1
|
Khan SM, Pearson DD, Eldridge EL, Morais TA, Ahanonu MIC, Ryan MC, Taron JM, Goodarzi AA. Rural communities experience higher radon exposure versus urban areas, potentially due to drilled groundwater well annuli acting as unintended radon gas migration conduits. Sci Rep 2024; 14:3640. [PMID: 38409201 PMCID: PMC10897331 DOI: 10.1038/s41598-024-53458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
Repetitive, long-term inhalation of radioactive radon gas is one of the leading causes of lung cancer, with exposure differences being a function of geographic location, built environment, personal demographics, activity patterns, and decision-making. Here, we examine radon exposure disparities across the urban-to-rural landscape, based on 42,051 Canadian residential properties in 2034 distinct communities. People living in rural, lower population density communities experience as much as 31.2% greater average residential radon levels relative to urban equivalents, equating to an additional 26.7 Bq/m3 excess in geometric mean indoor air radon, and an additional 1 mSv/year in excess alpha radiation exposure dose rate to the lungs for occupants. Pairwise and multivariate analyses indicate that community-based radon exposure disparities are, in part, explained by increased prevalence of larger floorplan bungalows in rural areas, but that a majority of the effect is attributed to proximity to, but not water use from, drilled groundwater wells. We propose that unintended radon gas migration in the annulus of drilled groundwater wells provides radon migration pathways from the deeper subsurface into near-surface materials. Our findings highlight a previously under-appreciated determinant of radon-induced lung cancer risk, and support a need for targeted radon testing and reduction in rural communities.
Collapse
Affiliation(s)
- Selim M Khan
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dustin D Pearson
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Evangeline L Eldridge
- Department of Earth, Energy and Environment, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Tiago A Morais
- Department of Earth, Energy and Environment, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Marvit I C Ahanonu
- School of Architecture, Planning, and Landscape, University of Calgary, Calgary, AB, Canada
| | - M Cathryn Ryan
- Department of Earth, Energy and Environment, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Joshua M Taron
- School of Architecture, Planning, and Landscape, University of Calgary, Calgary, AB, Canada.
| | - Aaron A Goodarzi
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Schwartz RI, Gleason JA, O'Neill HS, Procopio NA, Spayd SE. Targeted education and outreach to neighbors of homes with high gross alpha radioactivity in domestic well water. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 259-260:107124. [PMID: 36724575 DOI: 10.1016/j.jenvrad.2023.107124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Gross alpha, a measurement of radioactivity in drinking water, is the most frequent laboratory test to exceed primary drinking water standards among wells tested under the New Jersey Private Well Testing Act (NJ PWTA). Certain geological factors prevalent in New Jersey (NJ) are primarily responsible for the presence of radioactivity in private well drinking water and thus, many of the estimated one million private well users in NJ may be at-risk of water contamination from naturally occurring radionuclides. Neighbor-based private well outreach methodology was utilized to identify high risk wells in both northern and southern NJ regions and offer free private well testing for radionuclides. Previously tested wells with gross alpha exceeding or equal to 3.7 becquerels per liter (Bq L-1; 100 pCi/L) were selected (n = 49) to identify neighbors (n = 406) within 152.4 m (500 feet). Invitation letters were mailed to selected neighbors and some of the previously tested high wells (n = 12) offering free water sampling for the following parameters: gross alpha (48-hour rapid test), combined radium-226 and radium-228 (Ra-226 + Ra-228), uranium-238 (U-238), radon-222 (Rn-222) and iron. Overall, 70 neighbors and 5 high PWTA wells participated in this free water testing opportunity. For neighboring wells, gross alpha results revealed 47 (67.1%) wells exceeding the gross alpha MCL of 0.555 Bq L-1 (15 pCi/L) mainly due to radium activity in the raw/untreated water. Of those with water treatment (n = 62), 12 (19.4%) treated water samples exceeded the gross alpha MCL. Targeting neighbors of known highly radioactive wells for private well testing is an effective public health outreach method and can also provide useful insight of regional contaminant variations.
Collapse
Affiliation(s)
- Rebecca I Schwartz
- Environmental and Occupational Health Surveillance Program, New Jersey Department of Health, PO Box 369, Trenton, NJ 08625, USA
| | - Jessie A Gleason
- Environmental and Occupational Health Surveillance Program, New Jersey Department of Health, PO Box 369, Trenton, NJ 08625, USA.
| | - Heidi S O'Neill
- Division of Science and Research, New Jersey Department of Environmental Protection, PO Box 420, Trenton, NJ 08625, USA
| | - Nicholas A Procopio
- Division of Science and Research, New Jersey Department of Environmental Protection, PO Box 420, Trenton, NJ 08625, USA
| | - Steven E Spayd
- New Jersey Geological and Water Survey, New Jersey Department of Environmental Protection, 29 Arctic Parkway, Ewing, NJ 08625, USA; Diagnosis Water, LLC, 411 Doylestown Road - Unit 905, Montgomeryville, PA 18936, USA
| |
Collapse
|