1
|
Chiusolo F, Spinazzola G, Costa R, Franceschini A, Tortora F, Polisca F, Rossetti E, Ravà L, Chinali M, Fanelli V, Conti G. Effect of neurally adjusted ventilator assist versus pressure support ventilation on asynchronies and cardiac function in pediatric liver transplantation. Sci Rep 2025; 15:7158. [PMID: 40021754 PMCID: PMC11871333 DOI: 10.1038/s41598-025-91590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/21/2025] [Indexed: 03/03/2025] Open
Abstract
In pediatric liver recipients perioperative factors may affect respiratory and cardiac function, and prolong mechanical ventilation during post-operative period. The use of NAVA can improve the interaction between the patient and the ventilator from both a respiratory and cardiac perspective. The objective of this study is to evaluate the synchronization between the patient and the ventilator, as well as cardiac function, during the application of neurally adjusted ventilatory assist (NAVA) and pressure support ventilation (PSV) in pediatric liver transplant recipients. This is a single-center, prospective, randomized, physiological cross-over controlled trial conducted between 2021 and 2022. Children (1 month-10 years old) who underwent liver transplantation were admitted to the pediatric intensive care unit. Patients were randomised to one of two crossover sequences of ventilation trials of 40 min each (PSV/NAVA/PSV or NAVA/PSV/NAVA). Cardiac function was studied by echocardiogram. Twenty-four patients were enrolled and 21 completed the study. Primary outcomes were variation of asynchrony index (AI) and tricuspid annular plane systolic excursion (TAPSE) during the two ventilation modes. Secondary outcomes were patient-ventilator interaction parameters, gas exchange, left and right ventricular function, and hemodynamic parameters. NAVA compared to PSV: (1) improves patient-ventilator interaction reducing AI (coeff - 6.66 95% CI -11.5 to -1.78, p = 0.008); (2) does not improve TAPSE (coeff 0.62 95% CI -1.49 to 2.74, p < 0.557) No differences in terms of pulmonary gas exchange and hemodynamic parameters were detected. NAVA (when compared to PSV) improves patient-ventilator interaction in terms of asynchronies without affecting cardiac biventricular function.Trial registration: NCT04792788, Registration date: 2021-03-11.
Collapse
Affiliation(s)
- Fabrizio Chiusolo
- Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giorgia Spinazzola
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito, 8, 00168, Rome, Italy.
| | - Roberta Costa
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito, 8, 00168, Rome, Italy
| | | | - Francesca Tortora
- Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Polisca
- Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuele Rossetti
- Anesthesia and Critical Care Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucilla Ravà
- Clinical Epidemiology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marcello Chinali
- Division of Cardiology, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - Vito Fanelli
- Department of Anesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Giorgio Conti
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Francesco Vito, 8, 00168, Rome, Italy
| |
Collapse
|
2
|
Westhoff M, Neumann P, Geiseler J, Bickenbach J, Arzt M, Bachmann M, Braune S, Delis S, Dellweg D, Dreher M, Dubb R, Fuchs H, Hämäläinen N, Heppner H, Kluge S, Kochanek M, Lepper PM, Meyer FJ, Neumann B, Putensen C, Schimandl D, Schönhofer B, Schreiter D, Walterspacher S, Windisch W. [Non-invasive Mechanical Ventilation in Acute Respiratory Failure. Clinical Practice Guidelines - on behalf of the German Society of Pneumology and Ventilatory Medicine]. Pneumologie 2024; 78:453-514. [PMID: 37832578 DOI: 10.1055/a-2148-3323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The guideline update outlines the advantages as well as the limitations of NIV in the treatment of acute respiratory failure in daily clinical practice and in different indications.Non-invasive ventilation (NIV) has a high value in therapy of hypercapnic acute respiratory failure, as it significantly reduces the length of ICU stay and hospitalization as well as mortality.Patients with cardiopulmonary edema and acute respiratory failure should be treated with continuous positive airway pressure (CPAP) and oxygen in addition to necessary cardiological interventions. This should be done already prehospital and in the emergency department.In case of other forms of acute hypoxaemic respiratory failure with only mild or moderately disturbed gas exchange (PaO2/FiO2 > 150 mmHg) there is no significant advantage or disadvantage compared to high flow nasal oxygen (HFNO). In severe forms of ARDS NIV is associated with high rates of treatment failure and mortality, especially in cases with NIV-failure and delayed intubation.NIV should be used for preoxygenation before intubation. In patients at risk, NIV is recommended to reduce extubation failure. In the weaning process from invasive ventilation NIV essentially reduces the risk of reintubation in hypercapnic patients. NIV is regarded useful within palliative care for reduction of dyspnea and improving quality of life, but here in concurrence to HFNO, which is regarded as more comfortable. Meanwhile NIV is also recommended in prehospital setting, especially in hypercapnic respiratory failure and pulmonary edema.With appropriate monitoring in an intensive care unit NIV can also be successfully applied in pediatric patients with acute respiratory insufficiency.
Collapse
Affiliation(s)
- Michael Westhoff
- Klinik für Pneumologie, Lungenklinik Hemer - Zentrum für Pneumologie und Thoraxchirurgie, Hemer
| | - Peter Neumann
- Abteilung für Klinische Anästhesiologie und Operative Intensivmedizin, Evangelisches Krankenhaus Göttingen-Weende gGmbH
| | - Jens Geiseler
- Medizinische Klinik IV - Pneumologie, Beatmungs- und Schlafmedizin, Paracelsus-Klinik Marl, Marl
| | - Johannes Bickenbach
- Klinik für Operative Intensivmedizin und Intermediate Care, Uniklinik RWTH Aachen, Aachen
| | - Michael Arzt
- Schlafmedizinisches Zentrum der Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg
| | - Martin Bachmann
- Klinik für Atemwegs-, Lungen- und Thoraxmedizin, Beatmungszentrum Hamburg-Harburg, Asklepios Klinikum Harburg, Hamburg
| | - Stephan Braune
- IV. Medizinische Klinik: Akut-, Notfall- und Intensivmedizin, St. Franziskus-Hospital, Münster
| | - Sandra Delis
- Klinik für Pneumologie, Palliativmedizin und Geriatrie, Helios Klinikum Emil von Behring GmbH, Berlin
| | - Dominic Dellweg
- Klinik für Innere Medizin, Pneumologie und Gastroenterologie, Pius-Hospital Oldenburg, Universitätsmedizin Oldenburg
| | - Michael Dreher
- Klinik für Pneumologie und Internistische Intensivmedizin, Uniklinik RWTH Aachen
| | - Rolf Dubb
- Akademie der Kreiskliniken Reutlingen GmbH, Reutlingen
| | - Hans Fuchs
- Zentrum für Kinder- und Jugendmedizin, Neonatologie und pädiatrische Intensivmedizin, Universitätsklinikum Freiburg
| | | | - Hans Heppner
- Klinik für Geriatrie und Geriatrische Tagesklinik Klinikum Bayreuth, Medizincampus Oberfranken Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth
| | - Stefan Kluge
- Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Matthias Kochanek
- Klinik I für Innere Medizin, Hämatologie und Onkologie, Universitätsklinikum Köln, Köln
| | - Philipp M Lepper
- Klinik für Innere Medizin V - Pneumologie, Allergologie und Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg
| | - F Joachim Meyer
- Lungenzentrum München - Bogenhausen-Harlaching) München Klinik gGmbH, München
| | - Bernhard Neumann
- Klinik für Neurologie, Donauisar Klinikum Deggendorf, und Klinik für Neurologie der Universitätsklinik Regensburg am BKH Regensburg, Regensburg
| | - Christian Putensen
- Klinik und Poliklinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, Bonn
| | - Dorit Schimandl
- Klinik für Pneumologie, Beatmungszentrum, Zentralklinik Bad Berka GmbH, Bad Berka
| | - Bernd Schönhofer
- Klinik für Innere Medizin, Pneumologie und Intensivmedizin, Evangelisches Klinikum Bethel, Universitätsklinikum Ost Westphalen-Lippe, Bielefeld
| | | | - Stephan Walterspacher
- Medizinische Klinik - Sektion Pneumologie, Klinikum Konstanz und Lehrstuhl für Pneumologie, Universität Witten-Herdecke, Witten
| | - Wolfram Windisch
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Lehrstuhl für Pneumologie Universität Witten/Herdecke, Köln
| |
Collapse
|
3
|
Longhini F, Bruni A, Garofalo E, Tutino S, Vetrugno L, Navalesi P, De Robertis E, Cammarota G. Monitoring the patient-ventilator asynchrony during non-invasive ventilation. Front Med (Lausanne) 2023; 9:1119924. [PMID: 36743668 PMCID: PMC9893016 DOI: 10.3389/fmed.2022.1119924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Patient-ventilator asynchrony is a major issue during non-invasive ventilation and may lead to discomfort and treatment failure. Therefore, the identification and prompt management of asynchronies are of paramount importance during non-invasive ventilation (NIV), in both pediatric and adult populations. In this review, we first define the different forms of asynchronies, their classification, and the method of quantification. We, therefore, describe the technique to properly detect patient-ventilator asynchronies during NIV in pediatric and adult patients with acute respiratory failure, separately. Then, we describe the actions that can be implemented in an attempt to reduce the occurrence of asynchronies, including the use of non-conventional modes of ventilation. In the end, we analyzed what the literature reports on the impact of asynchronies on the clinical outcomes of infants, children, and adults.
Collapse
Affiliation(s)
- Federico Longhini
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy,*Correspondence: Federico Longhini,
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Simona Tutino
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Luigi Vetrugno
- Department of Anesthesia and Intensive Care Unit, SS Annunziata Hospital, Chieti, Italy,Department of Medical, Oral and Biotechnological Sciences, “Gabriele D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Paolo Navalesi
- Anaesthesia and Intensive Care, Padua Hospital, Department of Medicine, University of Padua, Padua, Italy
| | | | | |
Collapse
|
4
|
Quality Improvement Initiative to Improve Initiation and Acceptability of Noninvasive Ventilation in Critically Ill Children. Indian J Pediatr 2022; 89:1209-1215. [PMID: 35612686 DOI: 10.1007/s12098-022-04164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/11/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES To evaluate if the use of a quality improvement (QI) initiative improves initiation and acceptability of noninvasive ventilation (NIV) in critically ill children with respiratory distress. METHODS The study was carried out in 3 phases over a period of 6 mo in the pediatric intensive care unit of a tertiary care hospital in children aged 2 mo to 14 y of age. In phase 1, data were collected for 1 mo and reasons for NIV failure were identified. In phase 2, process changes like adherence to checklist, monitoring, and one-day orientation program were instituted. The plan-do-study-act (PDSA) cycle was carried out in each phase. In phase 3, which was for 2 mo, the acceptance of NIV was measured and results were compared with phase 1. RESULTS A total of 37 patients were included, 12 in phase 1 and 25 in phase 3. NIV failure was recorded in 5 (42%) and 2 (8%) patients in phase 1 and phase 3 (p = 0.025), respectively. The cause of NIV failure was intolerance to the interface in both phases. Sedation was used in 18 (72%) patients in phase 3, as compared to 2 patients in phase 1. CONCLUSIONS The use of a quality improvement initiative in the form of a protocol, checklist, and training of the treating team resulted in improved tolerance to NIV, and thereby, its success. Use of sedation may help improve tolerance to the interface and contribute to its success.
Collapse
|
5
|
Wu M, Yuan X, Liu L, Yang Y. Neurally Adjusted Ventilatory Assist vs. Conventional Mechanical Ventilation in Adults and Children With Acute Respiratory Failure: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:814245. [PMID: 35273975 PMCID: PMC8901502 DOI: 10.3389/fmed.2022.814245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patient-ventilator asynchrony is a common problem in mechanical ventilation (MV), resulting in increased complications of MV. Despite there being some pieces of evidence for the efficacy of improving the synchronization of neurally adjusted ventilatory assist (NAVA), controversy over its physiological and clinical outcomes remain. Herein, we conducted a systematic review and meta-analysis to determine the relative impact of NAVA or conventional mechanical ventilation (CMV) modes on the important outcomes of adults and children with acute respiratory failure (ARF). Methods Qualified studies were searched in PubMed, EMBASE, Medline, Web of Science, Cochrane Library, and additional quality evaluations up to October 5, 2021. The primary outcome was asynchrony index (AI); secondary outcomes contained the duration of MV, intensive care unit (ICU) mortality, the incidence rate of ventilator-associated pneumonia, pH, and Partial Pressure of Carbon Dioxide in Arterial Blood (PaCO2). A statistical heterogeneity for the outcomes was assessed using the I 2 test. A data analysis of outcomes using odds ratio (OR) for ICU mortality and ventilator-associated pneumonia incidence and mean difference (MD) for AI, duration of MV, pH, and PaCO2, with 95% confidence interval (CI), was expressed. Results Eighteen eligible studies (n = 926 patients) were eventually enrolled. For the primary outcome, NAVA may reduce the AI (MD = -18.31; 95% CI, -24.38 to -12.25; p < 0.001). For the secondary outcomes, the duration of MV in the NAVA mode was 2.64 days lower than other CMVs (MD = -2.64; 95% CI, -4.88 to -0.41; P = 0.02), and NAVA may decrease the ICU mortality (OR =0.60; 95% CI, 0.42 to 0.86; P = 0.006). There was no statistically significant difference in the incidence of ventilator-associated pneumonia, pH, and PaCO2 between NAVA and other MV modes. Conclusions Our study suggests that NAVA ameliorates the synchronization of patient-ventilator and improves the important clinical outcomes of patients with ARF compared with CMV modes.
Collapse
Affiliation(s)
- Mengfan Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xueyan Yuan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Treussart C, Decobert F, Tauzin M, Bourgoin L, Danan C, Dassieu G, Carteaux G, Mekontso-Dessap A, Louis B, Durrmeyer X. Patient-Ventilator Synchrony in Extremely Premature Neonates during Non-Invasive Neurally Adjusted Ventilatory Assist or Synchronized Intermittent Positive Airway Pressure: A Randomized Crossover Pilot Trial. Neonatology 2022; 119:386-393. [PMID: 35504256 DOI: 10.1159/000524327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Synchronization of non-invasive ventilation is challenging in extremely premature infants. We compared patient-ventilator synchrony between non-invasive neurally adjusted ventilatory assist (NIV-NAVA) using transdiaphragmatic (Edi) catheter and synchronized intermittent positive airway pressure (SiPAP) using an abdominal trigger. METHODS This study was a monocentric, randomized, crossover trial in premature infants born before 28 weeks of gestation, aged 3 days or more, and below 32 weeks postmenstrual age. NIV-NAVA and SiPAP were applied in a random order for 2 h with analysis of data from the second hour. The primary outcome was the asynchrony index. RESULTS Fourteen patients were included (median [IQR] gestational age at birth 25.6 (25.3-26.4) weeks, median [IQR] birth weight 755 [680-824] g, median [IQR] postnatal age 26.5 [19.8-33.8] days). The median (IQR) asynchrony index was significantly lower in NIV-NAVA versus SiPAP (49.9% [44.1-52.6] vs. 85.8% [74.2-90.9], p < 0.001). Ineffective efforts and auto-triggering were significantly less frequent in NIV-NAVA versus SiPAP (3.0% vs. 32.0% p < 0.001 and 10.0% vs. 26.6%, p = 0.004, respectively). Double triggering was significantly less frequent in SiPAP versus NIV-NAVA (0.0% vs. 9.0%, p < 0.001). No significant difference was observed for premature cycling and late cycling. Peak Edi and swing Edi were significantly lower in NIV-NAVA as compared to SiPAP (7.7 [6.1-9.9] vs. 11.0 [6.7-14.5] μV, p = 0.006; 5.4 [4.2-7.6] vs. 7.6 [4.3-10.8] μV, p = 0.007, respectively). No significant difference was observed between NIV-NAVA and SiPAP for heart rate, respiratory rate, COMFORTneo scores, apnoea, desaturations, or bradycardias. DISCUSSION/CONCLUSION NIV-NAVA markedly improves patient-ventilator synchrony as compared to SiPAP in extremely premature infants.
Collapse
Affiliation(s)
| | - Fabrice Decobert
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France.,INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France
| | - Manon Tauzin
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France
| | - Laura Bourgoin
- Neonatal Intensive Care Unit, Assistance Publique, Hôpitaux de Marseille, Hôpital de La Conception, Marseille, France
| | - Claude Danan
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France.,INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France
| | - Gilles Dassieu
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France.,INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France
| | - Guillaume Carteaux
- INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France.,Medical Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire Henri Mondor, Créteil, France.,GRC CARMAS, IMRB, Université Paris Est Créteil, Faculté de Santé de Créteil, Créteil, France
| | - Armand Mekontso-Dessap
- Medical Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire Henri Mondor, Créteil, France.,GRC CARMAS, IMRB, Université Paris Est Créteil, Faculté de Santé de Créteil, Créteil, France
| | - Bruno Louis
- INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France
| | - Xavier Durrmeyer
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France.,INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France.,GRC CARMAS, IMRB, Université Paris Est Créteil, Faculté de Santé de Créteil, Créteil, France
| |
Collapse
|
7
|
Abstract
Patient-ventilator asynchrony is very common in newborns. Achieving synchrony is quite challenging because of small tidal volumes, high respiratory rates, and the presence of leaks. Leaks also cause unreliable monitoring of respiratory metrics. In addition, ventilator adjustment must take into account that infants have strong vagal reflexes and demonstrate central apnea and periodic breathing, with a high variability in breathing pattern. Neurally adjusted ventilatory assist (NAVA) is a mode of ventilation whereby the timing and amount of ventilatory assist is controlled by the patient's own neural respiratory drive. As NAVA uses the diaphragm electrical activity (Edi) as the controller signal, it is possible to deliver synchronized assist, both invasively and noninvasively (NIV-NAVA), to follow the variability in breathing pattern, and to monitor patient respiratory drive, independent of leaks. This article provides an updated review of the physiology and the scientific literature pertaining to the use of NAVA in children (neonatal and pediatric age groups). Both the invasive NAVA and NIV-NAVA publications since 2016 are summarized, as well as the use of Edi monitoring. Overall, the use of NAVA and Edi monitoring is feasible and safe. Compared with conventional ventilation, NAVA improves patient-ventilator interaction, provides lower peak inspiratory pressure, and lowers oxygen requirements. Evidence from several studies suggests improved comfort, less sedation requirements, less apnea, and some trends toward reduced length of stay and more successful extubation.
Collapse
Affiliation(s)
- Jennifer Beck
- Department of Critical Care, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B1W8, Canada; Department of Pediatrics, University of Toronto, Toronto, Canada; Institute for Biomedical Engineering and Science Technology (iBEST) at Ryerson University and St-Michael's Hospital, Toronto, Canada.
| | - Christer Sinderby
- Department of Critical Care, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B1W8, Canada; Institute for Biomedical Engineering and Science Technology (iBEST) at Ryerson University and St-Michael's Hospital, Toronto, Canada; Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Takahashi D, Liu L, Sinderby C, Beck J. Feasibility of neurally synchronized and proportional negative pressure ventilation in a small animal model. Physiol Rep 2021; 8:e14499. [PMID: 32633080 PMCID: PMC7379043 DOI: 10.14814/phy2.14499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 11/24/2022] Open
Abstract
RATIONALE Synchronized positive pressure ventilation is possible using diaphragm electrical activity (EAdi) to control the ventilator. It is unknown whether EAdi can be used to control negative pressure ventilation. AIM To evaluate the feasibility of using EAdi to control negative pressure ventilation. METHODS Fourteen anesthetized rats were studied (380-590 g) during control, resistive breathing, acute lung injury or CO2 rebreathing. Positive pressure continuous neurally adjusted ventilatory assist (cNAVAP+ ) was applied via intubation. Negative pressure cNAVA (cNAVAP- ) was applied with the animal placed in a sealed box. In part 1, automatic stepwise increments in cNAVA level by 0.2 cmH2 O/µV every 30 s was applied for cNAVAP+ , cNAVAP- , and a 50/50 combination of the two (cNAVAP± ). In part 2: During 5-min ventilation with cNAVAP+ or cNAVAP- we measured circuit, box, and esophageal (Pes) pressure, EAdi, blood pressure, and arterial blood gases. RESULTS Part 1: During cNAVAP+ , pressure in the circuit increased with increasing cNAVA levels, reaching a plateau, and similarly for cNAVAP- , albeit reversed in sign. This was associated with downregulation of the EAdi. Pes swings became less negative with cNAVAP+ but, in contrast, Pes swings were more negative during increasing cNAVAP- levels. Increasing the cNAVA level during cNAVAP± resulted in an intermediate response. Part 2: no significant differences were observed for box/circuit pressures, EAdi, blood pressure, or arterial blood gases. Pes swings during cNAVAP- were significantly more negative than during cNAVAP+ . CONCLUSION Negative pressure ventilation synchronized and proportional to the diaphragm activity is feasible in small animals.
Collapse
Affiliation(s)
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Christer Sinderby
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Department of Critical Care, St. Michael's Hospital, Toronto, ON, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St-Michael's Hospital, Toronto, ON, Canada.,Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Jennifer Beck
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Department of Critical Care, St. Michael's Hospital, Toronto, ON, Canada.,Institute for Biomedical Engineering and Science Technology (iBEST), Ryerson University and St-Michael's Hospital, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Spinazzola G, Costa R, De Luca D, Chidini G, Ferrone G, Piastra M, Conti G. Pressure Support Ventilation (PSV) versus Neurally Adjusted Ventilatory Assist (NAVA) in difficult to wean pediatric ARDS patients: a physiologic crossover study. BMC Pediatr 2020; 20:334. [PMID: 32631305 PMCID: PMC7338290 DOI: 10.1186/s12887-020-02227-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurally adjusted ventilatory assist (NAVA) is an innovative mode for assisted ventilation that improves patient-ventilator interaction in children. The aim of this study was to assess the effects of patient-ventilator interaction comparing NAVA with pressure support ventilation (PSV) in patients difficult to wean from mechanical ventilation after moderate pediatric acute respiratory distress syndrome (PARDS). METHODS In this physiological crossover study, 12 patients admitted in the Pediatric Intensive Care Unit (PICU) with moderate PARDS failing up to 3 spontaneous breathing trials in less than 7 days, were enrolled. Patients underwent three study conditions lasting 1 h each: PSV1, NAVA and PSV2. RESULTS The Asynchrony Index (AI) was significantly reduced during the NAVA trial compared to both the PSV1 and PSV2 trials (p = 0.001). During the NAVA trial, the inspiratory and expiratory trigger delays were significantly shorter compared to those obtained during PSV1 and PSV2 trials (Delaytrinspp < 0.001, Delaytrexpp = 0.013). These results explain the significantly longer Timesync observed during the NAVA trial (p < 0.001). In terms of gas exchanges, PaO2 value significantly improved in the NAVA trial with respect to the PSV trials (p < 0.02). The PaO2/FiO2 ratio showed a significant improvement during the NAVA trial compared to both the PSV1 and PSV2 trials (p = 0.004). CONCLUSIONS In this specific PICU population, presenting difficulty in weaning after PARDS, NAVA was associated with a reduction of the AI and a significant improvement in oxygenation compared to PSV mode. TRIAL REGISTRATION ClinicalTrial.gov Identifier: NCT04360590 "Retrospectively registered".
Collapse
Affiliation(s)
- Giorgia Spinazzola
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy.
| | - Roberta Costa
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy
| | - Daniele De Luca
- Division of Pediatric and Neonatal Critical Care, South Paris University Hospital, Medical Centers "A. Beclere" Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Giovanna Chidini
- Pediatric Intensive Care Unit, Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuliano Ferrone
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy
| | - Marco Piastra
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy
| | - Giorgio Conti
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy.,Division of Pediatric and Neonatal Critical Care, South Paris University Hospital, Medical Centers "A. Beclere" Assistance Publique-Hopitaux de Paris (APHP), Paris, France.,Pediatric Intensive Care Unit, Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
10
|
Abstract
INTRODUCTION The use of mechanical ventilation is an invaluable tool in caring for critically ill patients. Enhancing our capabilities in mechanical ventilation has been instrumental in the ability to support clinical conditions and diseases which were once associated with high mortality. Areas covered: Within this manuscript, we will look to discuss emerging approaches to improving the care of pediatric patients who require mechanical ventilation. After an extensive literature search, we will provide a brief review of the history and pathophysiology of acute respiratory distress syndrome, an assessment of several ventilator settings, a discussion on assisted ventilation, review of therapy used to rescue in severe respiratory failure, methods of monitoring the effects of mechanical ventilation, and nutrition. Expert opinion: As we have advanced in our care, we are seeing children survive illnesses that would have once claimed their lives. Given this knowledge, we must continue to advance the research in pediatric critical care to understand the means in which we can tailor the therapy to the patient in efforts to efficiently liberate them from mechanical ventilation once their illness has resolved.
Collapse
Affiliation(s)
- Duane C Williams
- a Division of Pediatric Critical Care Medicine, Department of Pediatrics , Penn State Hershey Children's Hospital , Hershey , PA , USA
| | - Ira M Cheifetz
- b Division of Pediatric Critical Care Medicine, Department of Pediatrics , Duke Children's Hospital , Durham , NC , USA
| |
Collapse
|
11
|
Tabacaru CR, Moores RR, Khoury J, Rozycki HJ. NAVA-synchronized compared to nonsynchronized noninvasive ventilation for apnea, bradycardia, and desaturation events in VLBW infants. Pediatr Pulmonol 2019; 54:1742-1746. [PMID: 31373180 DOI: 10.1002/ppul.24464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022]
Abstract
Neurally adjusted ventilatory assistance (NAVA) can overcome technical difficulties with synchronizing noninvasive ventilation breaths with the patient, a modality often used in very low birthweight infants (VLBW) with apnea of prematurity (AOP). This study is a retrospective single-center investigation into whether NAVA-synchronized noninvasive (niNAVA) ventilation is better than nonsynchronized (nasal intermittent positive pressure ventilation [nIPPV]) for symptomatic apnea in VLBW infants. Nursing records of apnea, bradycardia, and/or desaturations were abstracted from the electronic medical records of 108 VLBW infants admitted to the neonatal intensive care unit (NICU) from 2015 to 2017 who received either of the two modalities, 61 epochs of niNAVA totaling 488 days and 103 epochs of nIPPV totaling 886.5 days. niNAVA was associated with a significant reduction in the number of isolated bradycardic events/day (0.48 ± 0.14 vs 1.35 ± 0.27; P = .019) and overall bradycardias/day (2.42 ± 0.47 vs 4.02 ± 0.53; P = .042) and there were more epochs with no events with niNAVA compared with nIPPV (23.0% vs 6.8%; P = .004). These results justify a prospective trial of NAVA-synchronized noninvasive ventilation for VLBW infants with caffeine-resistant AOP.
Collapse
Affiliation(s)
- Christa R Tabacaru
- Department of Pediatrics, Children's Hospital of Richmond at VCU, Richmond, Virginia
| | - Russell R Moores
- Department of Pediatrics, Children's Hospital of Richmond at VCU, Richmond, Virginia
- Division of Neonatal Medicine, Children's Hospital of Richmond at VCU, Richmond, Virginia
| | - Joseph Khoury
- Department of Pediatrics, Children's Hospital of Richmond at VCU, Richmond, Virginia
- Division of Neonatal Medicine, Children's Hospital of Richmond at VCU, Richmond, Virginia
| | - Henry J Rozycki
- Department of Pediatrics, Children's Hospital of Richmond at VCU, Richmond, Virginia
- Division of Neonatal Medicine, Children's Hospital of Richmond at VCU, Richmond, Virginia
| |
Collapse
|
12
|
Langer T, Baio S, Chidini G, Marchesi T, Grasselli G, Pesenti A, Calderini E. Severe diaphragmatic dysfunction with preserved activity of accessory respiratory muscles in a critically ill child: a case report of failure of neurally adjusted ventilatory assist (NAVA) and successful support with pressure support ventilation (PSV). BMC Pediatr 2019; 19:155. [PMID: 31101098 PMCID: PMC6524310 DOI: 10.1186/s12887-019-1527-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/03/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurally adjusted ventilatory assist (NAVA) is an alternative to pressure support ventilation (PSV) potentially improving patient-ventilator interaction. During NAVA, diaphragmatic electrical activity (EAdi) is used to trigger the ventilator and perform a proportional respiratory assistance. We present a case in which the presence of severe bilateral diaphragmatic dysfunction led to a failure of NAVA. On the contrary, the preserved activity of the accessory inspiratory muscles allowed a successful respiratory assistance using PSV. CASE PRESENTATION A 10-year-old girl developed quadriplegia after neurological surgery. Initially, no spontaneous breathing activity was present and volume controlled ventilation was necessary. Two months later spontaneous inspiratory efforts were observed and a maximal negative inspiratory force of - 20 cmH2O was recorded. In addition, a NAVA nasogastric tube was placed. The recorded EAdi signal, despite showing a phasic activity, had a very low amplitude (1-2 μV). Two brief (15 min) breathing trials to compare PSV (pressure support = 8 cmH2O) with NAVA (Gain = 5 cmH2O/μV, inspiratory trigger = 0.3 μV) were performed. On PSV, the patient was well adapted with stable tidal volumes, respiratory rates, minute ventilation, end-tidal and venous carbon dioxide levels. When switched to NAVA, her breathing pattern became irregular and she showed clear sign of increased work of breathing and distress: tidal volume dropped and respiratory rate rose, leading to an increase in total minute ventilation. Nevertheless, end-tidal and venous carbon dioxide rapidly increased (from 49 to 55 mmHg and from 52 to 57 mmHg, respectively). An electromyographic study documented an impairment of the diaphragm with preserved activity of the accessory inspiratory muscles. CONCLUSIONS We document the failure of mechanical assistance performed with NAVA due to bilateral diaphragmatic dysfunction in a critically ill child. The preserved activity of some accessory respiratory muscles allowed to support the patient effectively with pressure support ventilation, i.e. by applying a pneumatic trigger. The present case underlines (i) the importance of the integrity of the respiratory centers, phrenic nerves and diaphragm in order to perform NAVA and (ii) the possible diagnostic role of EAdi monitoring in complex cases of weaning failure.
Collapse
Affiliation(s)
- Thomas Langer
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Anestesia e Terapia Intensiva Donna-Bambino, Milan, Italy.
| | - Serena Baio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giovanna Chidini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Anestesia e Terapia Intensiva Donna-Bambino, Milan, Italy
| | - Tiziana Marchesi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Anestesia e Terapia Intensiva Donna-Bambino, Milan, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Edoardo Calderini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Anestesia e Terapia Intensiva Donna-Bambino, Milan, Italy
| |
Collapse
|
13
|
Piastra M, Pizza A, Gaddi S, Luca E, Genovese O, Picconi E, De Luca D, Conti G. Dexmedetomidine is effective and safe during NIV in infants and young children with acute respiratory failure. BMC Pediatr 2018; 18:282. [PMID: 30144795 PMCID: PMC6109351 DOI: 10.1186/s12887-018-1256-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Noninvasive ventilation (NIV) is increasingly utilized in infants and young children, though associated with high failure rates due to agitation and poor compliance, mostly if patient-ventilator synchronization is required. METHODS A retrospective cohort study was carried out in an academic pediatric intensive care unit (PICU). Dexmedetomidine (DEX) was infused as unique sedative in 40 consecutive pediatric patients (median age 16 months) previously showing intolerance and agitation during NIV application. RESULTS During NIV clinical application both COMFORT-B Score and Richmond Agitation-Sedation Scale (RASS) were serially evaluated. Four patients experiencing NIV failure, all due to pulmonary condition worsening, required intubation and invasive ventilation. 36 patients were successfully weaned from NIV under DEX sedation and discharged from PICU. All patients survived until home discharge. CONCLUSION Our data suggest that DEX may represent an effective sedative agent in infants and children showing agitation during NIV. Early use of DEX in infants/children receiving NIV for acute respiratory failure (ARF) should be considered safe and capable of improving NIV, thus permitting both lung recruitment and patient-ventilator synchronization.
Collapse
Affiliation(s)
- M Piastra
- Pediatric Intensive Care Unit, Fondazione Policlinico A. Gemelli IRCCS and Catholic University of Rome, L.go A.Gemelli, 8, Rome, Italy
| | - A Pizza
- Pediatric Intensive Care Unit, Fondazione Policlinico A. Gemelli IRCCS and Catholic University of Rome, L.go A.Gemelli, 8, Rome, Italy.
| | - S Gaddi
- Pediatric Intensive Care Unit, Fondazione Policlinico A. Gemelli IRCCS and Catholic University of Rome, L.go A.Gemelli, 8, Rome, Italy
| | - E Luca
- Pediatric Intensive Care Unit, Fondazione Policlinico A. Gemelli IRCCS and Catholic University of Rome, L.go A.Gemelli, 8, Rome, Italy
| | - O Genovese
- Pediatric Intensive Care Unit, Fondazione Policlinico A. Gemelli IRCCS and Catholic University of Rome, L.go A.Gemelli, 8, Rome, Italy
| | - E Picconi
- Pediatric Intensive Care Unit, Fondazione Policlinico A. Gemelli IRCCS and Catholic University of Rome, L.go A.Gemelli, 8, Rome, Italy
| | - D De Luca
- Division of Pediatrics and Neonatal Critical Care, Medical Center "A.Béclère", South Paris University Hospitals, Paris, France
| | - G Conti
- Pediatric Intensive Care Unit, Fondazione Policlinico A. Gemelli IRCCS and Catholic University of Rome, L.go A.Gemelli, 8, Rome, Italy
| |
Collapse
|
14
|
|