1
|
Zheng F, Xiao X, Wang C. Retracted: The Effect of PTCH1 on Ovarian Cancer Cell Proliferation and Apoptosis. Cancer Biother Radiopharm 2019; 34:103-109. [DOI: 10.1089/cbr.2018.2626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Fang Zheng
- Department of Gynaecology, Huangshi Aikang Hospital, Huangshi, China
| | - Xinyi Xiao
- Department of Gynaecology, Huangshi Aikang Hospital, Huangshi, China
| | - Chunmei Wang
- Department of Gynaecology, Huangshi Aikang Hospital, Huangshi, China
| |
Collapse
|
2
|
Ozretić P, Trnski D, Musani V, Maurac I, Kalafatić D, Orešković S, Levanat S, Sabol M. Non-canonical Hedgehog signaling activation in ovarian borderline tumors and ovarian carcinomas. Int J Oncol 2017; 51:1869-1877. [PMID: 29039491 DOI: 10.3892/ijo.2017.4156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Hedgehog signaling pathway has been implicated in the pathology of ovarian cancer, and Survivin (BIRC5) has been suggested as a novel target of this pathway. Herein we investigated the role of Hedgehog signaling pathway and Survivin in ovarian carcinoma and borderline tumor samples. We aimed to determine possible ways of pathway modulation on primary ovarian cancer cells and an established cell line. RNA was extracted from fresh tumors and control tissues and gene expression was examined using qRT-PCR. Pathway activity in cell lines was examined after treatment with cyclopamine, SHH protein, GANT-61 or lithium chloride using qRT-PCR, western blot and confocal microscopy. The difference between control tissue, borderline tumors and carcinomas can be seen in GLI1 and SUFU gene expression, which is significantly higher in borderline tumors compared to carcinomas. SUFU also shows lower expression levels in higher FIGO stages relative to lower stages. BIRC5 is expressed in all tumors and in healthy ovarian tissues compared to our control tissue, healthy fallopian tube samples. Primary cells developed from ovarian carcinoma tissue respond to cyclopamine treatment with a short-term decrease in cell proliferation, downregulation of Hedgehog pathway genes, including BIRC5, and changes in protein dynamics. Stimulation with SHH protein results in increased cell migration, while GLI1 transfection or PTCH1 silencing demonstrate pathway upregulation. The pathway activity can be modulated by LiCl at the GSK3β-SUFU-GLI level, suggesting at least partial non-canonical activation. Downregulation of the pathway with GANT-61 has proved to be more effective than cyclopamine. GLI inhibitors may be a superior treatment option in ovarian cancer compared to SMO inhibitors.
Collapse
Affiliation(s)
- Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivana Maurac
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Držislav Kalafatić
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slavko Orešković
- Department of Obstetrics and Gynaecology, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
McCubrey JA, Rakus D, Gizak A, Steelman LS, Abrams SL, Lertpiriyapong K, Fitzgerald TL, Yang LV, Montalto G, Cervello M, Libra M, Nicoletti F, Scalisi A, Torino F, Fenga C, Neri LM, Marmiroli S, Cocco L, Martelli AM. Effects of mutations in Wnt/β-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2942-2976. [PMID: 27612668 DOI: 10.1016/j.bbamcr.2016.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/14/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase that participates in an array of critical cellular processes. GSK-3 was first characterized as an enzyme that phosphorylated and inactivated glycogen synthase. However, subsequent studies have revealed that this moon-lighting protein is involved in numerous signaling pathways that regulate not only metabolism but also have roles in: apoptosis, cell cycle progression, cell renewal, differentiation, embryogenesis, migration, regulation of gene transcription, stem cell biology and survival. In this review, we will discuss the roles that GSK-3 plays in various diseases as well as how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, Wnt/beta-catenin, hedgehog, Notch and TP53. Mutations that occur in these and other pathways can alter the effects that natural GSK-3 activity has on regulating these signaling circuits that can lead to cancer as well as other diseases. The novel roles that microRNAs play in regulation of the effects of GSK-3 will also be evaluated. Targeting GSK-3 and these other pathways may improve therapy and overcome therapeutic resistance.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Massimo Libra
- Department of Bio-medical Sciences, University of Catania, Catania, Italy
| | | | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of Rome, Rome, Italy
| | - Concettina Fenga
- Department of Biomedical, Odontoiatric, Morphological and Functional Images, Occupational Medicine Section - Policlinico "G. Martino" - University of Messina, Messina 98125, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sandra Marmiroli
- Department of Surgery, Medicine, Dentistry and Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Sabol M, Trnski D, Uzarevic Z, Ozretic P, Musani V, Rafaj M, Cindric M, Levanat S. Combination of cyclopamine and tamoxifen promotes survival and migration of mcf-7 breast cancer cells--interaction of hedgehog-gli and estrogen receptor signaling pathways. PLoS One 2014; 9:e114510. [PMID: 25503972 PMCID: PMC4264763 DOI: 10.1371/journal.pone.0114510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/10/2014] [Indexed: 02/05/2023] Open
Abstract
Hedgehog-Gli (Hh-Gli) signaling pathway is one of the new molecular targets found upregulated in breast tumors. Estrogen receptor alpha (ERα) signaling has a key role in the development of hormone-dependent breast cancer. We aimed to investigate the effects of inhibiting both pathways simultaneously on breast cancer cell survival and the potential interactions between these two signaling pathways. ER-positive MCF-7 cells show decreased viability after treatment with cyclopamine, a Hh-Gli pathway inhibitor, as well as after tamoxifen (an ERα inhibitor) treatment. Simultaneous treatment with cyclopamine and tamoxifen on the other hand, causes short-term survival of cells, and increased migration. We found upregulated Hh-Gli signaling under these conditions and protein profiling revealed increased expression of proteins involved in cell proliferation and migration. Therefore, even though Hh-Gli signaling seems to be a good potential target for breast cancer therapy, caution must be advised, especially when combining therapies. In addition, we also show a potential direct interaction between the Shh protein and ERα in MCF-7 cells. Our data suggest that the Shh protein is able to activate ERα independently of the canonical Hh-Gli signaling pathway. Therefore, this may present an additional boost for ER-positive cells that express Shh, even in the absence of estrogen.
Collapse
Affiliation(s)
- Maja Sabol
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Diana Trnski
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Zvonimir Uzarevic
- Faculty of Education, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Petar Ozretic
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Maja Rafaj
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Mario Cindric
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Sonja Levanat
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|