1
|
Godkin A, Smith KA. Chronic infections with viruses or parasites: breaking bad to make good. Immunology 2017; 150:389-396. [PMID: 28009488 PMCID: PMC5343343 DOI: 10.1111/imm.12703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic forms of life have been continually invaded by microbes and larger multicellular parasites, such as helminths. Over a billion years ago bacterial endosymbionts permanently colonized eukaryotic cells leading to recognized organelles with a distinct genetic lineage, such as mitochondria and chloroplasts. Colonization of our skin and mucosal surfaces with bacterial commensals is now known to be important for host health. However, the contribution of chronic virus and parasitic infections to immune homeostasis is being increasingly questioned. Persistent infection does not necessarily equate to exhibiting a chronic illness: healthy hosts (e.g. humans) have chronic viral and parasitic infections with no evidence of disease. Indeed, there are now examples of complex interactions between these microbes and hosts that seem to confer an advantage to the host at a particular time, suggesting that the relationship has progressed along an axis from parasitic to commensal to one of a mutualistic symbiosis. This concept is explored using examples from viruses and parasites, considering how the relationships may be not only detrimental but also beneficial to the human host.
Collapse
Affiliation(s)
- Andrew Godkin
- Division of Infection and Immunity, Cardiff University, Cardiff, Glamorgan, UK
| | - Katherine A Smith
- Division of Infection and Immunity, Cardiff University, Cardiff, Glamorgan, UK
| |
Collapse
|
2
|
Ogoina D, Onyemelukwe GC, Musa BOP, Babadoko A. Human Herpesvirus 8 Infections and AIDS-Associated Kaposi Sarcoma in Zaria, Northern Nigeria. ACTA ACUST UNITED AC 2016; 10:43-8. [PMID: 21368014 DOI: 10.1177/1545109710387300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND/OBJECTIVES Studies on human herpesvirus 8 (HHV8) infection in patients with AIDS-associated Kaposi sarcoma (AIDS-KS), from Nigeria are lacking. We examined the seroprevalence of HHV8 infection in patients with AIDS-KS presenting to Ahmadu Bello University Teaching Hospital (ABUTH), Zaria, Nigeria, and also described their clinical presentation. METHODS A total of 20 (11 males and 9 females) histologically confirmed adults with AIDS-KS were recruited consecutively in 2007. The clinical types of lesions, associated diseases, and the AIDS clinical trial group staging of AIDS-KS were noted. Anti-lytic HHV8 antibodies were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Kaposi sarcoma skin lesions were diverse but mostly nodules (19 cases) and papules (16). Majority (18 cases) had poor risk AIDS-KS, with 10 (50%) patients having concomitant opportunistic infections and 3 (15%) patients having generalized skin lesions. Females had a more severe disease. Seventeen patients (85%) were HHV8-seropositive. CONCLUSION AIDS-KS is associated with high HHV8 infection and presents with a variety of skin manifestations that are often aggressive, advanced, and worse in females.
Collapse
Affiliation(s)
- Dimie Ogoina
- Immunology unit, Department of Medicine, Ahmadu Bello University Teaching Hospital (ABUTH), Zaria, Nigeria,
| | | | | | | |
Collapse
|
3
|
Othman Z, Sulaiman MK, Willcocks MM, Ulryck N, Blackbourn DJ, Sargueil B, Roberts LO, Locker N. Functional analysis of Kaposi's sarcoma-associated herpesvirus vFLIP expression reveals a new mode of IRES-mediated translation. RNA (NEW YORK, N.Y.) 2014; 20:1803-1814. [PMID: 25246653 PMCID: PMC4201831 DOI: 10.1261/rna.045328.114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus, the etiological agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). One of the key viral proteins that contributes to tumorigenesis is vFLIP, a viral homolog of the FLICE inhibitory protein. This KSHV protein interacts with the NFκB pathway to trigger the expression of antiapoptotic and proinflammatory genes and ultimately leads to tumor formation. The expression of vFLIP is regulated at the translational level by an internal ribosomal entry site (IRES) element. However, the precise mechanism by which ribosomes are recruited internally and the exact location of the IRES has remained elusive. Here we show that a 252-nt fragment directly upstream of vFLIP, within a coding region, directs translation. We have established its RNA structure and demonstrate that IRES activity requires the presence of eIF4A and an intact eIF4G. Furthermore, and unusually for an IRES, eIF4E is part of the complex assembled onto the vFLIP IRES to direct translation. These molecular interactions define a new paradigm for IRES-mediated translation.
Collapse
Affiliation(s)
- Zulkefley Othman
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Mariam K Sulaiman
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Margaret M Willcocks
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Nathalie Ulryck
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, 75270 Paris, France
| | - David J Blackbourn
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Bruno Sargueil
- Faculté des Sciences Pharmaceutiques et Biologiques, UMR8015, Université Paris Descartes, 75270 Paris, France
| | - Lisa O Roberts
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU27HE, United Kingdom
| |
Collapse
|
4
|
Butler LM, Jeffery HC, Wheat RL, Long HM, Rae PC, Nash GB, Blackbourn DJ. Kaposi's sarcoma-associated herpesvirus inhibits expression and function of endothelial cell major histocompatibility complex class II via suppressor of cytokine signaling 3. J Virol 2012; 86:7158-66. [PMID: 22532676 PMCID: PMC3416330 DOI: 10.1128/jvi.06908-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/12/2012] [Indexed: 01/03/2023] Open
Abstract
Endothelial cells (EC) can present antigen to either CD8(+) T lymphocytes through constitutively expressed major histocompatibility complex class I (MHC-I) or CD4(+) T lymphocytes through gamma interferon (IFN-γ)-induced MHC-II. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), an EC neoplasm characterized by dysregulated angiogenesis and a substantial inflammatory infiltrate. KSHV is understood to have evolved strategies to inhibit MHC-I expression on EC and MHC-II expression on primary effusion lymphoma cells, but its effects on EC MHC-II expression are unknown. Here, we report that the KSHV infection of human primary EC inhibits IFN-γ-induced expression of the MHC-II molecule HLA-DR at the transcriptional level. The effect is functionally significant, since recognition by an HLA-DR-restricted CD4(+) T-cell clone in response to cognate antigen presented by KSHV-infected EC was attenuated. Inhibition of HLA-DR expression was also achieved by exposing EC to supernatant from KSHV-inoculated EC before IFN-γ treatment, revealing a role for soluble mediators. IFN-γ-induced phosphorylation of STAT-1 and transcription of CIITA were suppressed in KSHV-inoculated EC via a mechanism involving SOCS3 (suppressor of cytokine signaling 3). Thus, KSHV infection resulted in transcriptional upregulation of SOCS3, and treatment with RNA interference against SOCS3 relieved virus-induced inhibition of IFN-γ-induced STAT-1 phosphorylation. Since cell surface MHC-II molecules present peptide antigens to CD4(+) T lymphocytes that can function either as direct cytolytic effectors or to initiate and regulate adaptive immune responses, inhibition of this antigen-presenting pathway would provide a survival advantage to the virus.
Collapse
Affiliation(s)
| | - H. C. Jeffery
- School of Clinical and Experimental Medicine
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - R. L. Wheat
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - H. M. Long
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - P. C. Rae
- School of Clinical and Experimental Medicine
- School of Cancer Sciences and CR UK Centre for Cancer Research
| | - G. B. Nash
- School of Clinical and Experimental Medicine
| | - D. J. Blackbourn
- School of Cancer Sciences and CR UK Centre for Cancer Research
- MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
5
|
Kaposi's sarcoma-associated herpesvirus infection of endothelial cells inhibits neutrophil recruitment through an interleukin-6-dependent mechanism: a new paradigm for viral immune evasion. J Virol 2011; 85:7321-32. [PMID: 21543487 DOI: 10.1128/jvi.00021-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), an endothelial cell (EC) neoplasm characterized by dysregulated angiogenesis and inflammation. KSHV infection of EC causes production of proinflammatory mediators, regarded as possible initiators of the substantial mononuclear leukocyte recruitment seen in KS. Conversely, KSHV immune evasion strategies exist, such as degradation of EC leukocyte adhesion receptors by viral proteins. Here, we report the effects of KSHV infection of primary EC on recruitment of flowing leukocytes. Infection did not initiate adhesion of any leukocyte subset per se. However, on cytokine-stimulated EC, KSHV specifically inhibited neutrophil, but not PBL or monocyte, transmigration, an observation consistent with the inflammatory cell profile found in KS lesions in vivo. This inhibition could be recapitulated on uninfected EC using supernatant from infected cultures. These supernatants contained elevated levels of human interleukin 6 (hIL-6), and both the KSHV- and the supernatant-induced inhibitions of neutrophil transmigration were abrogated in the presence of a hIL-6 neutralizing antibody. Furthermore, preconditioning of EC with hIL-6 mimicked the effect of KSHV. Using RNA interference (RNAi), we show that upregulation of suppressor of cytokine signaling 3 (SOCS3) was necessary for this effect of hIL-6. These studies reveal a novel paracrine mode of KSHV immune evasion, resulting in reduced recruitment of neutrophils, a cell type whose antiviral and antitumor roles are becoming increasingly appreciated. Moreover, the findings have implications for our understanding of the contribution of hIL-6 to the pathogenesis of other inflammatory disorders and tumors in which this cytokine is abundant.
Collapse
|
6
|
Taylor GS, Blackbourn DJ. Infectious agents in human cancers: lessons in immunity and immunomodulation from gammaherpesviruses EBV and KSHV. Cancer Lett 2011; 305:263-78. [PMID: 21470769 DOI: 10.1016/j.canlet.2010.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/23/2010] [Accepted: 08/22/2010] [Indexed: 01/13/2023]
Abstract
Members of the herpesvirus family have evolved the ability to persist in their hosts by establishing a reservoir of latently infected cells each carrying the viral genome with reduced levels of viral protein synthesis. In order to spread within and between hosts, in some cells, the quiescent virus will reactivate and enter lytic cycle replication to generate and release new infectious virus particles. To allow the efficient generation of progeny viruses, all herpesviruses have evolved a wide variety of immunomodulatory mechanisms to limit the exposure of cells undergoing lytic cycle replication to the immune system. Here we have focused on the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) that, uniquely among the eight human herpesviruses identified to date, have growth transforming potential. Most people infected with these viruses will not develop cancer, viral growth-transforming activity being kept under control by the host's antigen-specific immune responses. Nonetheless, EBV and KSHV are associated with several malignancies in which various viral proteins, either predominantly or exclusively latency-associated, are expressed; at least some of these proteins also have immunomodulatory activities. Of these malignancies, some are the result of a disrupted virus/immune balance through genetic, infectious or iatrogenic immune suppression. Others develop in people that are not overtly immune suppressed and likely modulate the immunological response. This latter aspect of immune modulation by EBV and KSHV forms the basis of this review.
Collapse
Affiliation(s)
- Graham S Taylor
- CR UK Cancer Centre, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, UK
| | | |
Collapse
|
7
|
Gasparetto TD, Marchiori E, Lourenço S, Zanetti G, Vianna AD, Santos AASMD, Nobre LF. Pulmonary involvement in Kaposi sarcoma: correlation between imaging and pathology. Orphanet J Rare Dis 2009; 4:18. [PMID: 19602252 PMCID: PMC2720383 DOI: 10.1186/1750-1172-4-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/14/2009] [Indexed: 12/11/2022] Open
Abstract
Kaposi sarcoma is a low-grade mesenchymal tumor involving blood and lymphatic vessels. There are four variants of this disease, each presenting a different clinical manifestation: classic or sporadic, African or endemic, organ transplant-related or iatrogenic, and AIDS-related or epidemic. Kaposi sarcoma is the most common tumor among patients with HIV infection, occurring predominantly in homosexual or bisexual men. The pulmonary involvement in Kaposi sarcoma occurs commonly in critically immunosupressed patients who commonly have had preceding mucocutaneous or digestive involvement. The etiology of Kaposi sarcoma is not precisely established; genetic, hormonal, and immune factors, as well as infectious agents, have all been implicated. There is evidence from epidemiologic, serologic, and molecular studies that Kaposi sarcoma is associated with human herpes virus type 8 infection. The disease starts as a reactive polyclonal angioproliferative response towards this virus, in which polyclonal cells change to form oligoclonal cell populations that expand and undergo malignant transformation. The diagnosis of pulmonary involvement in Kaposi sarcoma usually can be made by a combination of clinical, radiographic, and laboratory findings, together with the results of bronchoscopy and transbronchial biopsy. Chest high-resolution computed tomography scans commonly reveal peribronchovascular and interlobular septal thickening, bilateral and symmetric ill-defined nodules in a peribronchovascular distribution, fissural nodularity, mediastinal adenopathies, and pleural effusions. Correlation between the high-resolution computed tomography findings and the pathology revealed by histopathological analysis demonstrate that the areas of central peribronchovascular infiltration represent tumor growth involving the bronchovascular bundles, with nodules corresponding to proliferations of neoplastic cells into the pulmonary parenchyma. The interlobular septal thickening may represent edema or tumor infiltration, and areas of ground-glass attenuation correspond to edema and the filling of air spaces with blood. These findings are a result of the propensity of Kaposi sarcoma to grow in the peribronchial and perivascular axial interstitial spaces, often as continuous sheets of tumor tissue. In conclusion, radiological findings can play a major role in the diagnosis of pulmonary Kaposi sarcoma since characteristic patterns may be observed. The presence of these patterns in patients with AIDS is highly suggestive of Kaposi sarcoma.
Collapse
|
8
|
Maussang D, Vischer HF, Leurs R, Smit MJ. Herpesvirus-encoded G protein-coupled receptors as modulators of cellular function. Mol Pharmacol 2009; 76:692-701. [PMID: 19570946 DOI: 10.1124/mol.109.057091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human herpesviruses (HHVs) are widespread pathogens involved in proliferative diseases, inflammatory conditions, and cardiovascular diseases. During evolution, homologs of human chemokine receptors were integrated into the HHV genomes. In addition to binding endogenous chemokines, these viral G protein-coupled receptors (vGPCRs) have acquired the ability to signal in a constitutive manner. Ligand-induced and ligand-independent and autocrine and paracrine signaling properties of vGPCRs modify the functions of the expressing cells and lead to transformation and escape from immune surveillance. Furthermore, cross-talk or heterodimerization with endogenous chemokine receptors represent other ways for vGPCRs to modify intracellular signaling and cellular functions. As such, these viral receptors seem to play a prominent role during viral pathogenesis and life cycle and thus represent innovative antiviral therapies.
Collapse
Affiliation(s)
- David Maussang
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | | | | | | |
Collapse
|
9
|
Aresté C, Blackbourn DJ. Modulation of the immune system by Kaposi's sarcoma-associated herpesvirus. Trends Microbiol 2009; 17:119-29. [PMID: 19230674 DOI: 10.1016/j.tim.2008.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 12/24/2022]
Abstract
The most recently identified human herpesvirus is Kaposi's sarcoma-associated herpesvirus (KSHV). It causes Kaposi's sarcoma, a tumour occurring most commonly in untreated AIDS patients and the leading cancer of men in certain parts of Africa. KSHV might also contribute to the pathogenesis of primary effusion lymphoma and multicentric Castleman's disease. The genome of KSHV contains 86 genes, almost a quarter of which encode proteins with either demonstrated or potential immunoregulatory activity. They include homologues of cellular proteins and unique KSHV proteins that can deregulate many aspects of the immune response, including T- and B-cell functions, complement activation, the innate antiviral interferon response and natural killer cell activity. The functions of these proteins and the ways in which they perturb the normal immune response are the subjects of the present review.
Collapse
Affiliation(s)
- Cristina Aresté
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
10
|
|