1
|
Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel) 2024; 13:922. [PMID: 39199168 PMCID: PMC11351814 DOI: 10.3390/antiox13080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
This study emphasizes the critical role of antioxidants in protecting human health by counteracting the detrimental effects of oxidative stress induced by free radicals. Antioxidants-found in various forms such as vitamins, minerals, and the phytochemicals abundant in fruits and vegetables-neutralize free radicals by stabilizing them through electron donation. Specifically, flavonoid compounds are highlighted as robust defenders, addressing oxidative stress and inflammation to avert chronic illnesses like cancer, cardiovascular diseases, and neurodegenerative diseases. This research explores the bioactive potential of flavonoids, shedding light on their role not only in safeguarding health, but also in managing conditions such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. This review highlights the novel integration of South African-origin flavonoids with nanotechnology, presenting a cutting-edge strategy to improve drug delivery and therapeutic outcomes. This interdisciplinary approach, blending traditional wisdom with contemporary techniques, propels the exploration of flavonoid-mediated nanoparticles toward groundbreaking pharmaceutical applications, promising revolutionary advancements in healthcare. This collaborative synergy between traditional knowledge and modern science not only contributes to human health, but also underscores a significant step toward sustainable and impactful biomedical innovations, aligning with principles of environmental conservation.
Collapse
Affiliation(s)
| | | | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa; (M.Z.); (H.A.)
| |
Collapse
|
2
|
Chen X, Xu P, Zhang H, Su X, Guo L, Zhou X, Wang J, Huang P, Zhang Q, Sun R. EGFR and ERK activation resists flavonoid quercetin-induced anticancer activities in human cervical cancer cells in vitro. Oncol Lett 2021; 22:754. [PMID: 34539858 PMCID: PMC8436358 DOI: 10.3892/ol.2021.13015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
In the present study, due to the complex and numerous targets of Sarcandrae Herb (also known as Zhong Jie Feng), network pharmacology was performed to analyze its therapeutic effect on 2 cervical cancer cell lines, which could assist with the development of novel therapies. The results suggested that the natural flavonoid quercetin (Que), the effective antitumor ingredient in SH, which is widely present in a variety of plants, may depend on the target, EGFR. Previous studies have shown that EGFR serves a crucial role in the occurrence and development of cervical cancer, but its downstream molecules and regulatory mechanisms remain unknown. The anti-cervical cancer cell properties of Que, which are present in ubiquitous plants, were examined in vitro to identify the association between Que and its underlying pathway using MTT assays, flow cytometry, western blot analysis and Transwell assays. It was found that Que reduced cervical cancer cell viability, promoted G2/M phase cell cycle arrest and cell apoptosis, as well as inhibited cell migration and invasion. The Tyr1068 phosphorylation site of EGFR and the corresponding ERK target were also examined and the 2 kinases were markedly activated by Que. Furthermore, the EGFR inhibitor, afatinib and the ERK inhibitor, U0126 blocked the increase of EGFR and ERK phosphorylation, and resulted in a notable enhancement of apoptosis and cell cycle arrest. Therefore, to the best of our knowledge, the current results provided the first evidence that EGFR and ERK activation induced by Que could resist Que-induced anticancer activities. On this basis, the present study determined the role of EGFR and the underlying signaling pathways involved in the anti-cervical cancer malignant behavior induced by Que and identified the negative regulatory association.
Collapse
Affiliation(s)
- Xin Chen
- Molecular Biology Laboratory, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Pengli Xu
- Collaborative Innovation Center, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Huijun Zhang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai 200030, P.R. China
| | - Xiaosan Su
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Lihua Guo
- Department of Oncology, Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Xuhong Zhou
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Junliang Wang
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Tokyo 163-8001, Japan
| | - Qingzhi Zhang
- Molecular Biology Laboratory, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Ruifen Sun
- Research and Experiment Center, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
3
|
EGFR Promoter Methylation, EGFR Mutation, and HPV Infection in Chinese Cervical Squamous Cell Carcinoma. Appl Immunohistochem Mol Morphol 2016; 23:661-6. [PMID: 25789535 DOI: 10.1097/pai.0000000000000128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Therapy strategy toward epidermal growth factor receptor (EGFR) inhibition in cervical cancer has been ongoing. EGFR promoter methylation status and EGFR tyrosine kinase inhibitor-sensitive mutations in cervical cancer may be significant for clinical outcome prediction using anti-EGFR treatment. In this study, EGFR tyrosine kinase inhibitor-sensitive mutations, EGFR exons 18, 19, and 21 mutations, were detected by sequencing in a total of 293 Chinese cervical squamous cell carcinoma tissue samples. EGFR promoter methylation status was detected by an EGFR asymmetric PCR and hybridization-fluorescence polarization assay and sequencing in 293 Chinese cervical squamous cell carcinoma tissue samples. High-risk human papillomavirus (HPV) genotypes in 293 Chinese cervical squamous cell carcinoma tissue samples were detected by an asymmetric GP5+/6+ PCR and hybridization-fluorescence polarization assay. No EGFR exons 18, 19, and 21 mutations were detected, EGFR promoter methylation status was identified in 98 samples, and HPV 16 infection was the first frequent HPV genotype. The methylated EGFR promoter was identified most frequently in cervical squamous cell carcinoma samples with HPV 16 infection (53.4%). Statistical significant difference of EGFR promoter methylation prevalence was found between HPV 16 and other HPV genotypes (P<0.01). This study suggested that there was no EGFR tyrosine kinase inhibitor-sensitive mutation in EGFR exons 18, 19, and 21 in Chinese cervical squamous cell carcinoma tissue samples. EGFR promoter methylation was common and it might be associated with HPV 16 infection in Chinese cervical squamous cell carcinoma. The results provided a novel understanding and an applicable pharmacogenomic tool for individualized management of cervical cancer patients.
Collapse
|
4
|
An improved fluorescence polarization assay in 5'-nuclease reaction for gene promoter methylation detection. J Biotechnol 2015. [PMID: 26197420 DOI: 10.1016/j.jbiotec.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The detection of gene promoter methylation plays increasing roles in personalized medicine. In this study, an improved gene promoter methylation assay based on fluorescence polarization in 5'-nuclease reaction was developed. The novel assay offered a homogeneous annealing and cleavage reaction fully integrated with PCR which used a probe labeled with fluorescence without quencher to obtain the decreased fluorescence polarization values. In this platform, gene promoter methylated and unmethylated alleles were detected simultaneously in a tube. O(6)-methylguanine-DNA methyltransferase gene promoter methylation in 103 glioma tissue samples and epidermal growth factor receptor gene promoter methylation in 116 primary non-small-cell lung carcinoma tissue samples were detected by the novel assay and sequencing, absolute quantitative analysis of methylated allele in parallel. The accuracy of the results measured by the improved fluorescence polarization assay was evaluated using the paired-samples t test. No significant difference was found ( P>0.05). Therefore, the improved fluorescence polarization assay in 5'-nuclease reaction demonstrated a homogeneous, reliable and cost-effective method for gene promoter methylation analysis in clinic. That would provide a scientific basis for applying a reasonable therapeutic regimen in future treatment.
Collapse
|