1
|
Barzegari A, Salemi F, Kamyab A, Aratikatla A, Nejati N, Valizade M, Eltouny E, Ebrahimi A. The efficacy and applicability of chimeric antigen receptor (CAR) T cell-based regimens for primary bone tumors: A comprehensive review of current evidence. J Bone Oncol 2024; 48:100635. [PMID: 39381633 PMCID: PMC11460493 DOI: 10.1016/j.jbo.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Primary bone tumors (PBT), although rare, could pose significant mortality and morbidity risks due to their high incidence of lung metastasis. Survival rates of patients with PBTs may vary based on the tumor type, therapeutic interventions, and the time of diagnosis. Despite advances in the management of patients with these tumors over the past four decades, the survival rates seem not to have improved significantly, implicating the need for novel therapeutic interventions. Surgical resection with wide margins, radiotherapy, and systemic chemotherapy are the main lines of treatment for PBTs. Neoadjuvant and adjuvant chemotherapy, along with emerging immunotherapeutic approaches such as chimeric antigen receptor (CAR)-T cell therapy, have the potential to improve the treatment outcomes for patients with PBTs. CAR-T cell therapy has been introduced as an option in hematologic malignancies, with FDA approval for several CD19-targeting CAR-T cell products. This review aims to highlight the potential of immunotherapeutic strategies, specifically CAR T cell therapy, in managing PBTs.
Collapse
Affiliation(s)
| | - Fateme Salemi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Adarsh Aratikatla
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, County Dublin, Ireland
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Iran
| | - Mojgan Valizade
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehab Eltouny
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alireza Ebrahimi
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Kitamura W, Asada N, Ikegawa S, Fujiwara H, Kamoi C, Ennishi D, Nishimori H, Fujii K, Fujii N, Matsuoka KI, Maeda Y. Activated CD4 + T Cell Proportion in the Peripheral Blood Correlates with the Duration of Cytokine Release Syndrome and Predicts Clinical Outcome after Chimeric Antigen Receptor T Cell Therapy. Intern Med 2024; 63:1863-1872. [PMID: 38945932 PMCID: PMC11272506 DOI: 10.2169/internalmedicine.2556-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/16/2023] [Indexed: 07/02/2024] Open
Abstract
Objective Chimeric antigen receptor (CAR) T cell therapy is an emerging and effective therapy for relapsed or refractory diffuse large B cell lymphoma (R/R DLBCL). The characteristic toxicities of CAR T cell therapy include cytokine release syndrome (CRS) and prolonged cytopenia. We investigated the factors associated with these complications after CAR T cell therapy by analyzing lymphocyte subsets following CAR T cell infusion. Methods We retrospectively analyzed peripheral blood samples on days 7, 14, and 28 after tisagenlecleucel (tisa-cel) infusion by flow cytometry at our institution between June 2020 and September 2022. Patients Thirty-five patients with R/R DLBCL who received tisa-cel therapy were included. Results A flow cytometry-based analysis of blood samples from these patients revealed that the proportion of CD4+CD25+CD127+ T cells (hereafter referred to as "activated CD4+ T cells" ) among the total CD4+ T cells on day 7 after tisa-cel infusion correlated with the duration of CRS (r=0.79, p<0.01). In addition, a prognostic analysis of the overall survival (OS) using time-dependent receiver operating characteristic curves indicated a significantly more favorable OS and progression-free survival of patients with a proportion of activated CD4+ T cells among the total CD4+ T cells <0.73 (p=0.01, and p<0.01, respectively). Conclusion These results suggest that the proportion of activated CD4+ T cells on day 7 after tisa-cel infusion correlates with the CRS duration and predicts clinical outcomes after CAR T cell therapy. Further studies with a larger number of patients are required to validate these observations.
Collapse
MESH Headings
- Humans
- Male
- Female
- Cytokine Release Syndrome/blood
- Cytokine Release Syndrome/etiology
- Cytokine Release Syndrome/therapy
- Cytokine Release Syndrome/immunology
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Middle Aged
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/immunology
- Aged
- Retrospective Studies
- CD4-Positive T-Lymphocytes/immunology
- Adult
- Treatment Outcome
- Receptors, Chimeric Antigen/immunology
- Prognosis
- Receptors, Antigen, T-Cell
Collapse
Affiliation(s)
- Wataru Kitamura
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Shuntaro Ikegawa
- Department of Hematology and Oncology, Okayama University Hospital, Japan
- Division of Blood Transfusion, Okayama University Hospital, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Chihiro Kamoi
- Department of Hematology and Oncology, Okayama University Hospital, Japan
- Division of Blood Transfusion, Okayama University Hospital, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Japan
| | - Hisakazu Nishimori
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Keiko Fujii
- Division of Clinical Laboratory, Okayama University Hospital, Japan
| | - Nobuharu Fujii
- Division of Blood Transfusion, Okayama University Hospital, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| |
Collapse
|
3
|
Stock S, Klüver AK, Fertig L, Menkhoff VD, Subklewe M, Endres S, Kobold S. Mechanisms and strategies for safe chimeric antigen receptor T-cell activity control. Int J Cancer 2023; 153:1706-1725. [PMID: 37350095 DOI: 10.1002/ijc.34635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
The clinical application of chimeric antigen receptor (CAR) T-cell therapy has rapidly changed the treatment options for terminally ill patients with defined blood-borne cancer types. However, CAR T-cell therapy can lead to severe therapy-associated toxicities including CAR-related hematotoxicity, ON-target OFF-tumor toxicity, cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Just as CAR T-cell therapy has evolved regarding receptor design, gene transfer systems and production protocols, the management of side effects has also improved. However, because of measures taken to abrogate adverse events, CAR T-cell viability and persistence might be impaired before complete remission can be achieved. This has fueled efforts for the development of extrinsic and intrinsic strategies for better control of CAR T-cell activity. These approaches can mediate a reversible resting state or irreversible T-cell elimination, depending on the route chosen. Control can be passive or active. By combination of CAR T-cells with T-cell inhibiting compounds, pharmacologic control, mostly independent of the CAR construct design used, can be achieved. Other strategies involve the genetic modification of T-cells or further development of the CAR construct by integration of molecular ON/OFF switches such as suicide genes. Alternatively, CAR T-cell activity can be regulated intracellularly through a self-regulation function or extracellularly through titration of a CAR adaptor or of a priming small molecule. In this work, we review the current strategies and mechanisms to control activity of CAR T-cells reversibly or irreversibly for preventing and for managing therapy-associated toxicities.
Collapse
Affiliation(s)
- Sophia Stock
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Anna-Kristina Klüver
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Luisa Fertig
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Vivien D Menkhoff
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Marion Subklewe
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
4
|
Zhou L, Fu W, Wu S, Xu K, Qiu L, Xu Y, Yan X, Zhang Q, Zhang M, Wang L, Hong R, Chang AH, Yu J, Fu S, Kong D, Li L, Wang Y, Li Z, Jiang H, Huang J, Liu Z, Su N, Wei G, Hu Y, Huang H. Derivation and validation of a novel score for early prediction of severe CRS after CAR-T therapy in haematological malignancy patients: A multi-centre study. Br J Haematol 2023. [PMID: 37192741 DOI: 10.1111/bjh.18873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is highly effective in inducing complete remission in haematological malignancies. Severe cytokine release syndrome (CRS) is the most significant and life-threatening adverse effect of this therapy. This multi-centre study was conducted at six hospitals in China. The training cohort included 87 patients with multiple myeloma (MM), an external validation cohort of 59 patients with MM and another external validation cohort of 68 patients with acute lymphoblastic leukaemia (ALL) or non-Hodgkin lymphoma (NHL). The levels of 45 cytokines on days 1-2 after CAR-T cell infusion and clinical characteristics of patients were used to develop the nomogram. A nomogram was developed, including CX3CL1, GZMB, IL4, IL6 and PDGFAA. Based on the training cohort, the nomogram had a bias-corrected AUC of 0.876 (95% CI = 0.871-0.882) for predicting severe CRS. The AUC was stable in both external validation cohorts (MM, AUC = 0.907, 95% CI = 0.899-0.916; ALL/NHL, AUC = 0.908, 95% CI = 0.903-0.913). The calibration plots (apparent and bias-corrected) overlapped with the ideal line in all cohorts. We developed a nomogram that can predict which patients are likely to develop severe CRS before they become critically ill, improving our understanding of CRS biology, and may guide future cytokine-directed therapies.
Collapse
Affiliation(s)
- Linghui Zhou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Weijun Fu
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shenghao Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hematology, The Dingli Clinical College of Wenzhou Medical University (The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital), Zhejiang, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lugui Qiu
- National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Blood Diseases & Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yang Xu
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojing Yan
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qing Zhang
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Alex H Chang
- Shanghai YaKe Biotechnology Ltd, Shanghai, China
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Shan Fu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Delin Kong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lu Li
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Huawei Jiang
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Huang
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhi Liu
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Na Su
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| |
Collapse
|
5
|
Kitamura W, Asada N, Naoi Y, Abe M, Fujiwara H, Ennishi D, Nishimori H, Fujii K, Fujii N, Matsuoka KI, Yoshino T, Maeda Y. Bone marrow microenvironment disruption and sustained inflammation with prolonged haematologic toxicity after CAR T-cell therapy. Br J Haematol 2023. [PMID: 36890790 DOI: 10.1111/bjh.18747] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023]
Abstract
Mechanisms of prolonged cytopenia (PC) after chimeric antigen receptor (CAR) T-cell therapy, an emerging therapy for relapsed or refractory diffuse large B-cell lymphoma, remain elusive. Haematopoiesis is tightly regulated by the bone marrow (BM) microenvironment, called the 'niche'. To investigate whether alterations in the BM niche cells are associated with PC, we analysed CD271+ stromal cells in BM biopsy specimens and the cytokine profiles of the BM and serum obtained before and on day 28 after CAR T-cell infusion. Imaging analyses of the BM biopsy specimens revealed that CD271+ niche cells were severely impaired after CAR T-cell infusion in patients with PC. Cytokine analyses after CAR T-cell infusion showed that CXC chemokine ligand 12 and stem cell factor, niche factors essential for haematopoietic recovery, were significantly decreased in the BM of patients with PC, suggesting reduced niche cell function. The levels of inflammation-related cytokines on day 28 after CAR T-cell infusion were consistently high in the BM of patients with PC. Thus, we demonstrate for the first time that BM niche disruption and sustained elevation of inflammation-related cytokines in the BM following CAR T-cell infusion are associated with subsequent PC.
Collapse
Affiliation(s)
- Wataru Kitamura
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Yusuke Naoi
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masaya Abe
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Hisakazu Nishimori
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Keiko Fujii
- Division of Clinical Laboratory, Okayama University Hospital, Okayama, Japan
| | - Nobuharu Fujii
- Division of Blood Transfusion, Okayama University Hospital, Okayama, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Tadashi Yoshino
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
6
|
Nie EH, Ahmadian SS, Bharadwaj SN, Acosta-Alvarez L, Threlkeld ZD, Frank MJ, Miklos DB, Monje M, Scott BJ, Vogel H. Multifocal demyelinating leukoencephalopathy and oligodendroglial lineage cell loss with immune effector cell-associated neurotoxicity syndrome (ICANS) following CD19 CAR T-cell therapy for mantle cell lymphoma. J Neuropathol Exp Neurol 2023; 82:160-168. [PMID: 36592076 PMCID: PMC10655196 DOI: 10.1093/jnen/nlac121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Immune effector cell-associated neurotoxicity syndrome (ICANS) is a prevalent condition seen after treatment with chimeric antigen receptor T-cell (CAR T) therapy and other cancer cell therapies. The underlying pathophysiology and neuropathology of the clinical syndrome are incompletely understood due to the limited availability of brain tissue evaluation from patient cases, and a lack of high-fidelity preclinical animal models for translational research. Here, we present the cellular and tissue neuropathologic analysis of a patient who experienced grade 4 ICANS after treatment with anti-CD19 CAR T therapy for mantle cell lymphoma. Our pathologic evaluation reveals a pattern of multifocal demyelinating leukoencephalopathy associated with a clinical course of severe ICANS. A focused analysis of glial subtypes further suggests region-specific oligodendrocyte lineage cell loss as a potential cellular and pathophysiologic correlate in severe ICANS. We propose a framework for the continuum of neuropathologic changes thus far reported across ICANS cases. Future elucidation of the mechanistic processes underlying ICANS will be critical in minimizing neurotoxicity following CAR T-cell and related immunotherapy treatments across oncologic and autoimmune diseases.
Collapse
Affiliation(s)
- Esther H Nie
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Saman S Ahmadian
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Sushma N Bharadwaj
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Division of Hematology/Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Lehi Acosta-Alvarez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Zachary D Threlkeld
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew J Frank
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Division of Hematology/Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - David B Miklos
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Division of Hematology/Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Brian J Scott
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Chen X, Li P, Tian B, Kang X. Serious adverse events and coping strategies of CAR-T cells in the treatment of malignant tumors. Front Immunol 2022; 13:1079181. [PMID: 36569917 PMCID: PMC9772271 DOI: 10.3389/fimmu.2022.1079181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells technology has been successfully used in the treatment of B cell-derived hematological tumors and multiple myeloma. CAR-T cells are also being studied in a variety of solid tumors. Current clinical reports on CAR-T cells in the treatment of malignant tumors are abundant. The tumor-killing activity of CAR-T cells and the unique adverse effects of CAR-T cells have been confirmed by many studies. There is evidence that serious adverse events can be life-threatening. CAR-T cells therapy is increasingly used in clinical settings, so it is important to pay attention to its serious adverse events. In this review, we summarized the serious adverse events of CAR-T cells in the treatment of malignant tumors by reading literature and searching relevant clinical studies, and discussed the management and treatment of serious adverse events in an effort to provide theoretical support for clinicians who deal with such patients.
Collapse
|
8
|
Obaisi O, Fontillas RC, Patel K, Ngo-Huang A. Rehabilitation Needs for Patients Undergoing CAR T-Cell Therapy. Curr Oncol Rep 2022; 24:741-749. [PMID: 35267151 PMCID: PMC8907385 DOI: 10.1007/s11912-022-01240-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Chimeric antigen receptor (CAR) T-cell therapy is a relatively new, innovative treatment strategy to manage refractory hematological cancers, including some types of leukemia, lymphoma, and multiple myeloma. This article outlines the CAR T-cell therapy process, toxicity, and complications, along with an overview of the currently known short- and long-term physical and functional sequelae that will be helpful for general or oncology rehabilitation specialists caring for these patients. RECENT FINDINGS There is a dearth of literature on the topic of rehabilitation of patients receiving CAR T-cell therapy. Rehabilitation practices can be extrapolated from the limited functional information on patients who have completed treatment for lymphoma and multiple myeloma. Patients present with cognitive impairment, muscle weakness, reduced exercise capacity, neuropathy, and cancer-related fatigue. Physical activity and rehabilitation programs may be beneficial to address fatigue, psychological symptoms, and quality of life. There is limited rehabilitation research in patients receiving CAR T-cell therapy. These patients may present with general deconditioning and neurological complications which translate to neuromuscular and cognitive impairment that benefit from multidisciplinary rehabilitation intervention prior to, during, and after treatment. Studies measuring the impairments at baseline and evaluation of the impact of rehabilitation practices are much needed to support this.
Collapse
Affiliation(s)
- Obada Obaisi
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Rhodora C Fontillas
- Department of Rehabilitation Services, The University of Texas MD Anderson Cancer Center, Unit 0322, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Krina Patel
- Department of Lymphoma-Myeloma, The University of Texas MD Anderson Cancer Center, Unit 0429, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - An Ngo-Huang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Unit 1414, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Xu N, Yang XF, Xue SL, Tan JW, Li MH, Ye J, Lou XY, Yu Z, Kang LQ, Yan ZQ, Yu L, Chen SN, Wang YT. Ruxolitinib reduces severe CRS response by suspending CAR-T cell function instead of damaging CAR-T cells. Biochem Biophys Res Commun 2022; 595:54-61. [PMID: 35101664 DOI: 10.1016/j.bbrc.2022.01.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
Abstract
The therapeutic effect of CAR-T is often accompanied by sCRS, which is the main obstacle to the promotion of CAR-T therapy. The JAK1/2 inhibitor ruxolitinib has recently been confirmed as clinically effective in maintaining control over sCRS, however, its mechanism remains unclear. In this study, we firstly revealed that ruxolitinib significantly inhibited the proliferation of CAR-T cells without damaging viability, and induced an efficacy-favored differentiation phenotype. Second, ruxolitinib reduced the level of cytokine release not only from CAR-T cells, but also from other cells in the immune system. Third, the cytolytic activity of CAR-T cells was restored once the ruxolitinib was removed; however, the cytokines released from the CAR-T cells maintained an inhibited state to some degree. Finally, ruxolitinib significantly reduced the proliferation rate of CAR-T cells in vivo without affecting the therapeutic efficacy after withdrawal at the appropriate dose. We demonstrated pre-clinically that ruxolitinib interferes with both CAR-T cells and the other immune cells that play an important role in triggering sCRS reactions. This work provides useful and important scientific data for clinicians on the question of whether ruxolitinib has an effect on CAR-T cell function loss causing CAR-T treatment failure when applied in the treatment of sCRS, the answer to which is of great clinical significance.
Collapse
Affiliation(s)
- Nan Xu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiao-Fei Yang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jing-Wen Tan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Ming-Hao Li
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jing Ye
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai, China
| | - Xiao-Yan Lou
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai, China
| | - Zhou Yu
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai, China
| | - Li-Qing Kang
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai, China
| | - Zhi-Qiang Yan
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Lei Yu
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China; Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai, China
| | - Su-Ning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Yi-Ting Wang
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| |
Collapse
|
10
|
Gatto L, Franceschi E, Di Nunno V, Maggio I, Lodi R, Brandes AA. Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Rev Anticancer Ther 2021; 21:1333-1353. [PMID: 34734551 DOI: 10.1080/14737140.2021.1997599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The field of cancer immunotherapy has achieved great advancements through the application of genetically engineered T cells with chimeric antigen receptors (CAR), that have shown exciting success in eradicating hematologic malignancies and have proved to be safe with promising early signs of antitumoral activity in the treatment of glioblastoma (GBM). AREAS COVERED We discuss the use of CAR T cells in GBM, focusing on limitations and obstacles to advancement, mostly related to toxicities, hostile tumor microenvironment, limited CAR T cells infiltration and persistence, target antigen loss/heterogeneity and inadequate trafficking. Furthermore, we introduce the refined strategies aimed at strengthening CAR T activity and offer insights in to novel immunotherapeutic approaches, such as the potential use of CAR NK or CAR M to optimize anti-tumor effects for GBM management. EXPERT OPINION With the progressive wide use of CAR T cell therapy, significant challenges in treating solid tumors, including central nervous system (CNS) tumors, are emerging, highlighting early disease relapse and cancer cell resistance issues, owing to hostile immunosuppressive microenvironment and tumor antigen heterogeneity. In addition to CAR T cells, there is great interest in utilizing other types of CAR-based therapies, such as CAR natural killer (CAR NK) or CAR macrophages (CAR M) cells for CNS tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Enrico Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| | | | - Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Raffaele Lodi
- IrcssIstituto di Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| |
Collapse
|
11
|
Lipe DN, Shafer S. CAR-T and checkpoint inhibitors: toxicities and antidotes in the emergency department. Clin Toxicol (Phila) 2021; 59:376-385. [DOI: 10.1080/15563650.2021.1880008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Demis N. Lipe
- Department of Emergency Medicine, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Shafer
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Ghilardi G, Braendstrup P, Chong EA, Schuster SJ, Svoboda J, Ruella M. CAR-T TREK through the lymphoma universe, to boldly go where no other therapy has gone before. Br J Haematol 2020; 193:449-465. [PMID: 33222167 DOI: 10.1111/bjh.17191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
Chimeric antigen receptor (CAR) T cells (CART) therapies have changed and continue to change the treatment paradigms for B-cell malignancies because they can achieve durable complete remission in patients in whom multiple lines of treatment have failed. These unprecedented results have led to the widespread use of anti-CD19 CART therapy for patients with relapsed and refractory aggressive large B-cell lymphomas. While long-term follow-up data show that about one-third of patients achieve prolonged complete remission and are potentially cured, the majority of patients either do not respond to CD19 CART therapy or eventually relapse after CD19 CART therapy. These results are, on the one hand, driving intense research into identifying mechanisms of relapse and, on the other hand, inspiring the development of novel strategies to overcome resistance. This review summarizes current clinical outcomes of CART immunotherapy in B-cell non-Hodgkin lymphomas, describes the most up-to-date understanding of mechanisms of relapse and discusses novel strategies to address resistance to CART therapy. We are indeed at the beginning of a scientific trek to explore the mechanisms of resistance, seek out new, more effective treatment approaches based on these discoveries and to boldly go where no other therapy has gone before!
Collapse
Affiliation(s)
- Guido Ghilardi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Braendstrup
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Elise A Chong
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Schuster
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakub Svoboda
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Schubert ML, Schmitt M, Wang L, Ramos CA, Jordan K, Müller-Tidow C, Dreger P. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol 2020; 32:34-48. [PMID: 33098993 DOI: 10.1016/j.annonc.2020.10.478] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells directed against the B-cell marker CD19 are currently changing the landscape for treatment of patients with refractory and/or relapsed B-cell malignancies. Due to the nature of CAR T cells as living drugs, they display a unique toxicity profile. As CAR T-cell therapy is extending towards other diseases and being more broadly employed in hematology and oncology, optimal management strategies of side-effects associated with CAR T-cell therapy are of high relevance. Cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and cytopenias constitute challenges in the treatment of patients with CAR T cells. This review summarizes the current understanding of CAR T-cell toxicity and its management.
Collapse
Affiliation(s)
- M-L Schubert
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany.
| | - M Schmitt
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany; National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| | - L Wang
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - C A Ramos
- Center for Cell Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas, USA
| | - K Jordan
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - C Müller-Tidow
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany; National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| | - P Dreger
- Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany; National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
14
|
C-reactive protein and ferritin levels and length of intensive care unit stay in patients with B-cell lymphomas treated with axicabtagene ciloleucel. Hematol Oncol Stem Cell Ther 2020; 14:141-146. [PMID: 33069694 DOI: 10.1016/j.hemonc.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/20/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE/BACKGROUND Chimeric antigen receptor (CAR) T-cell is an effective therapy in relapsed/refractory large B-cell lymphomas that, due to its unique toxicities, often requires escalation of care to the intensive care unit (ICU) setting. C-reactive protein (CRP) and ferritin are serum inflammatory markers associated with onset and persistence of CAR T-cell-related toxicity. METHODS We retrospectively analyzed 34 patients treated with axicabtagene ciloleucel (axi-cel) who were divided into two groups: patients requiring admission to the ICU during initial hospitalization (n = 13, 38%) and those who did not (n = 21, 62%). Primary objective was to examine possible relationships between serum ferritin and/or CRP levels with the need for, and length of, ICU stay between these groups. RESULTS All 13 patients admitted to the ICU developed cytokine release syndrome (CRS) and 11 of them also developed neurotoxicity (NT). Of the 21 patients in the non-ICU group, 18 developed CRS and 5 patients developed NT. Grade of CRS and NT were higher in ICU versus non-ICU patients (p = .03 and .001, respectively). There was no correlation between CRP levels at time of ICU admission and length of ICU stay (correlation of 0.41, p = .17). Yet, there was an association between serum ferritin levels and length of ICU stay (R2 = 0.73) which did not reach statistical significance (correlation of 0.21, p = .49). CONCLUSION Notwithstanding the limitations of the small sample size, our study suggests that an elevated ferritin level at the time of escalation of medical care may be possibly indicative of anticipated prolonged ICU hospitalization in patients treated with axi-cel. A large multicenter study is certainly needed to confirm this observation.
Collapse
|
15
|
Stewart JH, Blazer DG, Calderon MJG, Carter TM, Eckhoff A, Al Efishat MA, Fernando DG, Foster JM, Hayes-Jordan A, Johnston FM, Lautz TB, Levine EA, Maduekwe UN, Mangieri CW, Moaven O, Mogal H, Shen P, Votanopoulos KI. The Evolving Management of Peritoneal Surface Malignancies. Curr Probl Surg 2020; 58:100860. [PMID: 33832580 DOI: 10.1016/j.cpsurg.2020.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dan G Blazer
- Division of Surgical Oncology, Duke University Medical Center, Durham, NC
| | | | | | | | | | | | - Jason M Foster
- Fred and Pamela Buffet Cancer Center, University of Nebraska, Omaha, NE
| | | | - Fabian M Johnston
- Complex General Surgical Oncology Program, Johns Hopkins University, Baltimore, MD
| | - Timothy B Lautz
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Ugwuji N Maduekwe
- Division of Surgical Oncology and Endocrine Surgery, University of North Carolina, Chapel Hill, NC
| | | | | | | | - Perry Shen
- Wake Forest University School of Medicine, Winston-Salem, NC
| | | |
Collapse
|