1
|
Jiang Z, Cheng H, Qian X, Tu J, Fan C, Pan Y, Lin Z, Chen J, Wang X, Zhang J. The role and mechanism of engineered nanovesicles derived from hair follicle mesenchymal stem cells in the treatment of UVB-induced skin photoaging. J Cosmet Dermatol 2024; 23:3005-3020. [PMID: 38769897 DOI: 10.1111/jocd.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are effective in the treatment of skin photoaging; however, their low yield and functional decline with passage progression limit their clinical application. Cell-derived nanovesicles (CNVs) are potential alternatives that can address the limitations of EVs derived from MSCs and are conducive to clinical transformations. Hair follicle mesenchymal stem cells (HFMSCs), a type of MSCs, have demonstrated the function of repairing skin tissues; nevertheless, the efficacy of CNVs from HFMSCs (HFMSC-CNVs) in the treatment of skin photoaging remains unclear. Therefore, ultraviolet radiation B (UVB)-induced photoaging nude mice and human dermal fibroblasts (HDFs) were used as experimental models to investigate the therapeutic effects of HFMSC-CNVs in photoaging models. METHODS HFMSC-CNVs were successfully prepared using the mechanical extrusion method. UVB-induced nude mice and HDFs were used as experimental models of photoaging. Multiple approaches, including hematoxylin-eosin and Masson staining, immunohistochemistry, immunofluorescence, detection of reactive oxygen species (ROS), flow cytometry, western blotting, and other experimental methods, were combined to investigate the possible effects and mechanisms of HFMSC-CNVs in the treatment of skin photoaging. RESULTS In the nude mouse model of skin photoaging, treatment with HFMSC-CNVs reduced UVB-induced skin wrinkles (p < 0.05) and subcutaneous capillary dilation, alleviated epidermis thickening (p < 0.001), and dermal thinning (p < 0.001). Furthermore, HFMSC-CNVs upregulated proliferating cell nuclear antigen (PCNA) expression (p < 0.05) and decreased the levels of ROS, β-galactosidase (β-Gal), and CD86 (p < 0.01). In vitro experiments, treatment with HFMSC-CNVs enhanced the cellular activity of UVB-exposed HDFs (p < 0.05), and reduced ROS levels and the percentage of senescent cells (p < 0.001), and alleviated cell cycle arrest (p < 0.001). HFMSC-CNVs upregulated the expression of Collagen I (Col I), SMAD2/3, transforming growth factor beta (TGF-β), catalase (CAT), glutathione peroxidase-1 (GPX-1), and superoxide dismutase-1 (SOD-1) (p < 0.05) and downregulated the expression of cycle suppressor protein (p53), cell cycle suppressor protein (p21), and matrix metalloproteinase 3 (MMP3) (p < 0.05). CONCLUSION Conclusively, the anti-photoaging properties of HFMSC-CNVs were confirmed both in vivo and in vitro. HFMSC-CNVs exert anti-photoaging effects by alleviating cell cycle arrest, decreasing cellular senescence and macrophage infiltration, promoting cell proliferation and extracellular matrix (ECM) production, and reducing oxidative stress by increasing the activity of antioxidant enzymes.
Collapse
Affiliation(s)
- Zhounan Jiang
- Affiliated Hangzhou First People's Hospital, School Of Medicine, Westlake University, Hangzhou, China
- The Second Affiliated Hospital Zhejiang University School Of Medicine, Hangzhou, China
| | - Hanxiao Cheng
- Affiliated Hangzhou First People's Hospital, School Of Medicine, Westlake University, Hangzhou, China
| | - Xifei Qian
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyi Tu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongxiang Fan
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yirui Pan
- Affiliated Hangzhou First People's Hospital, School Of Medicine, Westlake University, Hangzhou, China
| | - Zhiwei Lin
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Jinyang Chen
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Xiangsheng Wang
- Affiliated Hangzhou First People's Hospital, School Of Medicine, Westlake University, Hangzhou, China
| | - Jufang Zhang
- Affiliated Hangzhou First People's Hospital, School Of Medicine, Westlake University, Hangzhou, China
| |
Collapse
|
2
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Wu S, Sun S, Fu W, Yang Z, Yao H, Zhang Z. The Role and Prospects of Mesenchymal Stem Cells in Skin Repair and Regeneration. Biomedicines 2024; 12:743. [PMID: 38672102 PMCID: PMC11048165 DOI: 10.3390/biomedicines12040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been recognized as a cell therapy with the potential to promote skin healing. MSCs, with their multipotent differentiation ability, can generate various cells related to wound healing, such as dermal fibroblasts (DFs), endothelial cells, and keratinocytes. In addition, MSCs promote neovascularization, cellular regeneration, and tissue healing through mechanisms including paracrine and autocrine signaling. Due to these characteristics, MSCs have been extensively studied in the context of burn healing and chronic wound repair. Furthermore, during the investigation of MSCs, their unique roles in skin aging and scarless healing have also been discovered. In this review, we summarize the mechanisms by which MSCs promote wound healing and discuss the recent findings from preclinical and clinical studies. We also explore strategies to enhance the therapeutic effects of MSCs. Moreover, we discuss the emerging trend of combining MSCs with tissue engineering techniques, leveraging the advantages of MSCs and tissue engineering materials, such as biodegradable scaffolds and hydrogels, to enhance the skin repair capacity of MSCs. Additionally, we highlight the potential of using paracrine and autocrine characteristics of MSCs to explore cell-free therapies as a future direction in stem cell-based treatments, further demonstrating the clinical and regenerative aesthetic applications of MSCs in skin repair and regeneration.
Collapse
Affiliation(s)
- Si Wu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Shengbo Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100050, China
| | - Wentao Fu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
4
|
Liu M, Lu F, Feng J. Therapeutic potential of adipose tissue derivatives in skin photoaging. Regen Med 2023; 18:869-883. [PMID: 37743749 DOI: 10.2217/rme-2023-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Photoaging, the primary cause of exogenous skin aging and predominantly caused by ultraviolet radiation, is an essential type of skin aging characterized by chronic skin inflammation. Recent studies have shown that oxidative stress, inflammation, skin barrier homeostasis, collagen denaturation and pigmentation are the main contributors to it. As a composite tissue rich in matrix and vascular components, adipose tissue derivatives have been recently gaining attention as potential therapeutic agents for various human diseases with fat-processing technology upgrades. This review analyzes both 'minimally treated' and 'nonminimally treated' fat derivatives to give an overview of the preclinical and clinical relevance of adipose tissue derivatives for antiphotoaging application, highlighting their good clinical prospects as well as discussing their safety and potential risks.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| | - Feng Lu
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| | - Jingwei Feng
- Department of Plastic & Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, PR China
| |
Collapse
|
5
|
Li K, Zhou P, Guo Y, Xu T, Lin S, Lin S, Ji C. Recent advances in exosomal non-coding RNA-based therapeutic approaches for photoaging. Skin Res Technol 2023; 29:e13463. [PMID: 37753673 PMCID: PMC10495620 DOI: 10.1111/srt.13463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Photoaging is a degenerative biological process that affects the quality of life. It is caused by environmental factors including ultraviolet radiation (UVR), deep skin burns, smoking, active oxygen, chemical substances, and trauma. Among them, UVR plays a vital role in the aging process. AIM With the continuous development of modern medicine, clinical researchers have investigated novel approaches to treat aging. In particular, mesenchymal stem cells (MSCs), non-coding RNAs are involved in various physiological processes have broad clinical application as they have the advantages of convenient samples, abundant sources, and avoidable ethical issues. METHODS This article reviews research progress on five types of stem cell, exosomes, non-coding RNA in the context of photoaging treatment: adipose-derived stem cell, human umbilical cord MSCs, epidermal progenitor cells, keratinocyte stem cells, and hair follicle stem cells (HFSCs). It also includes stem cell related exosomes and their non-coding RNA research. RESULTS The results have clinical guiding significance for prevention and control of the onset and development of photoaging. It is found that stem cells secrete cytokines, cell growth factors, non-coding RNA, exosomes and proteins to repair aging skin tissues and achieve skin rejuvenation. In particular, stem cell exosomes and non-coding RNA are found to have significant research potential, as they possess the benefits of their source cells without the disadvantages which include immune rejection and granuloma formation.
Collapse
Affiliation(s)
- Kun‐Jie Li
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Peng‐Jun Zhou
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Yan‐Ni Guo
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Tian‐Xing Xu
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Song‐Fa Lin
- Department of Dermatologythe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Shu Lin
- Centre of Neurological and Metabolic Researchthe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
- Group of NeuroendocrinologyGarvan Institute of Medical ResearchSydneyAustralia
| | - Chao Ji
- Department of Dermatologythe First Affiliated Hospital of Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
6
|
Rehman A, Nigam A, Laino L, Russo D, Todisco C, Esposito G, Svolacchia F, Giuzio F, Desiderio V, Ferraro G. Mesenchymal Stem Cells in Soft Tissue Regenerative Medicine: A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1449. [PMID: 37629738 PMCID: PMC10456353 DOI: 10.3390/medicina59081449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Soft tissue regeneration holds significant promise for addressing various clinical challenges, ranging from craniofacial and oral tissue defects to blood vessels, muscle, and fibrous tissue regeneration. Mesenchymal stem cells (MSCs) have emerged as a promising tool in regenerative medicine due to their unique characteristics and potential to differentiate into multiple cell lineages. This comprehensive review explores the role of MSCs in different aspects of soft tissue regeneration, including their application in craniofacial and oral soft tissue regeneration, nerve regeneration, blood vessel regeneration, muscle regeneration, and fibrous tissue regeneration. By examining the latest research findings and clinical advancements, this article aims to provide insights into the current state of MSC-based therapies in soft tissue regenerative medicine.
Collapse
Affiliation(s)
- Ayesha Rehman
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Aditya Nigam
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Luigi Laino
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | - Diana Russo
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| | | | | | - Fabiano Svolacchia
- Departments of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00118 Rome, Italy;
| | - Federica Giuzio
- Department of Sciences, University of Basilicata, Via Nazario Sauro 85, 85100 Potenza, Italy;
- U.O.S.D. of Plastic Surgery A.O.R “San Carlo”, 85100 Potenza, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (A.R.); (A.N.)
| | - Giuseppe Ferraro
- Multidisciplinary Department of Medicine for Surgery and Orthodontics, University of Campania “Luigi Vanvitelli”, Via L. Armanni 5, 80138 Naples, Italy; (L.L.); (D.R.); (G.F.)
| |
Collapse
|
7
|
Yan T, Huang L, Yan Y, Zhong Y, Xie H, Wang X. Bone marrow mesenchymal stem cell-derived exosome miR-29b-3p alleviates UV irradiation-induced photoaging in skin fibroblast. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:235-245. [PMID: 35950642 DOI: 10.1111/phpp.12827] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Mesenchymal stem cells-derived exosome (MSCs-exo) was identified to reduce photoaging. The purpose of this study was to investigate the potential role of microRNA (miR)-29b-3p derived from bone marrow MSCs-exo (BMSCs-exo) in photoaging. METHODS Exosomes were isolated from BMSCs and verified by Western blot. A photoaging cell model was constructed by UVB irradiation of human dermal fibroblasts (HDFs). Quantitative real-time PCR (RT-qPCR) was performed to detect the mRNA levels of miR-29b-3p, collagen type I and matrix metalloproteinases (MMPs). CCK-8, Transwell and flow cytometry were applicated to examine cell viability, migration and apoptosis. Commercial kits are used to measure levels of oxidative stress indicators. Finally, a dual-luciferase reporter assay was applied to validate the target of miR-29b-3p. RESULTS Extracted exosomes were positive for HSP70 and CD9. Survival of HDFs increased in an exosome concentration-dependent manner. UVB irradiation inhibited miR-29b-3p levels compared with controls, but BMSCs-exo treatment restored miR-29b-3p levels (p < .05). Additionally, BMSCs-exo-miR-29b-3p reversed the inhibition of HDFs migration and oxidative stress by UVB irradiation, as well as the promotion of apoptosis. However, this reversal was attenuated by the suppression of miR-29b-3p (p < .05). Furthermore, BMSCs-exo-miR-29b-3p also inhibited the degradation of collagen type I and the production of MMPs in photoaging, and they were also eliminated by the reduced miR-29b-3p. Finally, MMP-2 was the target gene of miR-29b-3p. CONCLUSION Our study presented a novel role for BMSCs-exo-miR-29b-3p in improving skin photoaging function, and these findings may provide new insights into the targeted treatment of skin photoaging.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Lining Huang
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yunling Yan
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yiping Zhong
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Heng Xie
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xiaohua Wang
- Department of Medical Cosmetology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Qian H, Shan Y, Gong R, Lin D, Zhang M, Wang C, Wang L. Mechanism of action and therapeutic effects of oxidative stress and stem cell-based materials in skin aging: Current evidence and future perspectives. Front Bioeng Biotechnol 2023; 10:1082403. [PMID: 36698629 PMCID: PMC9868183 DOI: 10.3389/fbioe.2022.1082403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Aging is associated with multiple degenerative diseases, including atherosclerosis, osteoporosis, and Alzheimer's disease. As the most intuitive manifestation of aging, skin aging has received the most significant attention. Skin aging results from various intrinsic and extrinsic factors. Aged skin is characterized by wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation. The underlying mechanism is complex and may involve cellular senescence, DNA damage, oxidative stress (OS), inflammation, and genetic mutations, among other factors. Among them, OS plays an important role in skin aging, and multiple antioxidants (e.g., vitamin C, glutathione, and melatonin) are considered to promote skin rejuvenation. In addition, stem cells that exhibit self-replication, multi-directional differentiation, and a strong paracrine function can exert anti-aging effects by inhibiting OS. With the further development of stem cell technology, treatments related to OS mitigation and involving stem cell use may have a promising future in anti-skin aging therapy.
Collapse
Affiliation(s)
- Huan Qian
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Huan Qian, ; Lu Wang,
| | - Yihan Shan
- Wenzhou Medical University, Wenzhou, China
| | | | - Danfeng Lin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengwen Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Wang
- Department of Plastic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lu Wang
- Starbody plastic surgery Clinic, Hangzhou, China,*Correspondence: Huan Qian, ; Lu Wang,
| |
Collapse
|
9
|
Garay RP. Recent clinical trials with stem cells to slow or reverse normal aging processes. FRONTIERS IN AGING 2023; 4:1148926. [PMID: 37090485 PMCID: PMC10116573 DOI: 10.3389/fragi.2023.1148926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023]
Abstract
Aging is associated with a decline in the regenerative potential of stem cells. In recent years, several clinical trials have been launched in order to evaluate the efficacy of mesenchymal stem cell interventions to slow or reverse normal aging processes (aging conditions). Information concerning those clinical trials was extracted from national and international databases (United States, EU, China, Japan, and World Health Organization). Mesenchymal stem cell preparations were in development for two main aging conditions: physical frailty and facial skin aging. With regard to physical frailty, positive results have been obtained in phase II studies with intravenous Lomecel-B (an allogeneic bone marrow stem cell preparation), and a phase I/II study with an allogeneic preparation of umbilical cord-derived stem cells was recently completed. With regard to facial skin aging, positive results have been obtained with an autologous preparation of adipose-derived stem cells. A further sixteen clinical trials for physical frailty and facial skin aging are currently underway. Reducing physical frailty with intravenous mesenchymal stem cell administration can increase healthy life expectancy and decrease costs to the public health system. However, intravenous administration runs the risk of entrapment of the stem cells in the lungs (and could raise safety concerns). In addition to aesthetic purposes, clinical research on facial skin aging allows direct evaluation of tissue regeneration using sophisticated and precise methods. Therefore, research on both conditions is complementary, which facilitates a global vision.
Collapse
Affiliation(s)
- Ricardo P. Garay
- Pharmacology and Therapeutics, Craven, 91360 Villemoisson-sur-Orge, France
- CNRS, National Centre of Scientific Research, Paris, France
- *Correspondence: Ricardo P. Garay,
| |
Collapse
|
10
|
Lv J, Yang S, Lv M, Lv J, Sui Y, Guo S. Protective roles of mesenchymal stem cells on skin photoaging: A narrative review. Tissue Cell 2022; 76:101746. [PMID: 35182986 DOI: 10.1016/j.tice.2022.101746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Skin is a natural barrier of human body and a visual indicator of aging process. Exposure to ultraviolet (UV) radiation in the sunlight may injure the skin tissues and cause local damage. Besides, it is reported that repetitive or long-term exposure to UV radiation may reduce the collagen production, change the normal skin structure and cause premature skin aging. This is termed "photoaging". The classical symptoms of photoaging include increased roughness, wrinkle formation, mottled pigmentation or even precancerous changes. Mesenchymal stem cells (MSCs) are a kind of cells with the ability of self-renewal and multidirectional differentiation into many types of cells, like adipocytes, osteoblasts and chondrocytes. Researchers have explored diverse pharmacological actions of MSCs because of their migratory activity, paracrine actions and immunoregulation effects. In recent years, the huge potential of MSCs in preventing skin from photoaging has gained wide attention. MSCs exert their beneficial effects on skin photoaging via antioxidant effect, anti-apoptotic/anti-inflammatory effect, reduction of matrix metalloproteinases (MMPs) and activation of dermal fibroblasts proliferation. MSCs and MSC related products have demonstrated huge potential in the treatment of skin photoaging. This narrative review concisely sums up the recent research developments on the roles of MSCs in protection against photoaging and highlights the enormous potential of MSCs in skin photoaging treatment.
Collapse
Affiliation(s)
- Jiacheng Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiarui Lv
- Department of Physiology, School of Life Science, China Medical University, Shenyang, China
| | - Yanan Sui
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Bellei B, Migliano E, Picardo M. Research update of adipose tissue-based therapies in regenerative dermatology. Stem Cell Rev Rep 2022; 18:1956-1973. [PMID: 35230644 DOI: 10.1007/s12015-022-10328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2022] [Indexed: 12/09/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) have a spontaneous propensity to support tissue homeostasis and regeneration. Among the several sources of MSCs, adipose-derived tissue stem cells (ADSCs) have received major interest due to the higher mesenchymal stem cells concentration, ease, and safety of access. However, since a significant part of the natural capacity of ADSCs to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines, lipids, and extracellular matrix components, several studies focused on cell-free strategies. Furthermore, adipose cell-free derivatives are becoming more attractive especially for non-volumizing purposes, such as most dermatological conditions. However, when keratinocytes, fibroblasts, melanocytes, adipocytes, and hair follicle cells might not be locally sourced, graft of materials containing concentrated ADSCs is preferred. The usage of extracellular elements of adipose tissue aims to promote a self-autonomous regenerative microenvironment in the receiving area restoring physiological homeostasis. Hence, ADSCs or their paracrine activity are currently being studied in several dermatological settings including wound healing, skin fibrosis, burn, and aging.The present work analyzing both preclinical and clinical experiences gives an overview of the efficacy of adipose tissue-derivatives like autologous fat, the stromal vascular fraction (SVF), purified ADSCs, secretome and extracellular matrix graft in the field of regenerative medicine for the skin.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Emilia Migliano
- Department of Plastic and Reconstructive Surgery, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
12
|
Atiyeh B, Ghieh F, Oneisi A. Nanofat Cell-Mediated Anti-Aging Therapy: Evidence-Based Analysis of Efficacy and an Update of Stem Cell Facelift. Aesthetic Plast Surg 2021; 45:2939-2947. [PMID: 34085105 DOI: 10.1007/s00266-021-02353-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/09/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Fat grafting has been extensively applied as natural filler and has been very promising in restoring volume loss. Lipografting has also been credited to reduce age-related skin changes due to the regenerative potential of adipose derived stem cells. Cell-mediated therapies in plastic surgery are rapidly evolving with growing applications. Nanofat, a bio-regenerative liquid suspension rich in stromal vascular fraction cells without viable adipocytes, has been described as an efficient cutaneous anti-aging therapy. We have published in 2013 a review entitled "stem cell facelift: between reality and fiction." Available clinical evidence at that time did not substantiate marketing and promotional claims of "stem cell facelift". The same year, the report about nanofat was published demonstrating striking clinical outcome. The current literature search is aimed at reviewing any evidence that has emerged since then regarding clinical efficacy of this modality. METHODS A thorough PICO tool-based comprehensive literature search of PubMed database for "the efficacy of nanofat cell-mediated anti-aging therapy" was conducted with a time frame from 2013 till present. RESULTS Despite apparent increasing popularity of stem cell rejuvenation, well-controlled clinical studies about this modality are surprisingly very scarce. Only seven papers published after 2013 were identified and were included in this review CONCLUSION: Though considered to be a safe procedure, and despite documented histologic improvement and striking clinical outcome in some reports, available evidence can hardly support clinical improvement of skin quality. Before cell-mediated aesthetic rejuvenation applications can be routinely undertaken, more robust evidence with well-defined primary outcome end points and objective outcome measures is required. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Bishara Atiyeh
- Division of Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Fadi Ghieh
- Division of Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ahmad Oneisi
- Division of Plastic and Reconstructive Surgery, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
13
|
Charles-de-Sá L, Gontijo-de-Amorim NF, Coleman S, Rigotti G. Regen Fat Code: A Standardized Protocol for Facial Volumetry and Rejuvenation. Aesthet Surg J 2021; 41:NP1394-NP1404. [PMID: 33453100 DOI: 10.1093/asj/sjab016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Facial aging is a degenerative process that impairs contour and angle prominence. Rejuvenation is based on tissue replacement, volumization of the atrophic areas, and improving flaccidity and cutaneous photoaging. OBJECTIVES The aim of this study was to apply structural fat grafting to manage volumetric deficits of the face, following a new systematic protocol called "Regen Fat Code" (RF Code) that was created to standardize structural lipotransfer methods. METHODS This is a prospective clinical trial involving 80 healthy candidates for facial rejuvenation who were split into 2 groups. Group A underwent only structural lipotransfer; Group B underwent replacement of deep facial structures by face-lifting plus structural lipotransfer. Structural lipotransfer followed the protocol "RF Code" and 3 clinical tools were adopted for pre- and postoperative facial volumetric analysis. RESULTS Total volume (mL) of lipotransfer in Groups A and B ranged between 1 and 20 mL (mean [standard deviation], 12 [5] mL), distributed to the different areas as follows: nasolabial fold, 3.32 [0.92] mL; superior lip, 2.0 [0.62] mL; inferior lip, 2.76 [0.71] mL; malar, 8.51 [5.25] mL; inferior eyelid, 1.2 [0.54] mL; and chin, 7.18 [1.99] mL. Areas with less mobility showed a lower absorption index than dynamic areas. CONCLUSIONS The development of the RF Code protocol demonstrated the potential of grouping many parameters based on the lipotransfer method used to volumize and regenerate atrophic areas of the face. The protocol is easy to apply, and allows different volumizing and regenerative effects to be proposed, according to the demands of each surgical area. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Luiz Charles-de-Sá
- Department of Plastic, Reconstructive and Aesthetic Surgery, Training and Research State University Hospital of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Sydney Coleman
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Gino Rigotti
- Regenerative Medicine Department of San Francesco Hospital, Verona, Italy
| |
Collapse
|
14
|
Guiotto M, Riehle MO, Raffoul W, Hart A, di Summa PG. Is human platelet lysate (hPL) the ideal candidate to substitute the foetal bovine serum for cell-therapy translational research? J Transl Med 2021; 19:426. [PMID: 34645479 PMCID: PMC8513333 DOI: 10.1186/s12967-021-03104-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/01/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- M Guiotto
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. .,Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.
| | - M O Riehle
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK
| | - W Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - A Hart
- Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, UK.,Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - P G di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
15
|
|
16
|
Photoaged Skin Therapy with Adipose-Derived Stem Cells. Plast Reconstr Surg 2021; 148:144e-145e. [PMID: 34100851 DOI: 10.1097/prs.0000000000008070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Guimarães GR, Almeida PP, de Oliveira Santos L, Rodrigues LP, de Carvalho JL, Boroni M. Hallmarks of Aging in Macrophages: Consequences to Skin Inflammaging. Cells 2021; 10:cells10061323. [PMID: 34073434 PMCID: PMC8228751 DOI: 10.3390/cells10061323] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
The skin is our largest organ and the outermost protective barrier. Its aging reflects both intrinsic and extrinsic processes resulting from the constant insults it is exposed to. Aging in the skin is accompanied by specific epigenetic modifications, accumulation of senescent cells, reduced cellular proliferation/tissue renewal, altered extracellular matrix, and a proinflammatory environment favoring undesirable conditions, including disease onset. Macrophages (Mφ) are the most abundant immune cell type in the skin and comprise a group of heterogeneous and plastic cells that are key for skin homeostasis and host defense. However, they have also been implicated in orchestrating chronic inflammation during aging. Since Mφ are related to innate and adaptive immunity, it is possible that age-modified skin Mφ promote adaptive immunity exacerbation and exhaustion, favoring the emergence of proinflammatory pathologies, such as skin cancer. In this review, we will highlight recent findings pertaining to the effects of aging hallmarks over Mφ, supporting the recognition of such cell types as a driving force in skin inflammaging and age-related diseases. We will also present recent research targeting Mφ as potential therapeutic interventions in inflammatory skin disorders and cancer.
Collapse
Affiliation(s)
- Gabriela Rapozo Guimarães
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
| | - Palloma Porto Almeida
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
| | - Leandro de Oliveira Santos
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
| | - Leane Perim Rodrigues
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasilia 70790-160, Brazil; (L.P.R.); (J.L.d.C.)
| | - Juliana Lott de Carvalho
- Genomic Sciences and Biotechnology Program, Catholic University of Brasilia, Brasilia 70790-160, Brazil; (L.P.R.); (J.L.d.C.)
- Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil; (G.R.G.); (P.P.A.); (L.d.O.S.)
- Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas 13083-970, Brazil
- Correspondence:
| |
Collapse
|
18
|
Gentile P, Garcovich S. Adipose-Derived Mesenchymal Stem Cells (AD-MSCs) against Ultraviolet (UV) Radiation Effects and the Skin Photoaging. Biomedicines 2021; 9:biomedicines9050532. [PMID: 34064624 PMCID: PMC8151305 DOI: 10.3390/biomedicines9050532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022] Open
Abstract
The skin is a natural barrier against the ultraviolet (UV) radiation of sunlight. The long-term and/or repetitive exposure to the sunlight and related UV radiation may change the skin structure, decreasing collagen production, promoting premature skin aging, which is termed "photoaging". The signs of photoaging include wrinkle formation, mottled pigmentation, and/or cancerous changes. For many years, adipose-derived mesenchymal stem cells (AD-MSCs) and fat grafting (F-GRF) have been used to combat photoaging signs, wrinkles, loss of elasticity, and face soft tissue defects. Several studies have analyzed in vitro actions of AD-MSCs against photoaging's effects, thanks to their migratory activity, paracrine actions, and related in vivo-ex vivo outcomes. In fact, AD-MSCs act against skin photoaging in vitro via activation of dermal fibroblast proliferation, antioxidant effect, and matrix metalloproteinases (MMPs) reduction. In vivo and ex vivo outcomes regard the local injection of AD-MSCs, F-GRF, and/or enriched-F-GRF with AD-MSCs directly in the wrinkles and the face's soft tissue defects. This concise review summarizes the most recent in vitro, in vivo and ex vivo outcomes and developments on the effects of AD-MSCs and F-GRF against photoaging.
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Surgical Science, Plastic and Reconstructive Surgery, Medical School, “Tor Vergata” University, 00133 Rome, Italy
- Scientific Director of Academy of International Regenerative Medicine & Surgery Societies (AIRMESS), 1201 Geneva, Switzerland
- Correspondence: ; Tel.: +39-3388-5154-79
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
19
|
Photoaged Skin Therapy with Adipose-Derived Stem Cells. Plast Reconstr Surg 2021; 147:1065e-1066e. [PMID: 33961596 DOI: 10.1097/prs.0000000000008004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Sierra-Sánchez Á, Montero-Vilchez T, Quiñones-Vico MI, Sanchez-Diaz M, Arias-Santiago S. Current Advanced Therapies Based on Human Mesenchymal Stem Cells for Skin Diseases. Front Cell Dev Biol 2021; 9:643125. [PMID: 33768095 PMCID: PMC7985058 DOI: 10.3389/fcell.2021.643125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Skin disease may be related with immunological disorders, external aggressions, or genetic conditions. Injuries or cutaneous diseases such as wounds, burns, psoriasis, and scleroderma among others are common pathologies in dermatology, and in some cases, conventional treatments are ineffective. In recent years, advanced therapies using human mesenchymal stem cells (hMSCs) from different sources has emerged as a promising strategy for the treatment of many pathologies. Due to their properties; regenerative, immunomodulatory and differentiation capacities, they could be applied for the treatment of cutaneous diseases. In this review, a total of thirteen types of hMSCs used as advanced therapy have been analyzed, considering the last 5 years (2015-2020). The most investigated types were those isolated from umbilical cord blood (hUCB-MSCs), adipose tissue (hAT-MSCs) and bone marrow (hBM-MSCs). The most studied diseases were wounds and ulcers, burns and psoriasis. At preclinical level, in vivo studies with mice and rats were the main animal models used, and a wide range of types of hMSCs were used. Clinical studies analyzed revealed that cell therapy by intravenous administration was the advanced therapy preferred except in the case of wounds and burns where tissue engineering was also reported. Although in most of the clinical trials reviewed results have not been posted yet, safety was high and only local slight adverse events (mild nausea or abdominal pain) were reported. In terms of effectiveness, it was difficult to compare the results due to the different doses administered and variables measured, but in general, percentage of wound's size reduction was higher than 80% in wounds, Psoriasis Area and Severity Index and Severity Scoring for Atopic Dermatitis were significantly reduced, for scleroderma, parameters such as Modified Rodnan skin score (MRSC) or European Scleroderma Study Group activity index reported an improvement of the disease and for hypertrophic scars, Vancouver Scar Scale (VSS) score was decreased after applying these therapies. On balance, hMSCs used for the treatment of cutaneous diseases is a promising strategy, however, the different experimental designs and endpoints stablished in each study, makes necessary more research to find the best way to treat each patient and disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Manuel Sanchez-Diaz
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Andalusian Network of Design and Translation of Advanced Therapies, Virgen de las Nieves University Hospital, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Dermatology, Virgen de las Nieves University Hospital, Granada, Spain.,Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
21
|
Applications of Mesenchymal Stem Cells in Skin Regeneration and Rejuvenation. Int J Mol Sci 2021; 22:ijms22052410. [PMID: 33673711 PMCID: PMC7957487 DOI: 10.3390/ijms22052410] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from adult stem cells. Primary MSCs can be obtained from diverse sources, including bone marrow, adipose tissue, and umbilical cord blood. Recently, MSCs have been recognized as therapeutic agents for skin regeneration and rejuvenation. The skin can be damaged by wounds, caused by cutting or breaking of the tissue, and burns. Moreover, skin aging is a process that occurs naturally but can be worsened by environmental pollution, exposure to ultraviolet radiation, alcohol consumption, tobacco use, and undernourishment. MSCs have healing capacities that can be applied in damaged and aged skin. In skin regeneration, MSCs increase cell proliferation and neovascularization, and decrease inflammation in skin injury lesions. In skin rejuvenation, MSCs lead to production of collagen and elastic fibers, inhibition of metalloproteinase activation, and promote protection from ultraviolet radiation-induced senescence. In this review, we focus on how MSCs and MSC-derived molecules improve diseased and aged skin. Additionally, we emphasize that induced pluripotent stem cell (iPSC)-derived MSCs are potentially advanced MSCs, which are suitable for cell therapy.
Collapse
|
22
|
Chen S, He Z, Xu J. Application of adipose-derived stem cells in photoaging: basic science and literature review. Stem Cell Res Ther 2020; 11:491. [PMID: 33225962 PMCID: PMC7682102 DOI: 10.1186/s13287-020-01994-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Photoaging is mainly induced by continuous exposure to sun light, causing multiple unwanted skin characters and accelerating skin aging. Adipose-derived stem cells(ADSCs) are promising in supporting skin repair because of their significant antioxidant capacity and strong proliferation, differentiation, and migration ability, as well as their enriched secretome containing various growth factors and cytokines. The identification of the mechanisms by which ADSCs perform these functions for photoaging has great potential to explore therapeutic applications and combat skin aging. We also review the basic mechanisms of UV-induced skin aging and recent improvement in pre-clinical applications of ADSCs associated with photoaging. Results showed that ADSCs are potential to address photoaging problem and might treat skin cancer. Compared with ADSCs alone, the secretome-based approaches and different preconditionings of ADSCs are more promising to overcome the current limitations and enhance the anti-photoaging capacity.
Collapse
Affiliation(s)
- Shidie Chen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Zhigang He
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
23
|
Avila FR, Torres RA, Guliyeva G, Huayllani MT, Forte AJ. "The emerging need to characterize the effects of adipose-derived stem cells in atrophic photoaging". J Plast Reconstr Aesthet Surg 2020; 74:890-930. [PMID: 33168486 DOI: 10.1016/j.bjps.2020.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Francisco R Avila
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Ricardo A Torres
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Gunel Guliyeva
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - María T Huayllani
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Antonio J Forte
- Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL, United States.
| |
Collapse
|