS). Renal morphologic evidence for COQ8B mutation and CoQ10 deficiencies of other gene mutations is assessed using electron microscopy with marked increase of abnormal-shaped mitochondria in podocytes. However, light microscopic morphologic features of deficiencies other than FSGS have not been reported. Case presentation A 30-year-old woman was admitted to our hospital because proteinuria was found during four consecutive medical checkups. She had no medical history or family history of proteinuria and severe renal dysfunction. The swollen podocytes were stained to the same extent as mitochondria-rich proximal tubular cells under both Masson’s trichrome and hematoxylin-eosin staining, whereas no mitochondrial abnormalities were detected under the first electron microscopic views. As proteinuria and estimated glomerular filtration rate (eGFR) deteriorated after pregnancy, we reevaluated the additional electron microscopic views and detected mitochondrial abnormalities. Genetic testing revealed COQ8B mutation (c.532C > T, p.R178W); therefore, we diagnosed COQ8B nephropathy. CoQ10 supplementation improved proteinuria and stopped eGFR reduction. Conclusions This is the first report of granular swollen podocytes due to mitochondrial diseases detected under light microscopy. We propose that this finding can be the clue for the diagnosis of both COQ8B nephropathy and the other CoQ10 deficiencies.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Masaho Aizawa
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kisho Miyasako
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shuma Hirashio
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukinari Masuda
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba, 266-0007, Japan
| | - Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chibahigashi National Hospital, 673 Nitona, Chuou-ku, Chiba, 260-8712, Japan
| | - Shigeo Hara
- Department of Diagnostic Pathology, Kobe City Medical Center General Hospital, 2-1-1, Minatojimaminamimachi, Chuo-ku, Kobe-city, Hyogo, 650-0047, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
7
|
Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Monsalve M, Ramos AM, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB. The Role of PGC-1α and Mitochondrial Biogenesis in Kidney Diseases. Biomolecules 2020; 10:biom10020347. [PMID: 32102312 PMCID: PMC7072614 DOI: 10.3390/biom10020347] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide, emphasizing the need to develop novel therapeutic approaches. CKD predisposes to acute kidney injury (AKI) and AKI favors CKD progression. Mitochondrial derangements are common features of both AKI and CKD and mitochondria-targeting therapies are under study as nephroprotective agents. PGC-1α is a master regulator of mitochondrial biogenesis and an attractive therapeutic target. Low PGC-1α levels and decreased transcription of its gene targets have been observed in both preclinical AKI (nephrotoxic, endotoxemia, and ischemia-reperfusion) and in experimental and human CKD, most notably diabetic nephropathy. In mice, PGC-1α deficiency was associated with subclinical CKD and predisposition to AKI while PGC-1α overexpression in tubular cells protected from AKI of diverse causes. Several therapeutic strategies may increase kidney PGC-1α activity and have been successfully tested in animal models. These include AMP-activated protein kinase (AMPK) activators, phosphodiesterase (PDE) inhibitors, and anti-TWEAK antibodies. In conclusion, low PGC-1α activity appears to be a common feature of AKI and CKD and recent characterization of nephroprotective approaches that increase PGC-1α activity may pave the way for nephroprotective strategies potentially effective in both AKI and CKD.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Julio Manuel Martinez-Moreno
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain;
| | - Adrian Mario Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- School of Medicine, UAM, 28029 Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- School of Medicine, UAM, 28029 Madrid, Spain
- IRSIN, 28040 Madrid, Spain
| | - Ana Belen Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-550-48-00
| |
Collapse
|
8
|
Minor Glomerular Abnormalities are Associated with Deterioration of Long-Term Kidney Function and Mitochondrial Injury. J Clin Med 2019; 9:jcm9010033. [PMID: 31877839 PMCID: PMC7019622 DOI: 10.3390/jcm9010033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Minor glomerular abnormalities (MGAs) are unclassified glomerular lesions indicated by the presence of minor structural abnormalities that are insufficient for a specific pathological diagnosis. The long-term clinical outcomes and pathogenesis have not been examined. We hypothesized that MGAs would be associated with the deterioration of long-term kidney function and increased urinary mitochondrial DNA (mtDNA) copy numbers. We retrospectively enrolled patients with MGAs, age-/sex-/estimated glomerular filtration rate (eGFR)-matched patients with immunoglobulin A nephropathy (IgAN), and similarly matched healthy controls (MHCs; n = 49 each). We analyzed the time × group interaction effects of the eGFR and compared mean annual eGFR decline rates between the groups. We prospectively enrolled patients with MGAs, age- and sex-matched patients with IgAN, and MHCs (n = 15 each) and compared their urinary mtDNA copy numbers. Compared to the MHC group, the MGA and IgAN groups displayed differences in the time × group effects of eGFR, higher mean annual rates of eGFR decline, and higher urinary mtDNA copy numbers; however, these groups did not significantly differ from each other. The results indicate that MGAs are associated with deteriorating long-term kidney function, and mitochondrial injury, despite few additional pathological changes. We suggest that clinicians conduct close long-term follow-up of patients with MGAs.
Collapse
|
9
|
Shayota BJ, Le NT, Bekheirnia N, Rosenfeld JA, Goldstein AC, Moritz M, Bartholomew DW, Pastore MT, Xia F, Eng C, Yang Y, Lamb DJ, Scaglia F, Braun MC, Bekheirnia MR. Characterization of the renal phenotype in RMND1-related mitochondrial disease. Mol Genet Genomic Med 2019; 7:e973. [PMID: 31568715 PMCID: PMC6900359 DOI: 10.1002/mgg3.973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The nuclear encoded gene RMND1 (Required for Meiotic Nuclear Division 1 homolog) has recently been linked to RMND1-related mitochondrial disease (RRMD). This autosomal recessive condition characteristically presents with an infantile-onset multisystem disease characterized by severe hypotonia, global developmental delay, failure to thrive, sensorineural hearing loss, and lactic acidosis. Renal disease, however, appears to be one of the more prominent features of RRMD, affecting patients at significantly higher numbers compared to other mitochondrial diseases. We report the clinical, histological, and molecular findings of four RRMD patients across three academic institutions with a focus on the renal manifestations. METHODS Four patients were identified for the purpose of this study, all of whom had molecular confirmation at the time of inclusion, which included the common pathogenic variant c.713A>G (p.N238S) as well as the three rare variants: c.485delC (p.P162fs), c.533C>T (p.T178M), and c.1317 + 1G>C splice donor variant. Medical history and laboratory findings were collected from the medical records and medical providers. RESULTS In this study, all four patients developed renal disease characterized as tubulopathy (3/4), renal tubular acidosis (2/4), interstitial nephritis (1/4), and/or end-stage renal disease (4/4) necessitating renal transplantation (2/4). Histological evaluation of renal biopsy specimens revealed generalized tubular atrophy and on electron microscopy, abundant mitochondria with pleomorphism and abnormal cristae. CONCLUSION Our experience with RRMD demonstrates a specific pattern of renal disease manifestations and clinical course. Patients are unlikely to respond to traditional chronic kidney disease (CKD) treatments, making early diagnosis and consideration of renal transplantation paramount to the management of RRMD.
Collapse
Affiliation(s)
- Brian J. Shayota
- Texas Children's HospitalHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | | | - Nasim Bekheirnia
- Texas Children's HospitalHoustonTXUSA
- Baylor College of MedicineHoustonTXUSA
- Renal SectionDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| | - Jill A. Rosenfeld
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Amy C. Goldstein
- Department of Pediatrics and Division of Child NeurologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Michael Moritz
- Department of PediatricsDivision of NephrologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | | | - Matthew T. Pastore
- Division of Molecular and Human GeneticsNationwide Children's HospitalColumbusOHUSA
| | - Fan Xia
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Baylor GeneticsBaylor College of MedicineHoustonTXUSA
| | - Christine Eng
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Baylor GeneticsBaylor College of MedicineHoustonTXUSA
| | - Yaping Yang
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Baylor GeneticsBaylor College of MedicineHoustonTXUSA
| | - Dolores J. Lamb
- Baylor College of MedicineHoustonTXUSA
- Department of UrologyWeill Cornell MedicineNew YorkNYUSA
| | - Fernando Scaglia
- Texas Children's HospitalHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- BCM‐CUHK Center of Medical GeneticsPrince of Wales HospitalShaTinHong Kong SAR
| | - Michael C. Braun
- Texas Children's HospitalHoustonTXUSA
- Baylor College of MedicineHoustonTXUSA
- Renal SectionDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| | - Mir Reza Bekheirnia
- Texas Children's HospitalHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
- Baylor College of MedicineHoustonTXUSA
- Renal SectionDepartment of PediatricsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
10
|
IgA nephropathy is associated with elevated urinary mitochondrial DNA copy numbers. Sci Rep 2019; 9:16068. [PMID: 31690796 PMCID: PMC6831703 DOI: 10.1038/s41598-019-52535-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial injury plays important roles in the pathogenesis of various kidney diseases. However, mitochondrial injury in IgA nephropathy (IgAN) remains largely unexplored. Here, we examined the associations among mitochondrial injury, IgAN, and treatment outcomes. We prospectively enrolled patients with IgAN and age-/sex-matched healthy volunteers (HVs) as controls (n = 31 each). Urinary copy numbers of the mitochondrial DNA (mtDNA) genes cytochrome-c oxidase-3 (COX3) and nicotinamide adenine dinucleotide dehydrogenase subunit-1 (ND1) were measured. Urinary mtDNA levels were elevated in the IgAN group compared with that in HVs (p < 0.001). Urinary ND1 levels were significantly higher in the low proteinuria group than in the high proteinuria group (p = 0.027). Changes in urinary levels of ND1 and COX3 were positively correlated with changes in proteinuria (p = 0.038 and 0.024, respectively) and inversely correlated with changes in the estimated glomerular filtration rate (p = 0.033 and 0.017, respectively) after medical treatment. Mitochondrial injury played important roles in IgAN pathogenesis and may be involved in early-stage glomerular inflammation, prior to pathological changes and increased proteinuria. The correlation between changes in urinary mtDNA and proteinuria suggest that these factors may be promising biomarkers for treatment outcomes in IgAN.
Collapse
|
11
|
Sugai K, Ueda H, Morimoto K, Tanaka M, Takahashi D, Nakashima A, Kato J, Takahashi H, Yamaguchi Y, Kawamura T, Hanaoka K, Miyazaki Y, Yokoo T. Maternally inherited diabetes and deafness complicated by mesangial galactose-deficient IgA1 deposits: a case report. BMC Nephrol 2018; 19:350. [PMID: 30526529 PMCID: PMC6288957 DOI: 10.1186/s12882-018-1152-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background Maternally inherited diabetes and deafness (MIDD), a mitochondrial genetic disorder, typically affects the kidneys and results in end-stage renal disease. Early diagnosis of MIDD is challenging when renal manifestations precede other key clinical features such as diabetes and deafness and/or when the disease is complicated by other renal pathologies. Case presentation Here, we present the case of a 33-year-old Japanese woman who had initially been diagnosed with IgA nephropathy but was found to have MIDD 6 years later. Two renal biopsies were conducted six years apart. While assessment of the first biopsy specimen with the monoclonal antibody (KM55) revealed mesangial IgA deposits (containing the galactose-deficient IgA1 variant [Gd-IgA1]), examination of the second specimen showed no mesangial IgA deposits and newly-developed glomerular global scleroses and tubular damage. Granular swollen epithelial cells (GSECs), characterised by abnormal mitochondria, were observed among the tubules and collecting ducts in both biopsy specimens. Mitochondrial DNA analysis revealed an m.3243A > G mutation. Conclusions We rediscovered the usefulness of GSECs as a pathologically distinctive feature of mitochondrial nephropathy and reviewed the literature regarding MIDD complicated by mesangial IgA deposition. Furthermore, we demonstrate that the mesangial IgA deposits in this patient consisted of the galactose-deficient IgA1 variant. The monoclonal antibody (KM55) might be a useful tool to distinguish IgAN from latent IgA deposits.
Collapse
Affiliation(s)
- Keiji Sugai
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ueda
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Keita Morimoto
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mai Tanaka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daisuke Takahashi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akio Nakashima
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Junichiro Kato
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Takahashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Tetsuya Kawamura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazushige Hanaoka
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoichi Miyazaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Fervenza FC, Gavrilova RH, Nasr SH, Irazabal MV, Nath KA. CKD Due to a Novel Mitochondrial DNA Mutation: A Case Report. Am J Kidney Dis 2018; 73:273-277. [PMID: 30309714 DOI: 10.1053/j.ajkd.2018.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/30/2018] [Indexed: 12/20/2022]
Abstract
In human kidney disease, mitochondrial ultrastructural damage has long been recognized. Although the extent to which such mitochondrial changes contribute to human kidney disease is uncertain, experimental studies clearly demonstrate that mitochondrial damage can instigate pathogenetic processes that drive ongoing kidney disease. Clinical credence for this experimentally based hypothesis is provided by the development of kidney disease in patients with primary mitochondrial disorders. In this regard, substantial interest surrounds the occurrence of kidney disease in primary mitochondrial cytopathies, a heterogeneous group of conditions in which mutations in mitochondrial DNA (mtDNA) or nuclear DNA impair the functionality of components of the mitochondrial respiratory chain. We describe a novel mtDNA mutation in a patient who developed chronic kidney disease. The patient exhibited mitochondrial abnormalities in both muscle and kidney, chronic tubulointerstitial changes, and recurrent episodes of rhabdomyolysis. We outline mechanisms that may underlie the occurrence of chronic kidney disease in the setting of this novel mtDNA mutation. We also underscore the need to consider in relevant kidney diseases the presence of an underlying mitochondrial cytopathy because the latter more commonly exists than is generally recognized.
Collapse
Affiliation(s)
- Fernando C Fervenza
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN
| | - Ralitza H Gavrilova
- Department of Clinical Genomics, Mayo Clinic College of Medicine, Rochester, MN; Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN
| | - Samih H Nasr
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN
| | - Karl A Nath
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN.
| |
Collapse
|
13
|
Eirin A, Lerman A, Lerman LO. The Emerging Role of Mitochondrial Targeting in Kidney Disease. Handb Exp Pharmacol 2017; 240:229-250. [PMID: 27316914 DOI: 10.1007/164_2016_6] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Renal disease affects millions of people worldwide, imposing an enormous financial burden for health-care systems. Recent evidence suggests that mitochondria play an important role in the pathogenesis of different forms of renal disease, including genetic defects, acute kidney injury, chronic kidney disease, aging, renal tumors, and transplant nephropathy. Renal mitochondrial abnormalities and dysfunction affect several cellular pathways, leading to increased oxidative stress, apoptosis, microvascular loss, and fibrosis, all of which compromise renal function. Over recent years, compounds that specifically target mitochondria have emerged as promising therapeutic options for patients with renal disease. Although the most compelling evidence is based on preclinical studies, several compounds are currently being tested in clinical trials. This chapter provides an overview of the involvement of mitochondrial dysfunction in renal disease and summarizes the current knowledge on mitochondria-targeted strategies to attenuate renal disease.
Collapse
Affiliation(s)
- Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Division of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Saito T, Tanaka Y, Morishita Y, Ishibashi K. Proteomic analysis of AQP11-null kidney: Proximal tubular type polycystic kidney disease. Biochem Biophys Rep 2017; 13:17-21. [PMID: 29204517 PMCID: PMC5709289 DOI: 10.1016/j.bbrep.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is caused by the mutation of polycystins (PC-1 or PC-2), in which cysts start from the collecting duct to extend to all nephron segments with eventual end stage renal failure. The cyst development is attenuated by a vasopressin V2 receptor antagonist tolvaptan which, however, will not affect proximal tubule cysts devoid of V2 receptor. Aquaporin-11 (AQP11) is expressed selectively in the proximal tubule of the kidney and AQP11-null kidneys have a disruptive PC-1 trafficking to the plasma membrane to develop polycystic kidneys. Here, we analyzed AQP11-null kidneys at the beginning of cyst formation by quantitative proteomic analysis using Tandem Mass Tag (TMT). Among ~ 1200 identified proteins, 124 proteins were differently expressed by > 1.5 or < 0.8 fold change. A pancreatic stone inhibitor or a growth factor, lithostathine-1 (Reg1) was most enhanced by 5 folds which was confirmed by western blot, while mitochondria-related proteins were downregulated. The identified proteins will be new target molecules for the treatment of proximal tubular cysts and helpful to explore the functional roles of AQP11 in the kidney. Proteomic analysis of the kidney from AQP11-null mice of proximal tubular specific ADPKD. Among ~ 1200 identified proteins, 124 proteins were differently expressed by > 1.5 or < 0.8 fold change. Mitochondrial proteins were downregulated reflecting a functional mitochondrial damage in cystic epithelia. Reg1 protein was most enhanced by 5 folds which was confirmed by western blot.
Collapse
Affiliation(s)
- Tatsuya Saito
- Department of Pathophysiology, Faculty of Clinical Pharmacy, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
- Corresponding author.
| | - Yasuko Tanaka
- Department of Pathophysiology, Faculty of Clinical Pharmacy, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Yoshiyuki Morishita
- Department of Nephrology, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Kenichi Ishibashi
- Department of Pathophysiology, Faculty of Clinical Pharmacy, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| |
Collapse
|
15
|
Finsterer J, Scorza FA. Renal manifestations of primary mitochondrial disorders. Biomed Rep 2017; 6:487-494. [PMID: 28515908 DOI: 10.3892/br.2017.892] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present review was to summarize and discuss previous findings concerning renal manifestations of primary mitochondrial disorders (MIDs). A literature review was performed using frequently used databases. The study identified that primary MIDs frequently present as mitochondrial multiorgan disorder syndrome (MIMODS) at onset or in the later course of the MID. Occasionally, the kidneys are affected in MIDs. Renal manifestations of MIDs include renal insufficiency, nephrolithiasis, nephrotic syndrome, renal cysts, renal tubular acidosis, Bartter-like syndrome, Fanconi syndrome, focal segmental glomerulosclerosis, tubulointerstitial nephritis, nephrocalcinosis, and benign or malign neoplasms. Among the syndromic MIDs, renal involvement has been most frequently reported in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes syndrome, Kearns-Sayre syndrome, Leigh syndrome and mitochondrial depletion syndromes. Only in single cases was renal involvement also reported in chronic progressive external ophthalmoplegia, Pearson syndrome, Leber's hereditary optic neuropathy, coenzyme-Q deficiency, X-linked sideroblastic anemia and ataxia, myopathy, lactic acidosis, and sideroblastic anemia, pyruvate dehydrogenase deficiency, growth retardation, aminoaciduria, cholestasis, iron overload, lactacidosis, and early death, and hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis syndrome. The present study proposes that the frequency of renal involvement in MIDs is probably underestimated. Diagnosis of renal involvement follows general guidelines and treatment is symptomatic. Thus, renal manifestations of primary MIDs require recognition and appropriate management, as they determine the outcome of MID patients.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurological Department, Municipal Hospital Rudolfstiftung, A-1030 Vienna, Austria
| | - Fulvio Alexandre Scorza
- Paulista de Medicina School, Federal University of São Paulo, Primeiro Andar CEP, São Paulo 04039-032, SP, Brazil
| |
Collapse
|
16
|
Hara S, Ishimura T, Fujisawa M, Nishi S, Itoh T. Granular swollen epithelial cells in the kidney allograft: A clinicopathological study with special emphasis on possible marker for kidney allograft aging. Nephrology (Carlton) 2016; 21 Suppl 1:14-9. [PMID: 26969019 DOI: 10.1111/nep.12764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 11/29/2022]
Abstract
AIM To elucidate the clinicopathological significance of granular swollen epithelial cells (GSECs), which provides histological evidence in the diagnosis of mitochondrial nephropathy, but incidentally observed in renal allografts, we evaluated GSECs as a surrogate histological marker for kidney allograft aging, as previously reported for p16, p21, and β-galactosidase. METHODS We retrospectively reviewed 426 kidney allograft biopsy specimens diagnosed at our university from January 2009 to April 2015. The prevalence and density of GSECs were compared with an age-matched control group of 508 native kidney biopsies. GSECs were defined as swollen (>2 times larger than normal renal tubular cells) epithelial cells best observed using Masson trichrome staining. Morphometric analyses were performed using digital microscopy software. RESULTS The prevalence of GSECs was 7.7% in allograft kidneys and 8.1% in native kidneys. GSECs in kidney allografts were predominantly detected in medullary renal tubules, but not in the Bowman's capsular epithelium or podocytes. GSECs were observed in the following cases; no remarkable changes, n = 11; interstitial fibrosis and tubular atrophy, n = 7; chronic calcineurin inhibitor toxicity, n = 5; antibody-mediated rejection, n = 3; T cell-mediated rejection grade IA, n = 1; and others, n = 6. Compared with control specimens, medullary density of GSECs in kidney allografts was significantly increased. The prevalence of GSECs slightly increased with post-transplant duration; however, this trend was not statistically significant. CONCLUSIONS The present study does not provide pathological significance of GSEC in kidney allografts in terms of allograft aging, and warrant the further research with molecular approach.
Collapse
Affiliation(s)
- Shigeo Hara
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ishimura
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinichi Nishi
- Department of Nephrology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
17
|
Imasawa T, Tanaka M, Maruyama N, Kawaguchi T, Yamaguchi Y, Rossignol R, Kitamura H, Nishimura M. Pathological similarities between low birth weight-related nephropathy and nephropathy associated with mitochondrial cytopathy. Diagn Pathol 2014; 9:181. [PMID: 25350944 PMCID: PMC4189739 DOI: 10.1186/s13000-014-0181-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/07/2014] [Indexed: 12/15/2022] Open
Abstract
Background Individuals born with a low birth weight (LBW) have a higher risk of developing kidney dysfunction during their lifetime and sometimes exhibit focal segmental glomerulosclerosis (FSGS) lesions in their glomeruli. We herein try to obtain other pathological characteristics of LBW-related nephropathy. Methods We retrospectively evaluated the renal pathology of four patients demonstrating FSGS with a history of LBW. Two mitochondrial cytopathy patients were also analyzed. DNA mutations were surveyed using a PCR-Luminex assay. Results In all four FSGS patients with a history of LBW, focal segmental glomerulosclerosis were detected. Interestingly, granular swollen epithelial cells (GSECs), which have previously been reported exclusively in patients with mitochondrial cytopathy, were also observed in the distal tubules and/or collecting ducts of all four patients with a history of low birth weight in this study. Electron microscopy revealed that these granular swollen epithelial cells included an increased number of enlarged mitochondria. Furthermore, cytochrome c oxidase subunit IV staining of patients with a history of low birth weight and patients with mitochondrial DNA mutations showed unbalanced expression patterns in glomeruli and a part of tubular cells. However, no mitochondrial gene mutations were detected in any of our four patients with low birth weight-related nephropathy. Conclusions This is the first report to show the pathological similarities not only in glomeruli but also tubuli between nephropathy with a LBW history and nephropathy with mitochondrial cytopathy. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_181
Collapse
|
18
|
Imasawa T, Tanaka M, Yamaguchi Y, Nakazato T, Kitamura H, Nishimura M. 7501 T > A mitochondrial DNA variant in a patient with glomerulosclerosis. Ren Fail 2014; 36:1461-5. [PMID: 25088491 DOI: 10.3109/0886022x.2014.945181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The presence of granular swollen epithelial cells (GSECs) in tubular cells was recently reported to be a specific change associated with mitochondrial cytopathy. However, at present, GSEC is not routinely evaluated. We, in this study, present a case of glomerulosclerosis, in which the presence of GSECs should provide us one clue to understand the pathogenesis of its progressive decline of renal function. A 54-year-old Japanese female, who had been diagnosed with Graves' disease, was referred for the examination and treatment of her proteinuria (5.4 g/gCre at the first visit to our hospital). A kidney biopsy showed 28.6% of the glomeruli to be globally sclerosed and 10.7% of the glomeruli to have completely collapsed. However, according to a light microscopic analysis, all other glomeruli showed an almost normal appearance, except for some slight enlargement. Almost 30% of the interstitium was damaged by fibrosis. Characteristically, GSECs were observed in the medulla collecting ducts. Although she had no symptoms of either myopathy or encephalopathy, no history of stroke-like episodes or difficulty in hearing, her serum concentrations of lactate and pyruvate were both elevated. Therefore, mitochondrial DNA sequencing was performed to assess the etiopathogenesis of her nephropathy. Consequently, a homoplasmic 7501 T > A replacement, which has not been previously reported in patients with renal diseases, was detected. This case suggests that the routine evaluation of GSECs can provide important clues to assess the etiopathogenesis of cryptogenic glomerulosclerosis.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Kidney and Diabetes Center, National Hospital Organization Chiba-East Hospital , Chiba-city, Chiba , Japan
| | | | | | | | | | | |
Collapse
|
19
|
Motoda A, Kurashige T, Sugiura T, Nakamura T, Yamawaki T, Arihiro K, Matsumoto M. [A case of MELAS with G13513A mutation presenting with chronic kidney disease long before stroke-like episodes]. Rinsho Shinkeigaku 2013; 53:446-451. [PMID: 23782822 DOI: 10.5692/clinicalneurol.53.446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The patient was a 35-year-old female with an 9-year history of chronic kidney disease awaiting renal transplantation. She was brought to hospital by ambulance due to a generalized convulsive seizure. Her consciousness remained disturbed after treatment for her seizure, and sensorineural deafness was noted. Lactic acid and pyruvic acid levels were extremely elevated in both the plasma and the cerebrospinal fluid, and brain atrophy was obvious on brain imaging. These findings suggested mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes, which was confirmed by muscle biopsy. Previous renal biopsy specimen showed focal segmental glomerulosclerosis and granular swollen epithelial cells. She had no acute progression of the stroke-like episode with L-arginine treatment. However, the brain lesions expanded on MRI. Mitochondrial DNA analysis from a muscle biopsy specimen showed G13513A mutation. The G13513A mutation and the long history of preceding renal failure before the stroke-like episodes were distinctive features in this case.
Collapse
Affiliation(s)
- Atsuko Motoda
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University
| | | | | | | | | | | | | |
Collapse
|