1
|
Handa K, Fujita D, Hirano M, Yoshimura S, Kageyama M, Iijima T. A Practical In Silico Method for Predicting Compound Brain Concentration-Time Profiles: Combination of PK Modeling and Machine Learning. Mol Pharm 2024; 21:5182-5191. [PMID: 39324316 DOI: 10.1021/acs.molpharmaceut.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Given the aging populations in advanced countries globally, many pharmaceutical companies have focused on developing central nervous system (CNS) drugs. However, due to the blood-brain barrier, drugs do not easily reach the target area in the brain. Although conventional screening methods for drug discovery involve the measurement of (unbound fraction of drug) brain-to-plasma partition coefficients, it is difficult to consider nonequilibrium between plasma and brain compound concentration-time profiles. To truly understand the pharmacokinetics/pharmacodynamics of CNS drugs, compound concentration-time profiles in the brain are necessary; however, such analyses are costly and time-consuming and require a significant number of animals. Therefore, in this study, we attempted to develop an in silico prediction method that does not require a large amount of experimental data by combining modeling and simulation (M&S) with machine learning (ML). First, we constructed a hybrid model linking plasma concentration-time profile to the brain compartment that takes into account the transit time and brain distribution of each compound. Using mouse plasma and brain time experimental values for 103 compounds, we determined the brain kinetic parameters of the hybrid model for each compound; this case was defined as scenario I (a positive control experiment) and included the full brain concentration-time profile data. Next, we built an ML model using chemical structure descriptors as explanatory variables and rate parameters as the target variable, and we then input the predicted values from 5-fold cross-validation (CV) into the hybrid model; this case was defined as scenario II, in which no brain compound concentration-time profile data exist. Finally, for scenario III, assuming that the brain concentration is obtained at only one time point, we used the brain kinetic parameters from the result of the 5-fold CV in scenario II as the initial values for the hybrid model and performed parameter refitting against the observed brain concentration at that time point. As a result, the RMSE/R2-values of the brain compound concentration-time profiles over time were 0.445/0.517 in scenario II and 0.246/0.805 in scenario III, indicating the method provides high accuracy and suggesting that it is a practical method for predicting brain compound concentration-time profiles.
Collapse
Affiliation(s)
- Koichi Handa
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Daichi Fujita
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Mariko Hirano
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Saki Yoshimura
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Michiharu Kageyama
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Takeshi Iijima
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| |
Collapse
|
2
|
Schwasinger-Schmidt T, Preskorn SH. Reverse Engineering Drugs: Lorcaserin as an Example. ADVANCES IN NEUROBIOLOGY 2023; 30:195-206. [PMID: 36928851 DOI: 10.1007/978-3-031-21054-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Novel central nervous system (CNS)-based therapies have been difficult to produce due to the complexity of the brain, limited knowledge of CNS-based disease development and associated pathways, difficulty in penetrating the blood brain barrier, and a lack of reliable biomarkers of disease. Reverse engineering in drug development allows the utilization of new knowledge of disease pathways and the use of innovative technology to develop medications with enhanced efficacy and reduced toxicities. Lorcaserin was developed as a specific 5HT2C serotonin receptor agonist for the treatment of obesity with limited off-target effects at the 5HT2A and 5HT2B receptors. This receptor specificity limited the hallucinogenic and cardiovascular side effects noted with other serotonin receptor agonists. Reverse engineering approaches to drug development reduce the cost of producing new medications, identify specific populations of patients that will derive the most benefit from therapy, and produce novel therapies with greater efficacy and limited toxicity.
Collapse
Affiliation(s)
| | - Sheldon H Preskorn
- Department of Psychiatry and Behavioral Science, University of Kansas School of Medicine-Wichita, Wichita, KS, USA
| |
Collapse
|
3
|
Preskorn SH. Drug Development in Psychiatry: The Long and Winding Road from Chance Discovery to Rational Development. ADVANCES IN NEUROBIOLOGY 2023; 30:1-18. [PMID: 36928844 DOI: 10.1007/978-3-031-21054-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Based extensively on tables and figures, this chapter reviews drug development in psychiatry with an emphasis on antidepressants from the 1950s to the present and then looks forward to the future. It begins with the chance discovery drugs and then moves to through their rational refinement using structure activity relationships to narrow the pharmacological actions of the drugs to those mediating their antidepressant effects and eliminating the effects on targets that mediate adverse effects. This approach yielded newer antidepressants which compared to older antidepressants are safer and better tolerated but nevertheless do still not treat the approximately 40% of patients with major depression (MD) which is unresponsive to biogenic amine mechanisms of action. This form of MD is commonly referred to as treatment resistant depression. Esketamine is an antidepressant which has a novel mechanism of action: blockade of the glutamate NMDA receptor. These studies coupled with earlier studies with other NMDA drugs suggest approximately 60% of patient with TRD are rapidly and robustly responsive to this mechanism of action. Thus, there appears to be three forms of MD based on pharmacological responsiveness: (a) 60% responsive to biogenic amine mechanisms of action, (b) 24% (i.e., 40 × 60%) responsive to NMDA but not to biogenic amine mechanisms of action, and (c) 16% (i.e., 40-24%) not responsive to either of these mechanisms of action. Scientific investigation of these three groups may yield important information about the pathophysiology and/or pathoetiology of these different forms of MD. This information coupled with studies into the neurobiology (e.g., imaging studies, connectomes to name a few approaches being used) and genetics of MD should provide the fundamental knowledge which will permit a rational search for and discovery of newer antidepressant drugs and other somatic and psychotherapeutic approaches to the treatment of patients with different forms of MD based on pathophysiology and pathoetiology. Examples are given of how such discovery and development have occurred in other areas of medicine and even in central nervous system (CNS) space including six novel mechanisms of action CNS drugs which have been successfully developed and marketed over the last 25 years.
Collapse
Affiliation(s)
- Sheldon H Preskorn
- Department of Psychiatry and Behavioral Science, Kansas University School of Medicine-Wichita Campus, Wichita, KS, USA.
| |
Collapse
|
4
|
Schwasinger-Schmidt T, Preskorn SH. Discovery of New Transmitter Systems and Hence New Drug Targets. ADVANCES IN NEUROBIOLOGY 2023; 30:181-193. [PMID: 36928850 DOI: 10.1007/978-3-031-21054-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The development of medications used to treat psychiatric conditions has largely proceeded through serendipity, where a potential drug to treat mental illness is identified by chance. This approach is based on a limited understanding of the underlying pathophysiology of mental illness and brain disorders. Identification of novel neurotransmitter systems has allowed for new molecular-based approaches for drug development that identify specific receptor targets to treat a specific symptom. An example of this approach includes the development of suvorexant, which is a dual orexin receptor antagonist FDA approved in 2014 for the treatment of insomnia. This chapter will discuss challenges in psychiatric drug development; the importance of identifying discrete neurotransmitter systems that target a specific symptom, not a syndrome; the orexin pathway and targets within this pathway that can be used to modulate sleep; and a high-throughput approach to streamlining drug development.
Collapse
Affiliation(s)
| | - Sheldon H Preskorn
- Department of Psychiatry and Behavioral Science, University of Kansas School of Medicine-Wichita, Wichita, KS, USA
| |
Collapse
|
5
|
Umemori Y, Handa K, Sakamoto S, Kageyama M, Iijima T. QSAR model to predict K p,uu,brain with a small dataset, incorporating predicted values of related parameter. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:885-897. [PMID: 36420623 DOI: 10.1080/1062936x.2022.2149619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The unbound brain-to-plasma concentration ratio (Kp,uu,brain) is a parameter that indicates the extent of central nervous system penetration. Pharmaceutical companies build prediction models because many experiments are required to obtain Kp,uu,brain. However, the lack of data hinders the design of an accurate prediction model. To construct a quantitative structure-activity relationship (QSAR) model with a small dataset of Kp,uu,brain, we investigated whether the prediction accuracy could be improved by incorporating software-predicted brain penetration-related parameters (BPrPs) as explanatory variables for pharmacokinetic parameter prediction. We collected 88 compounds with experimental Kp,uu,brain from various official publications. Random forest was used as the machine learning model. First, we developed prediction models using only structural descriptors. Second, we verified the predictive accuracy of each model with the predicted values of BPrPs incorporated in various combinations. Third, the Kp,uu,brain of the in-house compounds was predicted and compared with the experimental values. The prediction accuracy was improved using five-fold cross-validation (RMSE = 0.455, r2 = 0.726) by incorporating BPrPs. Additionally, this model was verified using an external in-house dataset. The result suggested that using BPrPs as explanatory variables improve the prediction accuracy of the Kp,uu,brain QSAR model when the available number of datasets is small.
Collapse
Affiliation(s)
- Y Umemori
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, Hino-shi, Japan
| | - K Handa
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, Hino-shi, Japan
| | - S Sakamoto
- Pharmaceutical Development Coordination Department, Teijin Pharma Limited, Chiyoda-ku, Japan
| | - M Kageyama
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, Hino-shi, Japan
| | - T Iijima
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, Hino-shi, Japan
| |
Collapse
|
6
|
Preskorn SH. How an Understanding of the Function of the Locus Coeruleus Led to Use of Dexmedetomidine to Treat Agitation in Bipolar Disorder: Example of Rational Development of Psychiatric Medications. J Psychiatr Pract 2022; 28:227-233. [PMID: 35511098 DOI: 10.1097/pra.0000000000000634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This column reviews >50 years of research on the functions subsumed by the locus coeruleus (LC) (also called the central adrenergic system). A major role of the LC is monitoring acid-base balance in the brain and responding by regulating blood-brain permeability to water and other small molecules and cerebral blood flow. The LC, through its downward projections, also regulates and coordinates respiratory and cardiac functions. Through its effect regionally or more globally depending on the stimulus and its magnitude, the LC can regulate the extracellular space in the brain, which in turn can alter ionic concentrations and thus the sensitivity of neurons to signaling. As a result of these far-reaching effects, the LC has been implicated in brain functions ranging from sleep and wakefulness to psychiatric conditions such as hyperarousal/hypervigilance, fear, agitation, anxiety, and panic attacks. This understanding of the brain functions subsumed by the LC has, in turn, led to the most recent development in the use of dexmedetomidine, an alpha-2 adrenergic agonist, to treat agitation in patients with bipolar disorder. This column also illustrates a theme discussed in a series of previous columns concerning the successful development of novel psychiatric/central nervous system drugs on the basis of an understanding of relatively simple circuits or mechanisms that underlie pathologic behavior.
Collapse
|
7
|
Preskorn SH. Drug Development in Psychiatry: The Long and Winding Road from Chance Discovery to Rational Development. Handb Exp Pharmacol 2019; 250:307-324. [PMID: 30570691 DOI: 10.1007/164_2018_169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Based extensively on tables and figures, this chapter reviews drug development in psychiatry with an emphasis on antidepressants from 1950s to the present and then looks forward to the future. It begins with the chance discovery drugs and then moves to through their rational refinement using structure activity relationships to narrow the pharmacological actions of the drugs to those mediating their antidepressant effects and eliminating the effects on targets that mediate adverse effects. This approach yielded newer antidepressants which compared to older antidepressants are safer and better tolerated but nevertheless do still not treat the approximately 40% of patients with major depression (MD) which is unresponsive to biogenic amine mechanisms of action. This form of MD is commonly referred to as treatment resistant depression. Esketamine is an investigational antidepressant which has a novel mechanism of action: blockade of the glutamate NMDA receptor. Positive trials reported this year for esketamine make it likely this drug will be approved next year in the USA. These studies coupled with earlier studies with other NMDA drugs suggest approximately 60% of patient with TRD are rapidly and robustly responsive to this mechanism of action. Thus, there appears to be three forms of MD based on pharmacological responsiveness: (a) 60% responsive to biogenic amine mechanisms of action, (b) 24% (i.e., 40 × 60%) responsive to NMDA but not to biogenic amine mechanisms of action, and (c) 16% (i.e., 40 - 24%) not responsive to either of these mechanisms of action. Scientific investigation of these three groups may yield important information about the pathophysiology and/or pathoetiology of these different forms of MD. This information coupled with studies into the neurobiology (e.g., imaging studies, connectomes to name a few approaches being used) and genetics of MD should provide the fundamental knowledge which will permit a rational search for and discovery of newer antidepressant drugs and other somatic and psychotherapeutic approaches to the treatment of patients with different forms of MD based on pathophysiology and pathoetiology. Examples are given of how such discovery and development has occurred in other areas of medicine and even in central nervous system (CNS) space including six novel mechanisms of action CNS drugs which have been successfully developed and marketed over the last 25 years.
Collapse
|
8
|
CNS Drug Development, Lessons Learned, Part 5: How Preclinical and Human Safety Studies Inform the Approval and Subsequent Use of a New Drug-Suvorexant as an Example. J Psychiatr Pract 2018; 24:104-110. [PMID: 29509180 DOI: 10.1097/pra.0000000000000295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This column is the fifth in a series examining the advances being made in central nervous system drug development because of advances in molecular pharmacology and an improved understanding of the neurobiology underlying disturbances in brain function including psychiatric illnesses. This column covers the special animal and human studies conducted as part of the development of suvorexant, which is the first in the class of dual orexin 1 and 2 receptor antagonists to be approved; it has an indication for the treatment of disturbances in sleep onset and maintenance. The animal studies included determination of the therapeutic index of the drug (ie, lethal dose 50 which is the dose at which 50% of animals die following administration of the drug), adverse effects on fertility, teratogenicity, carcinogenicity, and ability to cause narcolepsy. The human studies included investigation of the effects of the drug on balance, memory, driving performance, and propensity to cause respiratory depression in normal volunteers and individuals with mild to moderate chronic obstructive pulmonary disorder or mild to moderate obstructive sleep apnea. This column illustrates how targeting the drug to one mechanism out of hundreds yields increased safety and highlights the importance of the package insert which summarizes the results of all of the studies from the drug's development program.
Collapse
|
9
|
CNS Drug Development, Lessons Learned, Part 4: The Role of Brain Circuitry and Genes-Tasimelteon as an Example. J Psychiatr Pract 2017; 23:425-430. [PMID: 29303950 DOI: 10.1097/pra.0000000000000274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This is the fourth in a series of columns discussing the rational and targeted development of drugs to affect specific central nervous system (CNS) circuits in specific ways based on knowledge gained by molecular biology and the human genome project. The first column in this series described 6 CNS drugs with novel mechanisms of action developed over the last 25 years. The second column discussed differences between syndromic diagnoses as exemplified by the third through the fifth editions of the Diagnostic and Statistical Manual of Mental Disorders (DSM III through DSM-5) and the new approach to psychiatric diagnoses championed by the National Institute of Mental Health in their Research Domain Criteria Initiative. The third column reviewed the last 9 years of drug development contrasting the development of drugs in other therapeutic areas (eg, cancer) with psychiatric and related CNS-active drugs. This column extends the discussion of modern drug development for psychiatric and other CNS-related indications, using the development of tasimelteon as an example of how modern drug development focuses rationally on novel targets of interest while simultaneously achieving "specificity." Tasimelteon, which is indicated for the treatment of non-24-hour sleep-wake disorder, was developed to be a selective agonist at the melatonin MT1 and MT2 receptors, with limited or no effects at other pharmacologically relevant receptors and enzymes to minimize the potential for off-target effects (eg, nuisance side effects), toxicity, drug-drug interactions, and effects on oxidative drug metabolizing enzymes. The next column in this series will continue the discussion of the development of CNS drugs with novel mechanisms of action, using suvorexant, which targets orexin-1 and orexin-2 receptors, to illustrate the preclinical and human studies that were carried out to assess its safety as part of a successful new drug application.
Collapse
|