1
|
Xia C, Zhang X, Harypursat V, Ouyang J, Chen Y. The role of pyroptosis in incomplete immune reconstitution among people living with HIV:Potential therapeutic targets. Pharmacol Res 2023; 197:106969. [PMID: 37866704 DOI: 10.1016/j.phrs.2023.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Globally, HIV infection causes significant morbidity and mortality, and is a major public health problem. Despite the fact that widespread use of antiretroviral therapy (ART) has substantially altered the natural history of HIV infection from originally being a universally lethal disease to now being a chronic medical condition for those taking appropriate treatment, approximately 10-40% of people living with HIV (PLWH) who take effective ART and maintain long-term viral suppression fail to achieve normalization of CD4 + T-cell counts. This phenomenon is referred to as incomplete immune reconstitution or immunological non-response. Although the precise mechanisms underlying this outcome have not been elucidated, recent evidence indicates that excessive pyroptosis may play a crucial role in the development of incomplete immune reconstitution. Pyroptosis is characterized by the formation of pores in the cell membrane, cell rupture, and secretion of intracellular contents and pro-inflammatory cytokines, including IL-1β and IL-18. This excessive inflammation-induced programmed cell death leads to a massive loss of CD4 + T-cells, and inflammatory consequences that may promote and sustain incomplete immune reconstitution. Herein, we review the possible pathways activated in HIV infection by inflammasomes that act as switches of pyroptosis, and the role of pyroptosis in HIV, as well as the relevance of CD4 + T-cells in incomplete immune reconstitution. We also highlight the possible mechanisms of pyroptosis involved in incomplete immune reconstitution, thus paving the way for the development of potential targets for the treatment of incomplete immune reconstitution.
Collapse
Affiliation(s)
- Chao Xia
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Xue Zhang
- Department of Pharmacy, The People's Hospital of Yubei District of Chongqing City, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China; Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China; Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
2
|
Rosel-Pech C, Pinto-Cardoso S, Chávez-Torres M, Montufar N, Osuna-Padilla I, Ávila-Ríos S, Reyes-Terán G, Aguirre-Alvarado C, Matías Juan NA, Pérez-Lorenzana H, Vázquez-Rosales JG, Bekker-Méndez VC. Distinct fecal microbial signatures are linked to sex and chronic immune activation in pediatric HIV infection. Front Immunol 2023; 14:1244473. [PMID: 37711620 PMCID: PMC10497879 DOI: 10.3389/fimmu.2023.1244473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Our understanding of HIV-associated gut microbial dysbiosis in children perinatally-infected with HIV (CLWH) lags behind that of adults living with HIV. Childhood represents a critical window for the gut microbiota. Any disturbances, including prolonged exposure to HIV, antiretroviral drugs, and antibiotics are likely to have a significant impact on long-term health, resulting in a less resilient gut microbiome. The objective of our study was to characterize the gut microbiota in CLWH, and compare it with HIV-unexposed and -uninfected children. Methods We enrolled 31 children aged 3 to 15 years; 15 were CLWH and 16 were HUU. We assessed dietary patterns and quality; quantified soluble and cellular markers of HIV disease progression by flow cytometry, enzyme-linked immunosorbent and multiplex-bead assays, and profiled the gut microbiota by 16S rRNA sequencing. We explored relationships between the gut microbiota, antibiotic exposure, dietary habits, soluble and cellular markers and host metadata. Results Children had a Western-type diet, their median health eating index score was 67.06 (interquartile range 58.76-74.66). We found no discernable impact of HIV on the gut microbiota. Alpha diversity metrics did not differ between CLWH and HUU. Sex impacted the gut microbiota (R-squared= 0.052, PERMANOVA p=0.024). Male children had higher microbial richness compared with female children. Two taxa were found to discriminate female from male children independently from HIV status: Firmicutes for males, and Bacteroides for females. Markers of HIV disease progression were comparable between CLWH and HUU, except for the frequency of exhausted CD4+ T cells (PD-1+) which was increased in CLWH (p=0.0024 after adjusting for confounders). Both the frequency of exhausted CD4+ and activated CD4+ T cells (CD38+ HLADR+) correlated positively with the relative abundance of Proteobacteria (rho=0.568. false discovery rate (FDR)-adjusted p= 0.029, and rho=0.62, FDR-adjusted p=0.0126, respectively). Conclusion The gut microbiota of CLWH appears similar to that of HUU, and most markers of HIV disease progression are normalized with long-term ART, suggesting a beneficial effect of the latter on the gut microbial ecology. The relationship between exhausted and activated CD4+ T cells and Proteobacteria suggests a connection between the gut microbiome, and premature aging in CLWH.
Collapse
Affiliation(s)
- Cecilia Rosel-Pech
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología “Dr. Daniel Méndez Hernández”, Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | - Sandra Pinto-Cardoso
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Monserrat Chávez-Torres
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Nadia Montufar
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Iván Osuna-Padilla
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Gustavo Reyes-Terán
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Charmina Aguirre-Alvarado
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología “Dr. Daniel Méndez Hernández”, Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | - Norma Angelica Matías Juan
- Hospital de Infectología “Dr. Daniel Méndez Hernández”, Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | - Héctor Pérez-Lorenzana
- UMAE Hospital General Dr. Gaudencio González Garza, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| | - José Guillermo Vázquez-Rosales
- Hospital de Pediatría “Doctor Silvestre Frenk Freund”, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México, Mexico
| | - Vilma Carolina Bekker-Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología “Dr. Daniel Méndez Hernández”, Centro Médico Nacional “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, Mexico
| |
Collapse
|
3
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
4
|
Liu L, Yuan G, Sun F, Shi J, Chen H, Hu Y. Treg Cell Evaluation in Patients with Acquired Immune Deficiency Syndrome with Poor Immune Reconstitution and Human Immunodeficiency Virus-Infected Treg Cell Prevention by Polymeric Nanoparticle Drug Delivery System. J Biomed Nanotechnol 2022; 18:818-827. [PMID: 35715913 DOI: 10.1166/jbn.2022.3294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To better deliver antiretroviral drugs for treating patients with acquired immune deficiency syndrome (AIDS) with poor immune reconstitution, a novel nanopole capsule was designed in this study. Forty-eight patients with AIDS with poor immune reconstitution were chosen as subjects to test their immune state. CD4+ T and Regulatory T cells (Treg) infected with HIV were cultured to test polyethyleneimine (PEI) and polychitosan (PC) drug delivery system efficiency. The infiltration efficiency test was performed to study the drug delivery efficiency of the delivery systems, and the cell numbers of CD4+ T and Treg cells infected with HIV were calculated to evaluate the therapeutic effect. The results showed that patients with AIDS with poor immune reconstitution had lower CD4+ T cell count and higher Treg cell count. Furthermore, the infiltration efficiency of the PC drug delivery system was higher than that of the PEI drug delivery system, and the therapy efficiency of antiretroviral drugs was greatly improved in the PC group. Additionally, the improvement of CD4+ T and Treg cells damaged by HIV was greater in the PC group. Sequentially, the PC system can better deliver and release loaded antiretroviral drugs and may be a better choice for treating patients with AIDS with poor immune reconstitution in the future.
Collapse
Affiliation(s)
- Linsong Liu
- Acute Infection Department of HuaMei Hospital, University of Chinese Academy of Science, Ningbo, 315000, Zhejiang, PR China
| | - Gang Yuan
- Acute Infection Department of HuaMei Hospital, University of Chinese Academy of Science, Ningbo, 315000, Zhejiang, PR China
| | - Fuyan Sun
- Acute Infection Department of HuaMei Hospital, University of Chinese Academy of Science, Ningbo, 315000, Zhejiang, PR China
| | - Jinchuan Shi
- The Second Department of Infection, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang, PR China
| | - Heling Chen
- Acute Infection Department of HuaMei Hospital, University of Chinese Academy of Science, Ningbo, 315000, Zhejiang, PR China
| | - Yaoren Hu
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, PR China
| |
Collapse
|
5
|
Takele Y, Mulaw T, Adem E, Shaw CJ, Franssen SU, Womersley R, Kaforou M, Taylor GP, Levin M, Müller I, Cotton JA, Kropf P. Immunological factors, but not clinical features, predict visceral leishmaniasis relapse in patients co-infected with HIV. Cell Rep Med 2022; 3:100487. [PMID: 35106507 PMCID: PMC8784791 DOI: 10.1016/j.xcrm.2021.100487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
Visceral leishmaniasis (VL) has emerged as a clinically important opportunistic infection in HIV patients, as VL/HIV co-infected patients suffer from frequent VL relapse. Here, we follow cohorts of VL patients with or without HIV in Ethiopia. By the end of the study, 78.1% of VL/HIV-but none of the VL patients-experience VL relapse. Despite a clinically defined cure, VL/HIV patients maintain higher parasite loads, lower BMI, hepatosplenomegaly, and pancytopenia. We identify three immunological markers associated with VL relapse in VL/HIV patients: (1) failure to restore antigen-specific production of IFN-γ, (2) persistently lower CD4+ T cell counts, and (3) higher expression of PD1 on CD4+ and CD8+ T cells. We show that these three markers, which can be measured in primary hospital settings in Ethiopia, combine well in predicting VL relapse. The use of our prediction model has the potential to improve disease management and patient care.
Collapse
Affiliation(s)
- Yegnasew Takele
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
- Leishmaniasis Research and Treatment Centre, University of Gondar, PO Box 196, Gondar, Ethiopia
| | - Tadele Mulaw
- Leishmaniasis Research and Treatment Centre, University of Gondar, PO Box 196, Gondar, Ethiopia
| | - Emebet Adem
- Leishmaniasis Research and Treatment Centre, University of Gondar, PO Box 196, Gondar, Ethiopia
| | - Caroline Jayne Shaw
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London SW7 2AZ, UK
| | | | - Rebecca Womersley
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Myrsini Kaforou
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Michael Levin
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Ingrid Müller
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - Pascale Kropf
- Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| |
Collapse
|