1
|
Bonomi F, Limido E, Weinzierl A, Harder Y, Menger MD, Laschke MW. Preconditioning Strategies for Improving the Outcome of Fat Grafting. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38818802 DOI: 10.1089/ten.teb.2024.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Autologous fat grafting is a common procedure in plastic, reconstructive, and aesthetic surgery. However, it is frequently associated with an unpredictable resorption rate of the graft depending on the engraftment kinetics. This, in turn, is determined by the interaction of the grafted adipose tissue with the tissue at the recipient site. Accordingly, preconditioning strategies have been developed following the principle of exposing these tissues in the pretransplantation phase to stimuli inducing endogenous protective and regenerative cellular adaptations, such as the upregulation of stress-response genes or the release of cytokines and growth factors. As summarized in the present review, these stimuli include hypoxia, dietary restriction, local mechanical stress, heat, and exposure to fractional carbon dioxide laser. Preclinical studies show that they promote cell viability, adipogenesis, and angiogenesis, while reducing inflammation, fibrosis, and cyst formation, resulting in a higher survival rate and quality of fat grafts in different experimental settings. Hence, preconditioning represents a promising approach to improve the outcome of fat grafting in future clinical practice. For this purpose, it is necessary to establish standardized preconditioning protocols for specific clinical applications that are efficient, safe, and easy to implement into routine procedures.
Collapse
Affiliation(s)
- Francesca Bonomi
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
2
|
Jordao A, Cléret D, Dhayer M, Le Rest M, Cao S, Rech A, Azaroual N, Drucbert AS, Maboudou P, Dekiouk S, Germain N, Payen J, Guerreschi P, Marchetti P. Engineering 3D-Printed Bioresorbable Scaffold to Improve Non-Vascularized Fat Grafting: A Proof-of-Concept Study. Biomedicines 2023; 11:3337. [PMID: 38137558 PMCID: PMC10741522 DOI: 10.3390/biomedicines11123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Autologous fat grafting is the gold standard for treatment in patients with soft-tissue defects. However, the technique has a major limitation of unpredictable fat resorption due to insufficient blood supply in the initial phase after transplantation. To overcome this problem, we investigated the capability of a medical-grade poly L-lactide-co-poly ε-caprolactone (PLCL) scaffold to support adipose tissue and vascular regeneration. Deploying FDM 3D-printing, we produced a bioresorbable porous scaffold with interconnected pore networks to facilitate nutrient and oxygen diffusion. The compressive modulus of printed scaffold mimicked the mechanical properties of native adipose tissue. In vitro assays demonstrated that PLCL scaffolds or their degradation products supported differentiation of preadipocytes into viable mature adipocytes under appropriate induction. Interestingly, the chorioallantoic membrane assay revealed vascular invasion inside the porous scaffold, which represented a guiding structure for ingrowing blood vessels. Then, lipoaspirate-seeded scaffolds were transplanted subcutaneously into the dorsal region of immunocompetent rats (n = 16) for 1 or 2 months. The volume of adipose tissue was maintained inside the scaffold over time. Histomorphometric evaluation discovered small- and normal-sized perilipin+ adipocytes (no hypertrophy) classically organized into lobular structures inside the scaffold. Adipose tissue was surrounded by discrete layers of fibrous connective tissue associated with CD68+ macrophage patches around the scaffold filaments. Adipocyte viability, assessed via TUNEL staining, was sustained by the presence of a high number of CD31-positive vessels inside the scaffold, confirming the CAM results. Overall, our study provides proof that 3D-printed PLCL scaffolds can be used to improve fat graft volume preservation and vascularization, paving the way for new therapeutic options for soft-tissue defects.
Collapse
Affiliation(s)
- Amélia Jordao
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Damien Cléret
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Mélanie Dhayer
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
| | - Mégann Le Rest
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Shengheng Cao
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Alexandre Rech
- University of Lille, Faculté de Pharmacie, Plateau RMN, UFR3S, F-59000 Lille, France
| | - Nathalie Azaroual
- University of Lille, ULR 7365–GRITA–Groupe de Recherche Sur Les Formes Injectables Et Les Technologies Associées, F-59000 Lille, France;
| | - Anne-Sophie Drucbert
- U 1008 Controlled Drug Delivery Systems and Biomaterials, Inserm, F-59000 Lille, France
| | | | - Salim Dekiouk
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France
| | - Nicolas Germain
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France
| | - Julien Payen
- Lattice Medical, 80 rue du Docteur Yersin, F-59120 Loos, France
| | - Pierre Guerreschi
- U 1008 Controlled Drug Delivery Systems and Biomaterials, Inserm, F-59000 Lille, France
- Service de Chirurgie Plastique, CHU Lille, F-59000 Lille, France
| | - Philippe Marchetti
- UMR9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, CNRS, Inserm, CHU Lille, Oncolille, University Lille, F-59000 Lille, France; (A.J.); (N.G.)
- Centre de Bio-Pathologie, Banque de Tissus, CHU Lille, F-59000 Lille, France
| |
Collapse
|
3
|
[Research progress of external volume expansion assisted autologous fat grafting for breast reconstruction]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:370-375. [PMID: 35293180 PMCID: PMC8923929 DOI: 10.7507/1002-1892.202111016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To review the application progress, mechanism, application points, limitations, and oncological safety of external volume expansion (EVE) assisted autologous fat grafting for breast reconstruction and provide a reference for optimizing the design of EVE. METHODS Based on the latest relevant articles, the basic experiments and clinical applications of EVE were summarized. RESULTS EVE can reduce interstitial fluid pressure, increase blood supply, and promote adipogenic differentiation, thereby benefiting the survival of transplanted fat. EVE assisted autologous fat grafting in clinical practice can improve the retention rate of breast volume and the outcome of breast reconstruction, meanwhile it doesn't increase the risk of local recurrence. But there is no standard parameters for application, and there are many complications and limitations. CONCLUSION EVE improves the survival of transplanted fat, but its complications and poor compliance are obvious, so it is urgent to further investigate customized products for breast reconstruction after breast cancer and establish relevant application guidelines.
Collapse
|
4
|
Oh J, Kim M, Oh J, Heo CY. Efficacy of breast augmentation using an external breast tissue expander for a shorter period while applying higher pressure: a preliminary study. ARCHIVES OF AESTHETIC PLASTIC SURGERY 2022. [DOI: 10.14730/aaps.2021.00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Various types of external breast tissue expanders have been found to be effective for aesthetic breast augmentation. However, their use has been limited when compared with implant-based breast augmentation due to the burdensome nature of their application. This article reports the possibility that external breast tissue expanders may be applied safely and effectively with higher pressure and shorter application time.Methods The participants comprised patients who desired breast augmentation using the EVERA-RAPHA device between January 2020 and March 2020. A double-blinded prospective study was conducted on two groups of eight patients each, with either 60 mmHg or 100 mmHg of pressure applied. Standardized photographs were taken and blinded measurements of volume and circumference were made. The Mann-Whitney and paired t-tests were conducted.Results Sixteen patients were evaluated after 1 month of treatment. The women in groups 1 and 2 (60 mmHg and 100 mmHg, respectively) used EVERA-RAPHA for 15.400± 0.704 and 15.300±0.477 minutes per day, respectively. The mean volume increases in groups 1 and 2 were 39.000±42.526 cc and 27.700±20.260 cc, respectively. No patients dropped out of the study. All patients reported that the device was tolerable. Mild bruising was found in 62.5% of the patients in group 2.Conclusions Breast augmentation using external tissue expanders can be a safe, effective, and practical option. Pressures of 60 mmHg or 100 mmHg can be safely applied for a shorter duration. Larger studies are needed to further confirm our findings.
Collapse
|
5
|
Qin Z, Yu Z, Song B. Efficacy and Safety of External Volume Expansion (EVE) on Fat Grafting: A Systematic Review and Single-Arm Meta-Analysis. J Plast Reconstr Aesthet Surg 2021; 75:1073-1082. [PMID: 34930704 DOI: 10.1016/j.bjps.2021.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/02/2021] [Accepted: 11/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The autologous fat grafting is commonly used for reconstructive or aesthetic purposes. However, due to the huge variation in methods, its retention rate varies a lot. External volume expansion (EVE) has been used to treat recipient sites of fat grafting. Concerns have been raised regarding its efficacy and safety. METHODS We have searched PubMed, EMBASE, and the Cochrane Library for studies on EVE-assisted fat grafting published from 2000 to 2020. A meta-analysis was conducted to pool the retention rate. The incidence of complications was assessed for reconstructive or aesthetic purposes. RESULTS The 11 included studies involved 1152 patients with operations on 1794 breasts. Four studies were included in the meta-analysis. The pooled retention rate was 65% [95%CI 49, 79]. Eight studies reported the complications. The total complication incidence was 34%, which is 35% for the aesthetic group and 33% for the reconstructive group. The complication rate was not obviously different between the two groups. CONCLUSIONS The study shows that the EVE-assisted fat grafting has better retention rate than traditional fat grafting. However, the data showed that the complication rate was much higher in the EVE-assisted group.
Collapse
Affiliation(s)
- Zijin Qin
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi 710032, People's Republic of China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi 710032, People's Republic of China
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No. 127 Changle West Road, Xi'an, Shaanxi 710032, People's Republic of China.
| |
Collapse
|
6
|
Chen X, Lu F, Yuan Y. The Application and Mechanism of Action of External Volume Expansion in Soft Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:181-197. [PMID: 32821009 DOI: 10.1089/ten.teb.2020.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xihang Chen
- Department of Plastic and Cosmetic Surgery, Southern Medical University, Nanfang Hospital, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Southern Medical University, Nanfang Hospital, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Cosmetic Surgery, Southern Medical University, Nanfang Hospital, Guangzhou, China
| |
Collapse
|
7
|
Rigotti G, Chirumbolo S, Cicala F, Parnigotto PP, Nicolato E, Calderan L, Conti G, Sbarbati A. Negative Pressure From an Internal Spiral Tissue Expander Generates New Subcutaneous Adipose Tissue in an In Vivo Animal Model. Aesthet Surg J 2020; 40:448-459. [PMID: 31504155 DOI: 10.1093/asj/sjz194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Tissue expanders are widely utilized in plastic surgery. Traditional expanders usually are "inflatable balloons," which are planned to grow additional skin and/or to create space to be filled, for example, with an implant. In very recent years, reports suggest that negative pressure created by an external device (ie, Brava) induces both skin expansion and adipogenesis. OBJECTIVES The authors evaluated and assessed the adipogenetic potential of a novel internal tissue expander in an in vivo animal model. METHODS New Zealand female rabbits were enrolled in the study. A prototype spiral inner tissue expander was employed. It consisted of a-dynamic conic expander (DCE) with a valve at the end: when empty, it is flat (Archimedean spiral), whereas when filled with a fluid, it takes a conic shape. Inside the conic spiral, a negative pressure is therefore created. DCE is implanted flat under the latissimus dorsi muscle in experimental animals (rabbit) and then filled to reach the conical shape. Animals were investigated with magnetic resonance imaging, histology, and transmission electronic microscopy at 3, 6, and 12 months. RESULTS Magnetic resonance imaging revealed a marked increase in newly formed adipose tissue, reaching its highest amount at 12 months after the DCE implantation. Histology confirmed the existence of new adipocytes, whereas transmission electronic microscopy ultrastructure confirmed that most of these new cells were mature adipocytes. CONCLUSIONS Tensile stress, associated with negative-pressure expanders, generated newly white subcutaneous adipose tissue.
Collapse
|
8
|
Chen X, Deng Z, He Y, Lu F, Yuan Y. Mechanical Strain Promotes Proliferation of Adipose-Derived Stem Cells Through the Integrin β1-Mediated RhoA/Myosin Light Chain Pathway. Tissue Eng Part A 2020; 26:939-952. [PMID: 32066340 DOI: 10.1089/ten.tea.2019.0266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
External volume expansion (EVE) promotes proliferation of adipose-derived stem cells (ADSCs) during adipose tissue regeneration. However, the mechanism by which EVE is translated into biochemical signals and subsequently induces proliferation of ADSCs is poorly understood. Here, we investigated the strain in adipose tissue and mechanochemical signaling upon EVE in rats. In addition, the effect of mechanical strain on proliferation of ADSCs was assessed using a custom-built Flexcell device. The level of strain in adipose tissue upon EVE peaked at week 1 and then decreased over time, and the cell proliferation rate was similarly affected. Mechanical strain-dependent activation of integrin β1 and the RhoA/myosin light chain (MLC) pathway was involved in cell proliferation. The proliferation rate of ADSCs was higher under 12% mechanical strain than under 6% and 0% mechanical strain in vitro. Mechanical strain-dependent activation of integrin β1 promoted activation of the small GTPase RhoA and phosphorylation of MLC. Furthermore, knockdown of integrin β1 attenuated activation of the RhoA/MLC pathway and proliferation of ADSCs in response to mechanical strain. Taken together, this study provides the first evidence of mechanochemical signaling in response to EVE. These data may help elucidate the effects of different strain levels on adipose tissue regeneration. Impact statement External volume expansion (EVE) induces adipose tissue regeneration and has great therapeutic potential to correct soft tissue defects. This study showed that EVE promotes proliferation of adipose-derived stem cells by activating integrin β1 and its crucial downstream signaling molecules, namely the small GTPase RhoA and p-myosin light chain. The findings of this study may assist clinical tissue engineering applications and provide new insights into the regulation of adipose tissue regeneration in clinical practice.
Collapse
Affiliation(s)
- Xihang Chen
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zilong Deng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China.,College of Stomatology, Southern Medical University, Guangzhou, People's Republic of China
| | - Yunfan He
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yi Yuan
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Zhang Z, Cai J, Li Y, He Y, Dong Z, Dai J, Lu F. External Volume Expansion Adjusted Adipose Stem Cell by Shifting the Ratio of Fibronectin to Laminin. Tissue Eng Part A 2020; 26:66-77. [PMID: 31347463 DOI: 10.1089/ten.tea.2019.0095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Ziang Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, P.R. China
| | - Junrong Cai
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, P.R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
10
|
Increasing Fat Graft Retention in Irradiated Tissue after Preconditioning with External Volume Expansion. Plast Reconstr Surg 2020; 145:103-112. [DOI: 10.1097/prs.0000000000006372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Li Y, Wu M, Zhang Z, Xia J, Wang Z, Chen X, Xiao X, Lu F, Dong Z. Application of External Force Regulates the Migration and Differentiation of Adipose-Derived Stem/Progenitor Cells by Altering Tissue Stiffness. Tissue Eng Part A 2019; 25:1614-1622. [PMID: 30909828 DOI: 10.1089/ten.tea.2019.0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Large soft-tissue defects are challenging to reconstruct surgically. Expansion of soft tissue using an external volume expansion (EVE) device is a noninvasive method to improve such reconstruction; however, the underlying mechanism is unclear. In this study, we created fat flaps in Sprague-Dawley rats, applied an external force of 3 or 6 kPa using an EVE device, and investigated the migration and differentiation of adipose-derived stem/progenitor cells (ASCs). In addition, we performed finite element analysis to explore the stiffness of adipose tissue. An external force of 3 kPa promoted the migration and adipogenic differentiation of ASCs. By comparison, an external force of 6 kPa had a larger effect on migration of ASCs, but a smaller effect on adipogenic differentiation of ASCs. External force affected adipose tissue stiffness. In conclusion, external force generated by an EVE device increases the stiffness of adipose tissue, which influences the migration and differentiation of ASCs. The size of the external force can be altered according to the tissue stiffness required at particular time points to promote long-term adipose tissue regeneration. Impact Statement Stem cell therapy in clinic mostly requires the addition of exogenous stem cells, therefore the safety and controllability is always defective. In this study, the external force of external volume expansion regulates adipose-derived stem/progenitor cells (ASCs) migration and differentiation through tissue stiffness. Using tissue engineering without exogenous ASCs can promote long-term adipose tissue regeneration. The findings of this study provide theoretical support for clinical tissue engineering applications and improvements in stem cell therapy.
Collapse
Affiliation(s)
- Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Mengfan Wu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Ziang Zhang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Jing Xia
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Zijue Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xinyao Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Xiuyun Xiao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
12
|
Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep 2019; 39:BSR20181776. [PMID: 30760630 PMCID: PMC6390125 DOI: 10.1042/bsr20181776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/27/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Background: There is a clinical need for the use of engineered adipose tissue in place of surgical reconstruction. We previously found that the external volume expansion (EVE) device increased special cell clusters in well-vascularized connective stroma during adipose regeneration. However, the origin of these cell clusters and their role in adipose tissue regeneration remain unknown. Aim: In the present study, we evaluated EVE in the construction of expanded prefabricated adipose tissue (EPAT) in a rat model. Methods: Rats were randomized into an EVE suction group and a control group, with 24 rats in each group. The structure and origin of the special cell clusters were determined by hematoxylin and eosin staining, and immunohistochemistry; their role in adipose tissue regeneration was investigated by immunohistochemistry and Western blot analyses. Results: Special cell clusters began to increase at week 1 with a peak at week 4, and then receded from weeks 8 to 12. Clusters were identified as glandular epithelial cells as determined by their gland-like structure and expression of specific markers. The cell clusters induced significant infiltration of macrophage antigen-2 (Mac-2) positive macrophages by secreting monocyte chemoattractant protein-1 (MCP-1) at the early stage of suction. Subsequently, these infiltrated macrophages expressed massive vascular endothelial growth factor (VEGF) to promoted angiogenesis. Conclusion: EVE generated glandular epithelial cell clusters, which recruited macrophages to promote angiogenesis and subsequent adipose tissue regeneration. These findings shed light on the mechanisms underlying the effects of EVE devices on adipose tissue regeneration.
Collapse
|
13
|
Delivery of External Volume Expansion through Microdeformational Interfaces Safely Induces Angiogenesis in a Murine Model of Intact Diabetic Skin with Endothelial Cell Dysfunction. Plast Reconstr Surg 2019; 143:453-464. [DOI: 10.1097/prs.0000000000005267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Delayed Postconditioning with External Volume Expansion Improves Survival of Adipose Tissue Grafts in a Murine Model. Plast Reconstr Surg 2019; 143:99e-110e. [DOI: 10.1097/prs.0000000000005167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Noninvasive Flap Preconditioning by Foam-Mediated External Suction Improves the Survival of Fasciocutaneous Axial-Pattern Flaps in a Type 2 Diabetic Murine Model. Plast Reconstr Surg 2018; 142:872e-883e. [DOI: 10.1097/prs.0000000000005038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
|
17
|
External Volume Expansion Up-Regulates CXCL12 Expression and Enhances Mesenchymal Stromal Cell Recruitment toward Expanded Prefabricated Adipose Tissue in Rats. Plast Reconstr Surg 2018; 141:526e-537e. [DOI: 10.1097/prs.0000000000004217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Liu W, Luan J. Recent Advances on the Application of Negative Pressure External Volume Expansion in Breast Plastic Surgery. Aesthetic Plast Surg 2018; 42:112-117. [PMID: 29075815 DOI: 10.1007/s00266-017-0986-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND External volume expansion (EVE) has been effectively applied as an assistance to fat transplantation on breast plastic surgery. Many indicators and refinements have been made in clinical practice; meanwhile, the related mechanism and more optimized preclinical model also have been explored in experimental studies. METHODS A literature search was conducted using PubMed with the keywords: EVE, negative pressure, breast enlargement, breast augmentation, breast reconstruction, breast plastic surgery and breast aesthetic surgery. Studies dealing with the clinical and preclinical aspects of the subject and also in vitro experiments related to a certain period of negative pressure and adipose-derived cells were selected, and those only focused on negative pressure were excluded. RESULTS The indications, contraindications, complications and treatments of EVE in clinical practice were summarized. The experimental studies were mainly classified into two groups (mechanical and translational) according to their contents. Mechanical studies were further divided into inference experimental validation phase studies. For the experimental validation phase, EVE was verified to promote angiogenesis, while it still remained controversial whether it would enhance adipogenesis and cell proliferation. CONCLUSION Clinically, our experience is on the stage of exploration, and there is a lack of standardized guidelines on its clinical application. Experimentally, the previous studies showed some subtly different views on the functional mechanisms. However, it is not enough to regulate the clinical practice yet. Therefore, related basic studies and long-term clinical follow-up are needed. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
19
|
Giatsidis G, Cheng L, Haddad A, Ji K, Succar J, Lancerotto L, Lujan-Hernandez J, Fiorina P, Matsumine H, Orgill DP. Noninvasive induction of angiogenesis in tissues by external suction: sequential optimization for use in reconstructive surgery. Angiogenesis 2017; 21:61-78. [DOI: 10.1007/s10456-017-9586-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
|