1
|
Kuchta R, Heim C, Herrmann A, Maiwald S, Ng YLD, Sosič I, Keuler T, Krönke J, Gütschow M, Hartmann MD, Steinebach C. Accessing three-branched high-affinity cereblon ligands for molecular glue and protein degrader design. RSC Chem Biol 2023; 4:229-234. [PMID: 36908700 PMCID: PMC9994103 DOI: 10.1039/d2cb00223j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
The Petasis borono-Mannich reaction was employed for an alternative entry towards three-branched cereblon ligands. Such compounds are capabable of making multiple interactions with the protein surface and possess a suitable linker exit vector. The high-affinity ligands were used to assemble prototypic new molecular glues and proteolysis targeting chimeras (PROTACs) targeting BRD4 for degradation. Our results highlight the importance of multicomponent reactions (MCRs) in drug discovery and add new insights into the rapidly growing field of protein degraders.
Collapse
Affiliation(s)
- Robert Kuchta
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 Bonn D-53121 Germany
| | - Christopher Heim
- Max Planck Institute for Biology Tübingen Tübingen D-72076 Germany .,Interfaculty Institute of Biochemistry, University of Tübingen Tübingen 72076 Germany
| | | | - Samuel Maiwald
- Max Planck Institute for Biology Tübingen Tübingen D-72076 Germany
| | - Yuen Lam Dora Ng
- Charité, Department of Internal Medicine with Focus on Hematology, Oncology and Tumor Immunology Berlin D-12203 Germany
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana Ljubljana SI-1000 Slovenia
| | - Tim Keuler
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 Bonn D-53121 Germany
| | - Jan Krönke
- Charité, Department of Internal Medicine with Focus on Hematology, Oncology and Tumor Immunology Berlin D-12203 Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 Bonn D-53121 Germany
| | - Marcus D Hartmann
- Max Planck Institute for Biology Tübingen Tübingen D-72076 Germany .,Interfaculty Institute of Biochemistry, University of Tübingen Tübingen 72076 Germany
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 Bonn D-53121 Germany
| |
Collapse
|
2
|
Liu L, Sun R, Liu H, Ren C, Zhou Y, Qiu X, Kong Y, Jiang B, Yang X. Design, synthesis and biological evaluation of novel quinazolinone derivatives as CRBN E3 ligase modulators. Eur J Med Chem 2023; 247:115016. [PMID: 36577219 DOI: 10.1016/j.ejmech.2022.115016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
CRBN E3 ligase modulators, also anteriorly called immunomodulatory drugs (IMiDs), exhibit excellent pharmacological activity by degrading cereblon (CRBN) associated multiple substrates and have become an important field for drug development. These modulators such as Thalidomide, Lenalidomide and CC-122 abduct CRBN to adhere to IKZF1/3 and other neosubstrates, and then induce the degradation of these substrates, thus retarding the further development of related diseases. Herein, we reported a series of CC-122 derivatives that inhibit the proliferation of hematological malignant tumor cell lines. Studies further confirmed that several derivatives which exhibit strong anti-proliferation effect induce the significant degradation of IKZF1/3. In addition, we found that the best compound 14 (SIAIS355035) exhibits better degradation activity and better anti-proliferation activities than CC-122, especially in diffuse large B lymphoma cell lines. Moreover, the PK properties of compound 14 are pretty promising with excellent oral bioavailability. These results clarified the SAR of CC-122 derivatives preliminarily and suggested that compound 14 has great value for further studies as an ideal novel CRBN E3 ligase modulation drug.
Collapse
Affiliation(s)
- Linyi Liu
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| | - Renhong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Building 20, Lane 218, Haiji Road 6, Pudong District, Shanghai, 201306, China
| | - Haixia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chaowei Ren
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Yuedong Zhou
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Building 20, Lane 218, Haiji Road 6, Pudong District, Shanghai, 201306, China
| | - Xing Qiu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Ying Kong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China; Gluetacs Therapeutics (Shanghai) Co., Ltd., Building 20, Lane 218, Haiji Road 6, Pudong District, Shanghai, 201306, China.
| |
Collapse
|
3
|
Costa BA, Mouhieddine TH, Richter J. What's Old is New: The Past, Present and Future Role of Thalidomide in the Modern-Day Management of Multiple Myeloma. Target Oncol 2022; 17:383-405. [PMID: 35771402 DOI: 10.1007/s11523-022-00897-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
Immunomodulatory drugs (IMiDs) have become an integral part of therapy for both newly diagnosed and relapsed/refractory multiple myeloma (RRMM). IMiDs bind to cereblon, leading to the degradation of proteins involved in B-cell survival and proliferation. Thalidomide, a first-generation IMiD, has little to no myelosuppressive potential, negligible renal clearance, and long-proven anti-myeloma activity. However, thalidomide's adverse effects (e.g., somnolence, constipation, and peripheral neuropathy) and the advent of more potent therapeutic options has led to the drug being less frequently used in many countries, including the US and Canada. Newer-generation IMiDs, such as lenalidomide and pomalidomide, are utilized far more frequently. In numerous previous trials, salvage therapy with thalidomide (50-200 mg/day) plus corticosteroids (with or without selected cytotoxic or targeted agents) has been shown to be effective and well-tolerated in the RRMM setting. Hence, thalidomide-based regimens remain important alternatives for heavily pretreated patients, especially for those who have no access to novel therapies and/or are not eligible for their use (due to renal failure, high-grade myelosuppression, or significant comorbidities). Ongoing and future trials may provide further insights into the current role of thalidomide, especially by comparing thalidomide-containing regimens with protocols based on newer-generation IMiDs and by investigating thalidomide's association with novel therapies (e.g., antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor T cells).
Collapse
Affiliation(s)
- Bruno Almeida Costa
- Department of Medicine, Mount Sinai Morningside and West, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tarek H Mouhieddine
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA
| | - Joshua Richter
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA.
| |
Collapse
|
4
|
You W, Pang J. Pharmacokinetics, bioavailability and metabolism of CC-92480 in rat by liquid chromatography combined with electrospray ionization tandem mass spectrometry. Biomed Chromatogr 2021; 35:e5139. [PMID: 33830533 DOI: 10.1002/bmc.5139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 11/11/2022]
Abstract
CC-92480 is a cereblon E3 ubiquitin ligase modulating drug with potent antimyeloma activity. In this study, we developed a sensitive UHPLC-MS/MS method for the determination of CC-92480 in rat plasma. The plasma samples were prepared with acetonitrile and the samples were then separated on an Acquity BEH C18 column (2.1 × 50 mm, 1.7 μm) with water containing 0.1% formic acid (A) and acetonitrile (B) as mobile phase. The MS detection was performed using multiple reaction monitoring mode with precursor-to-product ion transitions at m/z 568.3 > 363.1 for CC-92480 and m/z 441.2 > 138.1 for ibrutinib (internal standard). The assay showed excellent linearity over the concentration range of 1-1,000 ng/ml, with correlation coefficient >0.995. The method was further validated for selectivity, precision, accuracy, recovery and stability according to the US Food and Drug Administration's guideline. The validated method was successfully applied to the pharmacokinetic and bioavailability studies of CC-92480 in rat plasma. Based on the pharmacokinetic results, the oral bioavailability of CC-92480 was >63%. In addition, the circulating metabolites of CC-92480 were detected by UHPLC-HRMS and the structures were proposed according to their accurate masses and fragment ions. The proposed metabolic pathways of CC-92480 were oxidative dealkylation and amide hydrolysis.
Collapse
Affiliation(s)
- Weili You
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Jie Pang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| |
Collapse
|
5
|
Schulze AB, Evers G, Kerkhoff A, Mohr M, Schliemann C, Berdel WE, Schmidt LH. Future Options of Molecular-Targeted Therapy in Small Cell Lung Cancer. Cancers (Basel) 2019; 11:E690. [PMID: 31108964 PMCID: PMC6562929 DOI: 10.3390/cancers11050690] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. With a focus on histology, there are two major subtypes: Non-small cell lung cancer (NSCLC) (the more frequent subtype), and small cell lung cancer (SCLC) (the more aggressive one). Even though SCLC, in general, is a chemosensitive malignancy, relapses following induction therapy are frequent. The standard of care treatment of SCLC consists of platinum-based chemotherapy in combination with etoposide that is subsequently enhanced by PD-L1-inhibiting atezolizumab in the extensive-stage disease, as the addition of immune-checkpoint inhibition yielded improved overall survival. Although there are promising molecular pathways with potential therapeutic impacts, targeted therapies are still not an integral part of routine treatment. Against this background, we evaluated current literature for potential new molecular candidates such as surface markers (e.g., DLL3, TROP-2 or CD56), apoptotic factors (e.g., BCL-2, BET), genetic alterations (e.g., CREBBP, NOTCH or PTEN) or vascular markers (e.g., VEGF, FGFR1 or CD13). Apart from these factors, the application of so-called 'poly-(ADP)-ribose polymerases' (PARP) inhibitors can influence tumor repair mechanisms and thus offer new perspectives for future treatment. Another promising therapeutic concept is the inhibition of 'enhancer of zeste homolog 2' (EZH2) in the loss of function of tumor suppressors or amplification of (proto-) oncogenes. Considering the poor prognosis of SCLC patients, new molecular pathways require further investigation to augment our therapeutic armamentarium in the future.
Collapse
Affiliation(s)
- Arik Bernard Schulze
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Georg Evers
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Andrea Kerkhoff
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Michael Mohr
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| | - Lars Henning Schmidt
- Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany.
| |
Collapse
|