1
|
Preiser W, van Zyl GU. Pooled testing: A tool to increase efficiency of infant HIV diagnosis and virological monitoring. Afr J Lab Med 2020; 9:1035. [PMID: 32934914 PMCID: PMC7479369 DOI: 10.4102/ajlm.v9i2.1035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background Pooled testing, or pooling, has been used for decades to efficiently diagnose relatively rare conditions, such as infection in blood donors. Programmes for the prevention of mother-to-child transmission of HIV and for antiretroviral therapy (ART) are being rolled out in much of Africa and are largely successful. This increases the need for early infant diagnosis (EID) of HIV using qualitative nucleic acid testing and for virological monitoring of patients on ART using viral load testing. While numbers of patients needing testing are increasing, infant HIV infections and ART failures are becoming rarer, opening an opportunity for pooled testing approaches. Aim This review highlights the need for universal EID and viral load coverage as well as the challenges faced. We introduce the concept of pooled testing and highlight some important considerations before giving an overview of studies exploring pooled testing for EID and virological monitoring. Results For ART monitoring, pooling has been shown to be accurate and efficient; for EID it has not been tried although modelling shows it to be promising. The final part attempts to place pooling into the context of current mother-to-child transmission of HIV and ART programmes and their expected trajectories over the next years. Conclusion Several points warrant consideration: pre-selection to exclude samples with an elevated pre-test probability of positivity from pooled testing, the use of dried blood or plasma spots, and choosing a pooling strategy that is both practically feasible and economical. Finally, novel ideas are suggested to make pooling even more attractive.
Collapse
Affiliation(s)
- Wolfgang Preiser
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service (NHLS) Tygerberg, Cape Town, South Africa
| | - Gert U van Zyl
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service (NHLS) Tygerberg, Cape Town, South Africa
| |
Collapse
|
2
|
Bavaro DF, Di Carlo D, Rossetti B, Bruzzone B, Vicenti I, Pontali E, Zoncada A, Lombardi F, Di Giambenedetto S, Borghi V, Pecorari M, Milini P, Meraviglia P, Monno L, Saracino A. Pretreatment HIV drug resistance and treatment failure in non-Italian HIV-1-infected patients enrolled in ARCA. Antivir Ther 2020; 25:61-71. [PMID: 32118584 DOI: 10.3851/imp3349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND An increase in pretreatment drug resistance (PDR) to first-line antiretroviral therapy (ART) in low-income countries has been recently described. Herein we analyse the prevalence of PDR and risk of virological failure (VF) over time among migrants to Italy enrolled in ARCA. METHODS HIV-1 sequences from ART-naive patients of non-Italian nationality were retrieved from ARCA database from 1998 to 2017. PDR was defined by at least one mutation from the reference 2009 WHO surveillance list. RESULTS Protease/reverse transcriptase sequences from 1,155 patients, mainly migrants from sub-Saharan Africa (SSA; 42%), followed by Latin America (LA; 25%) and Western countries (WE; 21%), were included. PDR was detected in 8.6% of sequences (13.1% versus 5.8% for B and non-B strains, respectively; P<0.001). 2.1% of patients carried a PDR for protease inhibitors (PIs; 2.1% versus 2.3%; P=0.893), 3.9% for nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs; 6.8% versus 2.1%; P<0.001) and 4.3% for non-nucleoside/nucleotide reverse transcriptase inhibitors (NNRTIs; 6.3% versus 3.1%; P=0.013). Overall, prevalence of PDR over the years remained stable, while it decreased for PIs in LA (P=0.021) and for NRTIs (P=0.020) among migrants from WE. Having more than one class of PDR (P=0.015 versus absence of PDR), higher viral load at diagnosis (P=0.008) and being migrants from SSA (P=0.001 versus WE) were predictive of VF, while a recent calendar year of diagnosis (P<0.001) was protective for VF. CONCLUSIONS PDR appeared to be stable over the years in migrants to Italy enrolled in ARCA; however, it still remains an important cause of VF together with viral load at diagnosis.
Collapse
Affiliation(s)
- Davide Fiore Bavaro
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari Medical School, Bari, Italy.,These authors equally contributed to this work
| | - Domenico Di Carlo
- Pediatric Clinical Research Center 'Romeo and Enrica Invernizzi', University of Milan, Milan, Italy.,These authors equally contributed to this work
| | - Barbara Rossetti
- Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Ilaria Vicenti
- Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | | | | | - Francesca Lombardi
- Università Cattolica del Sacro Cuore, Roma Italia, Istituto di Clinica Malattie Infettive, Rome, Italy
| | - Simona Di Giambenedetto
- Università Cattolica del Sacro Cuore, Roma Italia, Istituto di Clinica Malattie Infettive, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma Italia, UOC malattie infettive, Rome, Italy
| | - Vanni Borghi
- Clinica Malattie infettive, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Monica Pecorari
- SSD Virologia, Azienda Ospedaliero-Univeristaria Policlinico Modena, Modena, Italy
| | - Paola Milini
- Infectious Diseases Unit, Macerata Hospital, Macerata, Italy
| | - Paola Meraviglia
- 1st Division of Infectious Diseases, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Laura Monno
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari Medical School, Bari, Italy
| | - Annalisa Saracino
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari Medical School, Bari, Italy
| |
Collapse
|
3
|
Silverman RA, Beck IA, Kiptinness C, Levine M, Milne R, McGrath CJ, Bii S, Richardson BA, John-Stewart G, Chohan B, Sakr SR, Kiarie JN, Frenkel LM, Chung MH. Prevalence of Pre-antiretroviral-Treatment Drug Resistance by Gender, Age, and Other Factors in HIV-Infected Individuals Initiating Therapy in Kenya, 2013-2014. J Infect Dis 2019; 216:1569-1578. [PMID: 29040633 DOI: 10.1093/infdis/jix544] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/07/2017] [Indexed: 12/27/2022] Open
Abstract
Background Pre-antiretroviral-treatment drug resistance (PDR) is a predictor of human immunodeficiency virus (HIV) treatment failure. We determined PDR prevalence and correlates in a Kenyan cohort. Methods We conducted a cross-sectional analysis of antiretroviral (ARV) treatment-eligible HIV-infected participants. PDR was defined as ≥2% mutant frequency in a participant's HIV quasispecies at pol codons K103N, Y181C, G190A, M184 V, or K65R by oligonucleotide ligation assay and Illumina sequencing. PDR prevalence was calculated by demographics and codon, stratifying by prior ARV experience. Poisson regression was used to estimate prevalence ratios. Results PDR prevalences (95% confidence interval [CI]) in 815 ARV-naive adults, 136 ARV-experienced adults, and 36 predominantly ARV-naive children were 9.4% (7.5%-11.7%), 12.5% (7.5%-19.3%), and 2.8% (0.1%-14.5%), respectively. Median mutant frequency within an individual's HIV quasispecies was 67%. PDR prevalence in ARV-naive women 18-24 years old was 21.9% (9.3%-40.0%). Only age in females associated with PDR: A 5-year age decrease was associated with adjusted PDR prevalence ratio 1.20 (95% CI, 1.06-1.36; P = .004). Conclusions The high PDR prevalence may warrant resistance testing and/or alternative ARVs in high HIV prevalence settings, with attention to young women, likely to have recent infection and higher rates of resistance. Clinical Trials Registration NCT01898754.
Collapse
Affiliation(s)
- Rachel A Silverman
- Department of Epidemiology, University of Washington, Seattle.,Department of Global Health, University of Washington, Seattle
| | | | | | - Molly Levine
- Seattle Children's Research Institute, Washington
| | - Ross Milne
- Seattle Children's Research Institute, Washington
| | | | - Steve Bii
- Seattle Children's Research Institute, Washington
| | - Barbra A Richardson
- Department of Global Health, University of Washington, Seattle.,Department of Biostatistics, University of Washington, Seattle
| | - Grace John-Stewart
- Department of Epidemiology, University of Washington, Seattle.,Department of Global Health, University of Washington, Seattle.,Department of Medicine, University of Washington, Seattle.,Department of Pediatrics, University of Washington, Seattle
| | - Bhavna Chohan
- Department of Global Health, University of Washington, Seattle
| | | | - James N Kiarie
- Department of Obstetrics and Gynaecology, University of Nairobi, Kenya
| | - Lisa M Frenkel
- Department of Global Health, University of Washington, Seattle.,Seattle Children's Research Institute, Washington.,Department of Medicine, University of Washington, Seattle.,Department of Pediatrics, University of Washington, Seattle.,Department of Laboratory Medicine, University of Washington, Seattle
| | - Michael H Chung
- Department of Epidemiology, University of Washington, Seattle.,Department of Global Health, University of Washington, Seattle.,Department of Medicine, University of Washington, Seattle
| |
Collapse
|
4
|
Abstract
OBJECTIVES An increasing prevalence of HIV pretreatment drug resistance (PDR) has been observed in Africa, which could decrease the effectiveness of antiretroviral therapy (ART) programs. We describe our experiences, the costs and challenges of implementing an oligonucleotide ligation assay (OLA) for management of PDR in Nairobi, Kenya. DESIGN An observational report of the implementation of OLA in a Kenyan laboratory for a randomized clinical trial evaluating whether onsite use of OLA in individuals initiating ART would decrease rates of virologic failure. METHODS Compared detection of mutations and proportion of mutants in participants' viral quasispecies by OLA in Kenya vs. Seattle. Reviewed records of laboratory workflow and performance of OLA. Calculated the costs of laboratory set-up and of performing the OLA based on equipment purchase receipts and supplies and labor utilization, respectively. RESULTS OLA was performed on 492 trial participants. Weekly batch-testing of median of seven (range: 2-13) specimens provided test results to Kenyan clinicians within 10-14 days of sample collection at a cost of US$ 42 per person tested. Cost of laboratory setup was US$ 32 594. Challenges included an unreliable local supply chain for reagents and the need for an experienced molecular biologist to supervise OLA performance. CONCLUSION OLA was successfully implemented in a Kenyan research laboratory. Cost was twice that projected because of fewer than predicted specimens per batch because of slow enrollment. OLA is a potential simple, low-cost method for PDR testing in resource-limited settings (RLS). Ongoing work to develop a simplified kit could improve future implementation of OLA in RLS.
Collapse
|
5
|
Brumme CJ, Poon AFY. Promises and pitfalls of Illumina sequencing for HIV resistance genotyping. Virus Res 2016; 239:97-105. [PMID: 27993623 DOI: 10.1016/j.virusres.2016.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
Abstract
Genetic sequencing ("genotyping") plays a critical role in the modern clinical management of HIV infection. This virus evolves rapidly within patients because of its error-prone reverse transcriptase and short generation time. Consequently, HIV variants with mutations that confer resistance to one or more antiretroviral drugs can emerge during sub-optimal treatment. There are now multiple HIV drug resistance interpretation algorithms that take the region of the HIV genome encoding the major drug targets as inputs; expert use of these algorithms can significantly improve to clinical outcomes in HIV treatment. Next-generation sequencing has the potential to revolutionize HIV resistance genotyping by lowering the threshold that rare but clinically significant HIV variants can be detected reproducibly, and by conferring improved cost-effectiveness in high-throughput scenarios. In this review, we discuss the relative merits and challenges of deploying the Illumina MiSeq instrument for clinical HIV genotyping.
Collapse
Affiliation(s)
- Chanson J Brumme
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Art F Y Poon
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada.
| |
Collapse
|