1
|
de Almeida BC, dos Anjos LG, Dobroff AS, Baracat EC, Yang Q, Al-Hendy A, Carvalho KC. Epigenetic Features in Uterine Leiomyosarcoma and Endometrial Stromal Sarcomas: An Overview of the Literature. Biomedicines 2022; 10:2567. [PMID: 36289829 PMCID: PMC9599831 DOI: 10.3390/biomedicines10102567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
There is a consensus that epigenetic alterations play a key role in cancer initiation and its biology. Studies evaluating the modification in the DNA methylation and chromatin remodeling patterns, as well as gene regulation profile by non-coding RNAs (ncRNAs) have led to the development of novel therapeutic approaches to treat several tumor types. Indeed, despite clinical and translational challenges, combinatorial therapies employing agents targeting epigenetic modifications with conventional approaches have shown encouraging results. However, for rare neoplasia such as uterine leiomyosarcomas (LMS) and endometrial stromal sarcomas (ESS), treatment options are still limited. LMS has high chromosomal instability and molecular derangements, while ESS can present a specific gene fusion signature. Although they are the most frequent types of "pure" uterine sarcomas, these tumors are difficult to diagnose, have high rates of recurrence, and frequently develop resistance to current treatment options. The challenges involving the management of these tumors arise from the fact that the molecular mechanisms governing their progression have not been entirely elucidated. Hence, to fill this gap and highlight the importance of ongoing and future studies, we have cross-referenced the literature on uterine LMS and ESS and compiled the most relevant epigenetic studies, published between 2009 and 2022.
Collapse
Affiliation(s)
- Bruna Cristine de Almeida
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Laura Gonzalez dos Anjos
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Andrey Senos Dobroff
- UNM Comprehensive Cancer Center (UNMCCC), University of New Mexico, Albuquerque, NM 87131, USA
- Division of Molecular Medicine, Department of Internal Medicine, (UNM) School of Medicine, UNM Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA
| | - Edmund Chada Baracat
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento de Obstetricia e Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil
| |
Collapse
|
2
|
Rytlewski J, Brockman QR, Dodd RD, Milhem M, Monga V. Epigenetic modulation in sensitizing metastatic sarcomas to therapies and overcoming resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:25-35. [PMID: 35582536 PMCID: PMC8992584 DOI: 10.20517/cdr.2021.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022]
Abstract
Sarcomas are a class of rare malignancies of mesenchymal origin with a heterogeneous histological spectrum. They are classically associated with poor outcomes, especially once metastasized. A path to improving clinical outcomes may be made through modifying the epigenome, where a variety of sarcomas demonstrate changes that contribute to their oncogenic phenotypes. This Perspective article identifies and describes changes in the sarcoma genome, while discussing specific epigenetic changes and their effect on clinical outcomes. Clinical attempts at modulating epigenetics in sarcoma are reviewed, as well as potential implications of these studies. Epigenetic targets to reverse and delay chemotherapy resistance are discussed. Future directions with primary next steps are proposed to invigorate the current understanding of epigenetic biomarkers to enact targeted therapies to epigenetic phenotypes of sarcoma subtypes. Modifications to prior studies, as well as proposed clinical steps, are also addressed.
Collapse
Affiliation(s)
- Jeff Rytlewski
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Qierra R Brockman
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Rebecca D Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Mohammed Milhem
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Varun Monga
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Kim MS, Ha SE, Wu M, Zogg H, Ronkon CF, Lee MY, Ro S. Extracellular Matrix Biomarkers in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22179185. [PMID: 34502094 PMCID: PMC8430714 DOI: 10.3390/ijms22179185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular microenvironment composition and changes therein play an extremely important role in cancer development. Changes in the extracellular matrix (ECM), which constitutes a majority of the tumor stroma, significantly contribute to the development of the tumor microenvironment. These alterations within the ECM and formation of the tumor microenvironment ultimately lead to tumor development, invasion, and metastasis. The ECM is composed of various molecules such as collagen, elastin, laminin, fibronectin, and the MMPs that cleave these protein fibers and play a central role in tissue remodeling. When healthy cells undergo an insult like DNA damage and become cancerous, if the ECM does not support these neoplastic cells, further development, invasion, and metastasis fail to occur. Therefore, ECM-related cancer research is indispensable, and ECM components can be useful biomarkers as well as therapeutic targets. Colorectal cancer specifically, is also affected by the ECM and many studies have been conducted to unravel the complex association between the two. Here we summarize the importance of several ECM components in colorectal cancer as well as their potential roles as biomarkers.
Collapse
Affiliation(s)
- Min-Seob Kim
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
| | - Se-Eun Ha
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Hannah Zogg
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Charles F. Ronkon
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
| | - Moon-Young Lee
- Department of Physiology, Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.-S.K.); (M.W.)
- Correspondence: (M.-Y.L.); (S.R.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557, USA; (S.-E.H.); (H.Z.); (C.F.R.)
- Correspondence: (M.-Y.L.); (S.R.)
| |
Collapse
|
4
|
Abstract
The pathological features of the appendix tumors fundamentally recall those of the more frequent colorectal neoplasms, although with a higher relative incidence of carcinoids, due to the abundant presence of enteroendocrine cells in the appendix wall. Moreover, different types of lymphomas, Hodgkin and non-Hodgkin, arising from the extra-nodal mucosal-associated lymphatic tissue, can be encountered. The appendix tumor microenvironment (TME) consists of a cellular component and of a noncellular component: the former includes the immunocompetent cells, while the latter represents the support stroma. Particularly in carcinoids, the immune cell reaction can be explicated by tumor-infiltrating lymphocytes, which, in some circumstances, may arrange around and inside the tumor in a brisk fashion influencing favorably the prognosis. This active reaction has to be distinguished from any preexisting inflammatory condition of the appendix and from superimposed tumor complications, such as infection or ischemia. In practice, we consider the appendix TME a complex framework with immunological, mechanic, and metabolic functions, all supported by a marked neo-lymphoangiogenesis.
Collapse
|
5
|
Genadry KC, Pietrobono S, Rota R, Linardic CM. Soft Tissue Sarcoma Cancer Stem Cells: An Overview. Front Oncol 2018; 8:475. [PMID: 30416982 PMCID: PMC6212576 DOI: 10.3389/fonc.2018.00475] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022] Open
Abstract
Soft tissue sarcomas (STSs) are an uncommon group of solid tumors that can arise throughout the human lifespan. Despite their commonality as non-bony cancers that develop from mesenchymal cell precursors, they are heterogeneous in their genetic profiles, histology, and clinical features. This has made it difficult to identify a single target or therapy specific to STSs. And while there is no one cell of origin ascribed to all STSs, the cancer stem cell (CSC) principle—that a subpopulation of tumor cells possesses stem cell-like properties underlying tumor initiation, therapeutic resistance, disease recurrence, and metastasis—predicts that ultimately it should be possible to identify a feature common to all STSs that could function as a therapeutic Achilles' heel. Here we review the published evidence for CSCs in each of the most common STSs, then focus on the methods used to study CSCs, the developmental signaling pathways usurped by CSCs, and the epigenetic alterations critical for CSC identity that may be useful for further study of STS biology. We conclude with discussion of some challenges to the field and future directions.
Collapse
Affiliation(s)
- Katia C Genadry
- Division of Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Silvia Pietrobono
- Department of Hematology-Oncology, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Hematology-Oncology, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States.,Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
6
|
Niu G, Wang D, Pei Y, Sun L. Systematic identification of key genes and pathways in the development of invasive cervical cancer. Gene 2017; 618:28-41. [PMID: 28341182 DOI: 10.1016/j.gene.2017.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 11/30/2022]
|