1
|
Wang X, Ge L, Hu H, Yan L, Li L. Effects of Non-Invasive Brain Stimulation on Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sci 2022; 12:brainsci12070836. [PMID: 35884643 PMCID: PMC9312973 DOI: 10.3390/brainsci12070836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
In recent years, the potential of non-invasive brain stimulation (NIBS) for the therapeutic effect of post-stroke spasticity has been explored. There are various NIBS methods depending on the stimulation modality, site and parameters. The purpose of this study is to evaluate the efficacy of NIBS on spasticity in patients after stroke. This systematic review and meta-analysis was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. PUBMED (MEDLINE), Web of Science, Cochrane Library and Excerpta Medica Database (EMBASE) were searched for all randomized controlled trials (RCTs) published before December 2021. Two independent researchers screened relevant articles and extracted data. This meta-analysis included 14 articles, and all included articles included 18 RCT datasets. The results showed that repetitive transcranial magnetic stimulation (rTMS) (MD = −0.40, [95% CI]: −0.56 to −0.25, p < 0.01) had a significant effect on improving spasticity, in which low-frequency rTMS (LF-rTMS) (MD = −0.51, [95% CI]: −0.78 to −0.24, p < 0.01) and stimulation of the unaffected hemisphere (MD = −0.58, [95% CI]: −0.80 to −0.36, p < 0.01) were beneficial on Modified Ashworth Scale (MAS) in patients with post-stroke spasticity. Transcranial direct current stimulation (tDCS) (MD = −0.65, [95% CI]: −1.07 to −0.22, p < 0.01) also had a significant impact on post-stroke rehabilitation, with anodal stimulation (MD = −0.74, [95% CI]: −1.35 to −0.13, p < 0.05) being more effective in improving spasticity in patients. This meta-analysis revealed moderate evidence that NIBS reduces spasticity after stroke and may promote recovery in stroke survivors. Future studies investigating the mechanisms of NIBS in addressing spasticity are warranted to further support the clinical application of NIBS in post-stroke spasticity.
Collapse
Affiliation(s)
- Xiaohan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
| | - Le Ge
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
| | - Li Yan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
- Correspondence: (L.Y.); (L.L.); Tel.: +86-186-2939-5063 (L.Y.); +86-135-6041-5367 (L.L.)
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China; (X.W.); (H.H.)
- Correspondence: (L.Y.); (L.L.); Tel.: +86-186-2939-5063 (L.Y.); +86-135-6041-5367 (L.L.)
| |
Collapse
|
2
|
Bai Z, Zhang J, Fong KNK. Effects of transcranial magnetic stimulation in modulating cortical excitability in patients with stroke: a systematic review and meta-analysis. J Neuroeng Rehabil 2022; 19:24. [PMID: 35193624 PMCID: PMC8862292 DOI: 10.1186/s12984-022-00999-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Background Transcranial magnetic stimulation (TMS) has attracted plenty of attention as it has been proved to be effective in facilitating motor recovery in patients with stroke. The aim of this study was to systematically review the effects of repetitive TMS (rTMS) and theta burst stimulation (TBS) protocols in modulating cortical excitability after stroke. Methods A literature search was carried out using PubMed, Medline, EMBASE, CINAHL, and PEDro, to identify studies that investigated the effects of four rTMS protocols—low and high frequency rTMS, intermittent and continuous TBS, on TMS measures of cortical excitability in stroke. A random-effects model was used for all meta-analyses. Results Sixty-one studies were included in the current review. Low frequency rTMS was effective in decreasing individuals’ resting motor threshold and increasing the motor-evoked potential of the non-stimulated M1 (affected M1), while opposite effects occurred in the stimulated M1 (unaffected M1). High frequency rTMS enhanced the cortical excitability of the affected M1 alone. Intermittent TBS also showed superior effects in rebalancing bilateral excitability through increasing and decreasing excitability within the affected and unaffected M1, respectively. Due to the limited number of studies found, the effects of continuous TBS remained inconclusive. Motor impairment was significantly correlated with various forms of TMS measures. Conclusions Except for continuous TBS, it is evident that these protocols are effective in modulating cortical excitability in stroke. Current evidence does support the effects of inhibitory stimulation in enhancing the cortical excitability of the affected M1. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-022-00999-4.
Collapse
Affiliation(s)
- Zhongfei Bai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.,Department of Occupational Therapy, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Shanghai, China.,Department of Rehabilitation Sciences, Tongji University School of Medicine, Shanghai, China
| | - Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
3
|
Zhang J, Wang M, Wei B, Shi J, Yu T. Research Progress in the Study of Startle Reflex to Disease States. Neuropsychiatr Dis Treat 2022; 18:427-435. [PMID: 35237036 PMCID: PMC8884703 DOI: 10.2147/ndt.s351667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/06/2022] [Indexed: 11/23/2022] Open
Abstract
The startle reflex is considered a primitive physiological reflex, a defense response that occurs in the organism when the body feels sudden danger and uneasiness, characterized by habituation and sensitization effects, and studies on the startle reflex often deal with pre-pulse inhibition (PPI) and sensorimotor gating. Under physiological conditions, the startle reflex is stable at a certain level, and when the organism is in a pathological state, such as stroke, spinal cord injury, schizophrenia, and other diseases, the reflex undergoes a series of changes, making it closely related to the progress of disease. This paper summarizes the startle reflex in physiological and pathological states by reviewing the databases of PubMed, Web of Science, Cochrane Library, EMBASE, China Biology Medicine, China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodical, Wanfang Data, and identifies and analyzes the startle reflex and excessive startle reaction disorder.
Collapse
Affiliation(s)
- Junfeng Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300380, People's Republic of China
| | - Meng Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| | - Baoyu Wei
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| | - Tao Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, People's Republic of China
| |
Collapse
|
4
|
Startling Acoustic Stimulation Has Task-Specific Effects on Intracortical Facilitation and Inhibition at Rest and During Visually Guided Isometric Elbow Flexion in Healthy Individuals. Motor Control 2022; 27:96-111. [DOI: 10.1123/mc.2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022]
Abstract
Startling acoustic stimulation (SAS) causes a transient effect on the primary motor cortex (M1) nonreflexively. It reduces the cortical excitability at rest, but not during voluntary contraction. However, the effect of SAS on intracortical activity is not clear. The purpose of this study was to investigate the SAS effect on short-interval intracortical inhibition and intracortical facilitation using transcranial magnetic stimulation (TMS). Eleven healthy individuals performed isometric elbow flexion at 10% of maximum voluntary contraction on the dominant side with a real-time visual target (i.e., M1 preactivation) or at rest. TMS was delivered to the M1 ipsilateral to elbow flexion without or with SAS delivered 90 ms prior to TMS. There were three TMS delivery conditions: (a) single pulse, (b) short-interval intracortical inhibition, and (c) intracortical facilitation. TMS-induced motor-evoked potential (MEP) was compared between predetermined TMS and SAS conditions at rest and during ipsilateral voluntary contraction. We confirmed that SAS decreased the MEP amplitude at rest, but not during M1 preactivation. SAS caused task-specific effects on intracortical excitability. Specifically, SAS increased intracortical facilitation at rest and during voluntary contraction. However, SAS decreased short-interval intracortical inhibition only during M1 preactivation. Collectively, our results suggest that SAS transiently influences the motor cortex excitability, possibly via its activation of higher centers, to achieve a visually guided goal-directed task.
Collapse
|
5
|
Mattos DJS, Rutlin J, Hong X, Zinn K, Shimony JS, Carter AR. White matter integrity of contralesional and transcallosal tracts may predict response to upper limb task-specific training in chronic stroke. NEUROIMAGE-CLINICAL 2021; 31:102710. [PMID: 34126348 PMCID: PMC8209270 DOI: 10.1016/j.nicl.2021.102710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Increase in upper limb function post task specific training in chronic stroke. Motor improvements were not accompanied by changes in white matter integrity. Integrity in contralesional fibers predicted larger motor recovery in Responders. Non-responders had more severe damage of transcallosal fibers than Responders.
Objective To investigate white matter (WM) plasticity induced by intensive upper limb (UL) task specific training (TST) in chronic stroke. Methods Diffusion tensor imaging data and UL function measured by the Action Research Arm Test (ARAT) were collected in 30 individuals with chronic stroke prior to and after intensive TST. ANOVAs tested the effects of training on the entire sample and on the Responders [ΔARAT ≥ 5.8, N = 13] and Non-Responders [ΔARAT < 5.8, N = 17] groups. Baseline fractional anisotropy (FA) values were correlated with ARATpost TST controlling for baseline ARAT and age to identify voxels predictive of response to TST. Results. While ARAT scores increased following training (p < 0.0001), FA changes within major WM tracts were not significant at p < 0.05. In the Responder group, larger baseline FA of both contralesional (CL) and transcallosal tracts predicted larger ARAT scores post-TST. Subcortical lesions and more severe damage to transcallosal tracts were more pronounced in the Non-Responder than in the Responder group. Conclusions The motor improvements post-TST in the Responder group may reflect the engagement of interhemispheric processes not available to the Non-Responder group. Future studies should clarify differences in the role of CL and transcallosal pathways as biomarkers of recovery in response to training for individuals with cortical and subcortical stroke. This knowledge may help to identify sources of heterogeneity in stroke recovery, which is necessary for the development of customized rehabilitation interventions.
Collapse
Affiliation(s)
- Daniela J S Mattos
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Xin Hong
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Kristina Zinn
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Alexandre R Carter
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110 USA.
| |
Collapse
|
6
|
Li S, Chen YT, Francisco GE, Zhou P, Rymer WZ. A Unifying Pathophysiological Account for Post-stroke Spasticity and Disordered Motor Control. Front Neurol 2019; 10:468. [PMID: 31133971 PMCID: PMC6524557 DOI: 10.3389/fneur.2019.00468] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
Cortical and subcortical plastic reorganization occurs in the course of motor recovery after stroke. It is largely accepted that plasticity of ipsilesional motor cortex primarily contributes to recovery of motor function, while the contributions of contralesional motor cortex are not completely understood. As a result of damages to motor cortex and its descending pathways and subsequent unmasking of inhibition, there is evidence of upregulation of reticulospinal tract (RST) excitability in the contralesional side. Both animal studies and human studies with stroke survivors suggest and support the role of RST hyperexcitability in post-stroke spasticity. Findings from animal studies demonstrate the compensatory role of RST hyperexcitability in recovery of motor function. In contrast, RST hyperexcitability appears to be related more to abnormal motor synergy and disordered motor control in stroke survivors. It does not contribute to recovery of normal motor function. Recent animal studies highlight laterality dominance of corticoreticular projections. In particular, there exists upregulation of ipsilateral corticoreticular projections from contralesional premotor cortex (PM) and supplementary motor area (SMA) to medial reticular nuclei. We revisit and revise the previous theoretical framework and propose a unifying account. This account highlights the importance of ipsilateral PM/SMA-cortico-reticulospinal tract hyperexcitability from the contralesional motor cortex as a result of disinhibition after stroke. This account provides a pathophysiological basis for post-stroke spasticity and related movement impairments, such as abnormal motor synergy and disordered motor control. However, further research is needed to examine this pathway in stroke survivors to better understand its potential roles, especially in muscle strength and motor recovery. This account could provide a pathophysiological target for developing neuromodulatory interventions to manage spasticity and thus possibly to facilitate motor recovery.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Gerard E. Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | | |
Collapse
|