1
|
Qi H, Tian D, Luan F, Yang R, Zeng N. Pathophysiological changes of muscle after ischemic stroke: a secondary consequence of stroke injury. Neural Regen Res 2024; 19:737-746. [PMID: 37843207 PMCID: PMC10664100 DOI: 10.4103/1673-5374.382221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period, and that the latter has a greater impact on the long-term prognosis of the patient. However, current stroke studies have typically focused only on lesions in the central nervous system, ignoring secondary damage caused by this disease. Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system. Further, the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial, leading scholars to explore more pragmatic intervention strategies. As treatment measures targeting limb symptoms can greatly improve a patient's quality of life, they have become a critical intervention strategy. As the most vital component of the limbs, skeletal muscles have become potential points of concern. Despite this, to the best of our knowledge, there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle. The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy, inflammation, neuroregeneration, mitochondrial changes, and nutritional dysregulation in stroke survivors. In addition, the challenges, as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.
Collapse
Affiliation(s)
- Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Cullins MJ, Russell JA, Booth ZE, Connor NP. Central activation deficits contribute to post stroke lingual weakness in a rat model. J Appl Physiol (1985) 2021; 130:964-975. [PMID: 33600285 DOI: 10.1152/japplphysiol.00533.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lingual weakness frequently occurs after stroke and is associated with deficits in speaking and swallowing. Chronic weakness after stroke has been attributed to both impaired central activation of target muscles and reduced force-generating capacity within muscles. How these factors contribute to lingual weakness is not known. We hypothesized that lingual weakness due to middle cerebral artery occlusion (MCAO) would manifest as reduced muscle force capacity and reduced muscle activation. Rats were randomized into MCAO or sham surgery groups. Maximum volitional tongue forces were quantified 8 wk after surgery. Hypoglossal nerve stimulation was used to assess maximum stimulated force, muscle twitch properties, and force-frequency response. The central activation ratio was determined by maximum volitional/maximum stimulated force. Genioglossus muscle fiber type properties and neuromuscular junction innervation were assessed. Maximum volitional force and the central activation ratio were significantly reduced with MCAO. Maximum stimulated force was not significantly different. No significant differences were found for muscle twitch properties, unilateral contractile properties, muscle fiber type percentages, or fiber size. However, the twitch/tetanus ratio was significantly increased in the MCAO group relative to sham. A small but significant increase in denervated neuromuscular junctions (NMJs) and fiber-type grouping occurred in the contralesional genioglossus. Results suggest that the primary cause of chronic lingual weakness after stroke is impaired muscle activation rather than a deficit of force-generating capacity in lingual muscles. Increased fiber type grouping and denervated NMJs in the contralesional genioglossus suggest that partial reinnervation of muscle fibers may have preserved force-generating capacity, but not optimal activation patterns.NEW & NOTEWORTHY Despite significant reductions in maximum volitional forces, the intrinsic force-generating capacity of the protrusive lingual muscles was not reduced with unilateral cerebral ischemia. Small yet significant increases in denervated NMJs and fiber-type grouping of the contralesional genioglossus suggest that the muscle underwent denervation and reinnervation. Together these results suggest that spontaneous neuromuscular plasticity was sufficient to prevent atrophy, yet central activation deficits remain and contribute to chronic lingual weakness after stroke.
Collapse
Affiliation(s)
- Miranda J Cullins
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| | - John A Russell
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| | - Zoe E Booth
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nadine P Connor
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|