1
|
Zhao Y, Du J, Shen X. Targeting myeloid-derived suppressor cells in tumor immunotherapy: Current, future and beyond. Front Immunol 2023; 14:1157537. [PMID: 37006306 PMCID: PMC10063857 DOI: 10.3389/fimmu.2023.1157537] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the major negative regulators in tumor microenvironment (TME) due to their potent immunosuppressive capacity. MDSCs are the products of myeloid progenitor abnormal differentiation in bone marrow, which inhibits the immune response mediated by T cells, natural killer cells and dendritic cells; promotes the generation of regulatory T cells and tumor-associated macrophages; drives the immune escape; and finally leads to tumor progression and metastasis. In this review, we highlight key features of MDSCs biology in TME that are being explored as potential targets for tumor immunotherapy. We discuss the therapies and approaches that aim to reprogram TME from immunosuppressive to immunostimulatory circumstance, which prevents MDSC immunosuppression activity; promotes MDSC differentiation; and impacts MDSC recruitment and abundance in tumor site. We also summarize current advances in the identification of rational combinatorial strategies to improve clinical efficacy and outcomes of cancer patients, via deeply understanding and pursuing the mechanisms and characterization of MDSCs generation and suppression in TME.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Junfeng Du
- Department of General Surgery, The 7th Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Junfeng Du, ; Xiaofei Shen,
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- *Correspondence: Junfeng Du, ; Xiaofei Shen,
| |
Collapse
|
2
|
Gonzalez-Cortes JH, Martinez-Pacheco VA, Gonzalez-Cantu JE, Bilgic A, de Ribot FM, Sudhalkar A, Mohamed-Hamsho J, Kodjikian L, Mathis T. Current Treatments and Innovations in Diabetic Retinopathy and Diabetic Macular Edema. Pharmaceutics 2022; 15:pharmaceutics15010122. [PMID: 36678750 PMCID: PMC9866607 DOI: 10.3390/pharmaceutics15010122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness worldwide. Multiple treatment options have been used over time to attempt to modify the natural progression of the disease in both proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME). These two retinal complications are the result of microvascular occlusions and vascular hyperpermeability and are considered one of the leading causes of irreversible blindness in patients of working age. It is now well demonstrated that PDR and DME are associated with increased levels of inflammatory and pro-angiogenic factors in the ocular compartment. To date, laser photocoagulation, vascular endothelial growth factor (VEGF) inhibitors, and corticosteroids have demonstrated efficacy in their treatment in large randomized controlled trials and in real-life observational studies. This manuscript aims to provide a comprehensive review of current treatments, including the main drugs used in diabetic pathologic manifestations, as well as new therapeutic alternatives, such as extended-release intraocular devices.
Collapse
Affiliation(s)
- Jesus H. Gonzalez-Cortes
- Ophthalmology Department, School of Medicine, University Hospital “Dr. Jose Eleuterio Gonzalez”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
- Correspondence: ; Tel.: +52-8182545652
| | - Victor A. Martinez-Pacheco
- Retina and Vitreous Department, Hospital de Nuestra Señora de la Luz, Universidad Nacional Autónoma de México, Mexico City 06030, Mexico
| | - Jesus E. Gonzalez-Cantu
- Ophthalmology Department, Instituto Avalos, University Galileo, Guatemala City 01010, Guatemala
| | - Alper Bilgic
- Alphavision Augenarztpraxis, 27568 Bremerhaven, Germany
| | - Francesc March de Ribot
- Department of Ophthalmology, Otago University, Dunedin 9016, New Zealand
- Department of Ophthalmology, Girona University, 17004 Girona, Spain
| | | | - Jesus Mohamed-Hamsho
- Ophthalmology Department, School of Medicine, University Hospital “Dr. Jose Eleuterio Gonzalez”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| | - Laurent Kodjikian
- Service d’Ophtalmologie, Centre Hospitalier Universitaire de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
- Unité Mixte de Recherche—Centre National de la Recherche Scientifique 5510, Matéis, Villeurbanne, 69004 Lyon, France
| | - Thibaud Mathis
- Service d’Ophtalmologie, Centre Hospitalier Universitaire de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
- Unité Mixte de Recherche—Centre National de la Recherche Scientifique 5510, Matéis, Villeurbanne, 69004 Lyon, France
| |
Collapse
|
3
|
Gong W, Han Z, Fang F, Chen L. Yap Expression Is Closely Related to Tumor Angiogenesis and Poor Prognosis in Hepatoblastoma. Fetal Pediatr Pathol 2022; 41:929-939. [PMID: 34978260 DOI: 10.1080/15513815.2021.2020384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background: Hepatoblastoma (HB) is malignant embryonal tumor typically arising in infants and young children. Yes-associated protein (YAP) is aberrantly activated in various tumors; however, the role of YAP in hepatoblastoma is still unexplored. Methods: We assessed YAP expression in hepatoblastoma using immunohistochemistry. The relationships to clinicopathology and survival were analyzed. Results: Positive rate of YAP expression was higher in hepatoblastoma than in adjacent tissues. YAP overexpression was significantly correlated with lymph node metastasis and vascular invasion. Both epithelial and mixed histological types expressed YAP, but high expression was more frequent in MT. YAP expression correlated with VEGF expression, high microvascular density and low overall survival. Multivariable Cox regression analysis revealed that YAP was an independent prognostic factor for survival in children with hepatoblastoma. Conclusion: In hepatoblastoma, YAP may promote VEGF induced angiogenesis and metastases, with resulting poorer prognosis, representing a potential adverse prognostic marker.
Collapse
Affiliation(s)
- Wenchen Gong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiqiang Han
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Fang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Chen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
4
|
Pircher A, Schäfer G, Eigentler A, Pichler R, Puhr M, Steiner E, Horninger W, Gunsilius E, Klocker H, Heidegger I. Robo 4 - the double-edged sword in prostate cancer: impact on cancer cell aggressiveness and tumor vasculature. Int J Med Sci 2019; 16:115-124. [PMID: 30662335 PMCID: PMC6332478 DOI: 10.7150/ijms.28735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Background: The magic roundabout receptor 4 (Robo 4) is a tumor endothelial marker expressed in the vascular network of various tumor entities. However, the role of Robo 4 in prostate cancer (PCa), the second common cause of cancer death among men in -developed countries, has not been described yet. Thus, the present study investigates for the first time the impact of Robo 4 in PCa both in the clinical setting and in vitro. Methods and Results: Immunohistochemical analyses of benign and malignant prostate tissue samples of 95 PCa patients, who underwent radical prostatectomy (RPE), revealed a significant elevated expression of Robo 4 as well as its ligand Slit 2 protein in cancerous tissue compared to benign. Moreover, increased Robo 4 expression was associated with higher Gleason score and pT stage. In advanced stage we observed a hypothesis-generating trend that high Robo 4 and Slit 2 expression is associated with delayed development of tumor recurrence compared to patients with low Robo 4 and Slit 2 expression, respectively. In contrast to so far described exclusive expression of Robo 4 in the tumor vascular network, our analyses showed that in PCa Robo 4 is not only expressed in the tumor stroma but also in cancer epithelial cells. This finding was also confirmed in vitro as PC3 PCa cells express Robo 4 on mRNA as well as protein level. Overexpression of Robo 4 in PC3 as well as in Robo 4 negative DU145 and LNCaP PCa cells was associated with a significant decrease in cell-proliferation and cell-viability. Conclusion: In summary we observed that Robo 4 plays a considerable role in PCa development as it is expressed in cancer epithelial cells as well as in the surrounding tumor stroma. Moreover, higher histological tumor grade was associated with increased Robo 4 expression; controversially patients with high Robo 4 tend to exert lower biochemical recurrence possibly reflecting a protective role of Robo 4.
Collapse
Affiliation(s)
- Andreas Pircher
- Department of Hematology and Oncology, Internal Medicine V, Medical University Innsbruck, Austria
| | - Georg Schäfer
- Department of Pathology, Medical University Innsbruck, Austria
| | | | - Renate Pichler
- Department of Pathology, Medical University Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University Innsbruck, Austria
| | | | | | - Eberhard Gunsilius
- Department of Hematology and Oncology, Internal Medicine V, Medical University Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, Austria
| | | |
Collapse
|
5
|
Assessing angiogenic responses induced by primary human prostate stromal cells in a three-dimensional fibrin matrix assay. Oncotarget 2018; 7:71298-71308. [PMID: 27542256 PMCID: PMC5342079 DOI: 10.18632/oncotarget.11347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023] Open
Abstract
Accurate modeling of angiogenesis in vitro is essential for guiding the preclinical development of novel anti-angiogenic agents and treatment strategies. The formation of new blood vessels is a multifactorial and multi-stage process dependent upon paracrine factors produced by stromal cells in the local microenvironment. Mesenchymal stem cells (MSCs) are multipotent cells in adults that can be recruited to sites of inflammation and tissue damage where they aid in wound healing through regenerative, trophic, and immunomodulatory properties. Primary stromal cultures derived from human bone marrow, normal prostate, or prostate cancer tissue are highly enriched in MSCs and stromal progenitors. Using conditioned media from these primary cultures, a robust pro-angiogenic response was observed in a physiologically-relevant three-dimensional fibrin matrix assay. To evaluate the utility of this assay, the allosteric HDAC4 inhibitor tasquinimod and the anti-VEGF monoclonal antibody bevacizumab were used as model compounds with distinct mechanisms of action. While both agents had a profound inhibitory effect on endothelial sprouting, only bevacizumab induced significant regression of established vessels. Additionally, the pro-angiogenic properties of MSCs derived from prostate cancer patients provides further evidence that selective targeting of this population may be of therapeutic benefit.
Collapse
|
6
|
Padilla L, Dakhel S, Adan J, Masa M, Martinez JM, Roque L, Coll T, Hervas R, Calvis C, Llinas L, Buenestado S, Castellsague J, Messeguer R, Mitjans F, Hernandez JL. S100A7: from mechanism to cancer therapy. Oncogene 2017; 36:6749-6761. [PMID: 28825725 DOI: 10.1038/onc.2017.283] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/02/2017] [Accepted: 07/08/2017] [Indexed: 12/21/2022]
Abstract
Within the tumor, malignant and stromal cells support each other by secreting a wide variety of growth factors and cytokines, allowing tumor growth and disease progression. The identification and regulation of those key factors in this crosstalk has opened the opportunity to develop new therapeutic strategies that not only act on the tumor cells but also on the stroma. Among these factors, S100A7 protein has gained interest in the last years. With key roles in cell motility its expression correlates with increased tumor growth, angiogenesis and metastatic potential. This work aims to deepen in the role played by extracellular S100A7 in the tumor microenvironment, offering a new integrative insight of its mechanism of action on each cellular compartment (tumor, endothelial, immune and fibroblast). As a result, we demonstrate its implication in cell migration and invasion, and its important contribution to the formation of a proinflammatory and proangiogenic environment that favors tumor progression and metastasis. Furthermore, we define its possible role in the pre-metastatic niche formation. Considering the relevance of S100A7 in cancer progression, we have developed neutralizing monoclonal antibodies, reporting for the first time the proof of principle of this promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- L Padilla
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - S Dakhel
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - J Adan
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - M Masa
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - J M Martinez
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - L Roque
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - T Coll
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - R Hervas
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - C Calvis
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - L Llinas
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - S Buenestado
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - J Castellsague
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - R Messeguer
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - F Mitjans
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| | - J L Hernandez
- Biomed Division, LEITAT Technological Center, Barcelona, Spain
| |
Collapse
|
7
|
Genetic polymorphisms in key hypoxia-regulated downstream molecules and phenotypic correlation in prostate cancer. BMC Urol 2017; 17:12. [PMID: 28143503 PMCID: PMC5282787 DOI: 10.1186/s12894-017-0201-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/10/2017] [Indexed: 11/19/2022] Open
Abstract
Background In this study we sought if, in their quest to handle hypoxia, prostate tumors express target hypoxia-associated molecules and their correlation with putative functional genetic polymorphisms. Methods Representative areas of prostate carcinoma (n = 51) and of nodular prostate hyperplasia (n = 20) were analysed for hypoxia-inducible factor 1 alpha (HIF-1α), carbonic anhydrase IX (CAIX), lysyl oxidase (LOX) and vascular endothelial growth factor (VEGFR2) immunohistochemistry expression using a tissue microarray. DNA was isolated from peripheral blood and used to genotype functional polymorphisms at the corresponding genes (HIF1A +1772 C > T, rs11549465; CA9 + 201 A > G; rs2071676; LOX +473 G > A, rs1800449; KDR – 604 T > C, rs2071559). Results Immunohistochemistry analyses disclosed predominance of positive CAIX and VEGFR2 expression in epithelial cells of prostate carcinomas compared to nodular prostate hyperplasia (P = 0.043 and P = 0.035, respectively). In addition, the VEGFR2 expression score in prostate epithelial cells was higher in organ-confined and extra prostatic carcinoma compared to nodular prostate hyperplasia (P = 0.031 and P = 0.004, respectively). Notably, for LOX protein the immunoreactivity score was significantly higher in organ-confined carcinomas compared to nodular prostate hyperplasia (P = 0.015). The genotype-phenotype analyses showed higher LOX staining intensity for carriers of the homozygous LOX +473 G-allele (P = 0.011). Still, carriers of the KDR−604 T-allele were more prone to have higher VEGFR2 expression in prostate epithelial cells (P < 0.006). Conclusions Protein expression of hypoxia markers (VEGFR2, CAIX and LOX) on prostate epithelial cells was different between malignant and benign prostate disease. Two genetic polymorphisms (LOX +473 G > A and KDR−604 T > C) were correlated with protein level, accounting for a potential gene-environment effect in the activation of hypoxia-driven pathways in prostate carcinoma. Further research in larger series is warranted to validate present findings. Electronic supplementary material The online version of this article (doi:10.1186/s12894-017-0201-y) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Gahr S, Mayr C, Kiesslich T, Illig R, Neureiter D, Alinger B, Ganslmayer M, Wissniowski T, Fazio PD, Montalbano R, Ficker JH, Ocker M, Quint K. The pan-deacetylase inhibitor panobinostat affects angiogenesis in hepatocellular carcinoma models via modulation of CTGF expression. Int J Oncol 2015. [PMID: 26202945 DOI: 10.3892/ijo.2015.3087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Post-translational modifications of chromatin components are significantly involved in the regulation of tumor suppressor gene and oncogene expression. Connective tissue growth factor (CTGF) is an epigenetically regulated growth factor with functions in angiogenesis and cell-matrix interactions and plays a pivotal role in hepatocellular carcinoma (HCC). The pharmacologic inhibition of histone and protein deacetylases represents a new approach to interfere with pathways of apoptosis and angiogenesis. We investigated the effect of the pan-deacetylase inhibitor panobinostat (LBH589) on human HCC cell lines HepG2 (p53wt) and Hep3B (p53null) and in a subcutaneous xenograft model and explored the influence on angiogenesis. Specimens were characterized by quantitative real-time PCR. Protein was separated for western blotting against CTGF, VEGF, VEGF receptor-1 (VEGFR-1/FLT-1), VEGF receptor-2 (VEGFR-2/KDR), MAPK and phospho-MAPK. In vivo, HepG2 cells were xenografted to NMRI mice and treated with daily i.p. injections of 10 mg/kg panobinostat. After 1, 7 and 28 days, real-time PCR was performed. Immunohistochemistry and western blotting were examined after 28 days. An increased significant expression of CTGF was only seen after 24 h treatment with 0.1 µM panobinostat in HepG2 cells and Hep3B cells, whereas after 72 h treatment CTGF expression clearly decreased. In the xenografts, treatment with panobinostat showed a minimal CTGF expression after 1 day and 4 weeks, respectively. In vitro as well as in vivo, VEGF was not affected by panobinostat treatment at any time. In conclusion, panobinostat influences extracellular signaling cascades via CTGF-dependent pathways.
Collapse
Affiliation(s)
- Susanne Gahr
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Christian Mayr
- Laboratory for Tumour Biology and Experimental Therapies, Paracelsus Medical University, Salzburg, Austria
| | - Tobias Kiesslich
- Laboratory for Tumour Biology and Experimental Therapies, Paracelsus Medical University, Salzburg, Austria
| | - Romana Illig
- Institute of Pathology, Salzburger Landeskliniken, Paracelsus Private Medical University, Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Salzburger Landeskliniken, Paracelsus Private Medical University, Salzburg, Austria
| | - Beate Alinger
- Institute of Pathology, Salzburger Landeskliniken, Paracelsus Private Medical University, Salzburg, Austria
| | - Marion Ganslmayer
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Till Wissniowski
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Pietro Di Fazio
- Institute for Surgical Research, Phillips University Marburg, Marburg, Germany
| | - Roberta Montalbano
- Institute for Surgical Research, Phillips University Marburg, Marburg, Germany
| | - Joachim H Ficker
- Klinikum Nuernberg, Department of Respiratory Medicine, Allergology and Sleep Medicine, Nuremberg, Germany
| | - Matthias Ocker
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Karl Quint
- Department of Medicine 1, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Lee CH, Koyejo O, Ghosh J. Identifying candidate disease genes using a trace norm constrained bipartite raking model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:3459-62. [PMID: 24110473 DOI: 10.1109/embc.2013.6610286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Computational prediction of genes that play roles in human diseases remains an important but challenging task. In this work, we formulate candidate gene prediction as a bipartite ranking problem combining a task-wise ordered observation model with a latent multitask regression function using the matrix-variate Gaussian process (MV-GP). We then use a trace-norm constrained variational inference approach to obtain the bipartite ranking model variables and the parameters of the underlying multitask regression model. We use this model to predict candidate genes from two gene-disease association data sets and show that our model outperforms current state-of-the-art methods. Finally, we demonstrate the practical utility of our method by successfully recovering well characterized gene-disease associations hidden in our training data.
Collapse
|
10
|
Karzai FH, Apolo AB, Cao L, Madan RA, Adelberg DE, Parnes H, McLeod DG, Harold N, Peer C, Yu Y, Tomita Y, Lee MJ, Lee S, Trepel JB, Gulley JL, Figg WD, Dahut WL. A phase I study of TRC105 anti-endoglin (CD105) antibody in metastatic castration-resistant prostate cancer. BJU Int 2015; 116:546-55. [PMID: 25407442 DOI: 10.1111/bju.12986] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE TRC105 is a chimeric immunoglobulin G1 monoclonal antibody that binds endoglin (CD105). This phase I open-label study evaluated the safety, pharmacokinetics and pharmacodynamics of TRC105 in patients with metastatic castration-resistant prostate cancer (mCRPC). PATIENTS AND METHODS Patients with mCRPC received escalating doses of i.v. TRC105 until unacceptable toxicity or disease progression, up to a predetermined dose level, using a standard 3 + 3 phase I design. RESULTS A total of 20 patients were treated. The top dose level studied, 20 mg/kg every 2 weeks, was the maximum tolerated dose. Common adverse effects included infusion-related reaction (90%), low grade headache (67%), anaemia (48%), epistaxis (43%) and fever (43%). Ten patients had stable disease on study and eight patients had declines in prostate specific antigen (PSA). Significant plasma CD105 reduction was observed at the higher dose levels. In an exploratory analysis, vascular endothelial growth factor (VEGF) was increased after treatment with TRC105 and VEGF levels were associated with CD105 reduction. CONCLUSION TRC105 was tolerated at 20 mg/kg every other week with a safety profile distinct from that of VEGF inhibitors. A significant induction of plasma VEGF was associated with CD105 reduction, suggesting anti-angiogenic activity of TRC105. An exploratory analysis showed a tentative correlation between the reduction of CD105 and a decrease in PSA velocity, suggestive of potential activity of TRC105 in the patients with mCRPC. The data from this exploratory analysis suggest that rising VEGF level is a possible compensatory mechanism for TRC105-induced anti-angiogenic activity.
Collapse
Affiliation(s)
- Fatima H Karzai
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - Andrea B Apolo
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - Liang Cao
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - Ravi A Madan
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - David E Adelberg
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - Howard Parnes
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - David G McLeod
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - Nancy Harold
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - Cody Peer
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - Yunkai Yu
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - Yusuke Tomita
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - Min-Jung Lee
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - Sunmin Lee
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - Jane B Trepel
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - James L Gulley
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - William D Figg
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| | - William L Dahut
- Medical Oncology Service, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
11
|
New therapeutic targets for cancer bone metastasis. Trends Pharmacol Sci 2015; 36:360-73. [PMID: 25962679 DOI: 10.1016/j.tips.2015.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 12/18/2022]
Abstract
Bone metastases are dejected consequences of many types of tumors including breast, prostate, lung, kidney, and thyroid cancers. This complicated process begins with the successful tumor cell epithelial-mesenchymal transition, escape from the original site, and penetration into the circulation. The homing of tumor cells to the bone depends on both tumor-intrinsic traits and various molecules supplied by the bone metastatic niche. The colonization and growth of cancer cells in the osseous environment, which awaken their dormancy to form micro- and macro-metastasis, involve an intricate interaction between the circulating tumor cells and local bone cells including osteoclasts, osteoblasts, adipocytes, and macrophages. We discuss the most recent advances in the identification of new molecules and novel mechanisms during each step of bone metastasis that may serve as promising therapeutic targets.
Collapse
|
12
|
Ci X, Xing C, Zhang B, Zhang Z, Ni JJ, Zhou W, Dong JT. KLF5 inhibits angiogenesis in PTEN-deficient prostate cancer by attenuating AKT activation and subsequent HIF1α accumulation. Mol Cancer 2015; 14:91. [PMID: 25896712 PMCID: PMC4417294 DOI: 10.1186/s12943-015-0365-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/10/2015] [Indexed: 12/20/2022] Open
Abstract
Background KLF5 is a basic transcriptional factor that regulates multiple physiopathological processes. Our recent study showed that deletion of Klf5 in mouse prostate promotes tumorigenesis initiated by the deletion of Pten. While molecular characterization of Klf5-null tumors suggested that angiogenesis was partially responsible for tumor promotion, the precise function and mechanism of KLF5 deletion in prostate tumor angiogenesis remain unclear. Results Applying histological staining to Pten-null mouse prostates, we observed that deletion of Klf5 significantly increased the number of microvessels, accompanied by the upregulation of multiple angiogenesis-related genes based on microarray analysis with MetaCore software. In human umbilical vein endothelial cells (HuVECs), tube formation and migration, both of which are indicators of angiogenic activities, were decreased by conditioned media from PC-3 and DU 145 human prostate cancer cells with KLF5 overexpression, but increased by media from cells with KLF5 knockdown. HIF1α, a key angiogenesis inducer, was upregulated by KLF5 loss at the protein but not the mRNA level in both mouse tissues and human cell lines, as determined by immunohistochemical staining, real-time RT-PCR and Western blotting. Consistently, KLF5 loss also upregulated VEGF and PDGF, two pro-angiogenic mediators of HIF1α function, as analyzed by immunohistochemical staining in mouse tissues and ELISA in conditioned media. Mechanistically, AKT activity, which caused the accumulation of HIF1α, was increased by KLF5 knockout or knockdown but decreased by KLF5 overexpression. PI3K/AKT inhibitors consistently abolished the effects of KLF5 knockdown on angiogenic activity, HIF1α accumulation, and VEGF and PDGF expression. Conclusion KLF5 loss enhances tumor angiogenesis by attenuating PI3K/AKT signaling and subsequent accumulation of HIF1α in PTEN deficient prostate tumors. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0365-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinpei Ci
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Changsheng Xing
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Baotong Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Zhiqian Zhang
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Jenny Jianping Ni
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China. .,Department of Hematology and Medical Oncology, Emory Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Abstract
In view of the trend towards personalized treatment strategies for (cancer) patients, there is an increasing need to noninvasively determine individual patient characteristics. Such information enables physicians to administer to patients accurate therapy with appropriate timing. For the noninvasive visualization of disease-related features, imaging biomarkers are expected to play a crucial role. Next to the chemical development of imaging probes, this requires preclinical studies in animal tumour models. These studies provide proof-of-concept of imaging biomarkers and help determine the pharmacokinetics and target specificity of relevant imaging probes, features that provide the fundamentals for translation to the clinic. In this review we describe biological processes derived from the “hallmarks of cancer” that may serve as imaging biomarkers for diagnostic, prognostic and treatment response monitoring that are currently being studied in the preclinical setting. A number of these biomarkers are also being used for the initial preclinical assessment of new intervention strategies. Uniquely, noninvasive imaging approaches allow longitudinal assessment of changes in biological processes, providing information on the safety, pharmacokinetic profiles and target specificity of new drugs, and on the antitumour effectiveness of therapeutic interventions. Preclinical biomarker imaging can help guide translation to optimize clinical biomarker imaging and personalize (combination) therapies.
Collapse
|
14
|
Sridhar SS, Joshua AM, Gregg R, Booth CM, Murray N, Golubovic J, Wang L, Harris P, Chi KN. A phase II study of GW786034 (pazopanib) with or without bicalutamide in patients with castration-resistant prostate cancer. Clin Genitourin Cancer 2014; 13:124-9. [PMID: 24993934 DOI: 10.1016/j.clgc.2014.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/06/2014] [Accepted: 06/03/2014] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Pazopanib is an oral vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor. In this randomized, open label phase II study, pazopanib alone or in combination with bicalutamide was evaluated in patients with chemotherapy-naive castration-resistant prostate cancer (CRPC). PATIENTS AND METHODS Patients received either pazopanib 800 mg daily (arm A) or pazopanib 800 mg plus bicalutamide 50 mg daily (arm B). A 2-stage study design was used, and the primary endpoint was prostate-specific antigen (PSA) response rate (defined as a confirmed ≥ 50% decline from baseline). RESULTS A total of 23 patients (arm A, 10; arm B, 13) were accrued. The main grade 3+ toxicities were hypertension, fatigue, decreased lymphocytes, and increased alanine transaminase. Owing to significant toxicity, the protocol was amended after the first 11 patients and the pazopanib starting dose was reduced to 600 mg daily. In arm A, of 9 evaluable patients, there was 1 patient (11%) with a PSA response, 3 (33%) with stable PSA, and 5 (56%) with PSA progression; in arm B, of 12 evaluable patients, there were 2 patients (17%) with PSA responses, 6 (50%) with stable PSA, and 4 (33%) with PSA progression. Median progression-free survival was similar in both arms at 7.3 months (95% CI, 2.5 months to not reached). Long-term stable disease was seen in 4 patients who remained on treatment for 18 months (arm A), 26 months (arm A), 35 months (arm B), and 52 months (arm B). CONCLUSION In this unselected patient population, pazopanib either alone or in combination with bicalutamide failed to show sufficient activity to warrant further evaluation. However, 4 patients had long-term benefit, suggesting that targeting the VEGFR pathway may still be relevant in selected patients and emphasizing the need for improved predictive markers for patients with CRPC.
Collapse
Affiliation(s)
| | | | - Richard Gregg
- Department of Oncology, Queen's University, Kingston, ON
| | | | | | | | - Lisa Wang
- Princess Margaret Hospital, Phase II Consortium, Toronto, ON
| | - Pamela Harris
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD
| | | |
Collapse
|
15
|
Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:203601. [PMID: 24991539 PMCID: PMC4058511 DOI: 10.1155/2014/203601] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/23/2014] [Indexed: 01/15/2023]
Abstract
Antibody based positron emission tomography (immuno-PET) imaging is of increasing importance to visualize and characterize tumor lesions. Additionally, it can be used to identify patients who may benefit from a particular therapy and monitor the therapy outcome. In recent years the field is focused on 89Zr, a radiometal with near ideal physical and chemical properties for immuno-PET. In this review we will discuss the production of 89Zr, the bioconjugation strategies, and applications in (pre-)clinical studies of 89Zr-based immuno-PET in oncology. To date, 89Zr-based PET imaging has been investigated in a wide variety of cancer-related targets. Moreover, clinical studies have shown the feasibility for 89Zr-based immuno-PET to predict and monitor treatment, which could be used to tailor treatment for the individual patient. Further research should be directed towards the development of standardized and robust conjugation methods and improved chelators to minimize the amount of released Zr4+ from the antibodies. Additionally, further validation of the imaging method is required. The ongoing development of new 89Zr-labeled antibodies directed against novel tumor targets is expected to expand applications of 89Zr-labeled immuno-PET to a valuable method in the medical imaging.
Collapse
|
16
|
Sivanathan L, Chow A, Wong A, Hoang VC, Emmenegger U. In vivo passage of human prostate cancer cells in mice results in stable gene expression changes affecting numerous cancer-associated biological processes. Prostate 2014; 74:537-46. [PMID: 24435653 DOI: 10.1002/pros.22774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/23/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND While therapeutic resistance is difficult to model in vitro in its entirety, in vivo passage and re-derivation of treatment resistant prostate cancer cell variants is a strategy to study therapeutic resistance more comprehensively. However, the process of in vivo passage itself may result in gene expression changes that could confound the analysis of such resistant cell variants compared to their parental cell lines. METHODS We compared the expression profiles of parental PC-3 human prostate cancer cells and PC-3 cells re-derived after in vivo passage in athymic nude mice. Whole transcriptome information was obtained using the SOLiD 4 system (Applied Biosystems). Differentially expressed genes were mapped to genes in the Database for Annotation, Visualization and Integrated Discovery for gene enrichment and functional annotation analysis. The expression of a panel of these genes was validated using quantitative RT-PCR. RESULTS Altogether, 21,032 distinct transcripts were found in PC-3 and/or NS1.1. Of these, 906 were differentially regulated (≥2-fold) in NS1.1 versus PC-3. 337 transcripts were upregulated, and 569 were downregulated, including genes previously associated with various aspects of prostate carcinogenesis such as TLR4 and IGFBP5, respectively. Gene ontology analysis of the differentially expressed transcripts revealed enrichment for biological processes such as cell adhesion, migration, and angiogenesis. CONCLUSIONS When using in vivo as opposed to in vitro derived prostate cancer cell variants for comparative genetic studies of complex traits such as therapeutic resistance, one may be better served to use similarly in vivo passaged control cell variants instead of parental cell lines.
Collapse
Affiliation(s)
- Lavarnan Sivanathan
- Biological Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Chung PH, Gayed BA, Thoreson GR, Raj GV. Emerging drugs for prostate cancer. Expert Opin Emerg Drugs 2013; 18:533-50. [DOI: 10.1517/14728214.2013.864635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Pang L, Zhang Y, Yu Y, Zhang S. Resistin promotes the expression of vascular endothelial growth factor in ovary carcinoma cells. Int J Mol Sci 2013; 14:9751-66. [PMID: 23652833 PMCID: PMC3676810 DOI: 10.3390/ijms14059751] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/18/2013] [Accepted: 04/24/2013] [Indexed: 12/16/2022] Open
Abstract
Resistin is a novel hormone that is secreted by human adipocytes and mononuclear cells and is associated with obesity, insulin resistance and inflammation. Recently, resistin has been postulated to play a role in angiogenesis. Here, we investigated the hypothesis that resistin regulates ovary carcinoma production of vascular endothelial growth factor (VEGF) and the angiogenic processes. We found that in human ovarian epithelial carcinoma cells (HO-8910), resistin (10–150 ng/mL) enhanced both VEGF protein and mRNA expression in a time- and concentration-dependent manner, as well as promoter activity. Furthermore, resistin enhanced DNA-binding activity of Sp1 with VEGF promoter in a PI3K/Akt-dependent manner. PI3K/Akt activated by resistin led to increasing interaction with Sp1, triggering a progressive phosphorylation of Sp1 on Thr453 and Thr739, resulting in the upregulation of VEGF expression. In an in vitro angiogenesis system for endothelial cells (EA.hy926) co-cultured with HO-8910 cells, we observed that the addition of resistin stimulated endothelial cell tube formation, which could be abolished by VEGF neutralizing antibody. Our findings suggest that the PI3K/Akt-Sp1 pathway is involved in resistin-induced VEGF expression in HO-8910 cells and indicates that antiangiogenesis therapy may be beneficial treatment against ovarian epithelial carcinoma, especially in obese patients.
Collapse
Affiliation(s)
- Li Pang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China; E-Mails: (L.P.); (Y.Y.)
| | - Yi Zhang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China; E-Mail:
| | - Yu Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China; E-Mails: (L.P.); (Y.Y.)
| | - Shulan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, China; E-Mails: (L.P.); (Y.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-24-966-151-41211
| |
Collapse
|