1
|
Ma K, Chai Y, Guan J, Tan S, Qi J, Kawana-Tachikawa A, Dong T, Iwamoto A, Shi Y, Gao GF. Molecular Basis for the Recognition of HIV Nef138-8 Epitope by a Pair of Human Public T Cell Receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1652-1661. [PMID: 36130828 DOI: 10.4049/jimmunol.2200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Cross-recognized public TCRs against HIV epitopes have been proposed to be important for the control of AIDS disease progression and HIV variants. The overlapping Nef138-8 and Nef138-10 peptides from the HIV Nef protein are HLA-A24-restricted immunodominant T cell epitopes, and an HIV mutant strain with a Y139F substitution in Nef protein can result in immune escape and is widespread in Japan. Here, we identified a pair of public TCRs specific to the HLA-A24-restricted Nef-138-8 epitope using PBMCs from White and Japanese patients, respectively, namely TD08 and H25-11. The gene use of the variable domain for TD08 and H25-11 is TRAV8-3, TRAJ10 for the α-chain and TRBV7-9, TRBD1*01, TRBJ2-5 for the β-chain. Both TCRs can recognize wild-type and Y2F-mutated Nef138-8 epitopes. We further determined three complex structures, including TD08/HLA-A24-Nef138-8, H25-11/HLA-A24-Nef138-8, and TD08/HLA-A24-Nef138-8 (2F). Then, we revealed the molecular basis of the public TCR binding to the peptide HLA, which mostly relies on the interaction between the TCR and HLA and can tolerate the mutation in the Nef138-8 peptide. These findings promote the molecular understanding of T cell immunity against HIV epitopes and provide an important basis for the engineering of TCRs to develop T cell-based immunotherapy against HIV infection.
Collapse
Affiliation(s)
- Keke Ma
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Chai
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiawei Guan
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuguang Tan
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tao Dong
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, UK; and
| | - Aikichi Iwamoto
- Department of Research Promotion, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Yi Shi
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George F Gao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China; .,Chinese Academy of Sciences Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Conserved Vδ1 Binding Geometry in a Setting of Locus-Disparate pHLA Recognition by δ/αβ T Cell Receptors (TCRs): Insight into Recognition of HIV Peptides by TCRs. J Virol 2017; 91:JVI.00725-17. [PMID: 28615212 DOI: 10.1128/jvi.00725-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
Given the limited set of T cell receptor (TCR) V genes that are used to create TCRs that are reactive to different ligands, such as major histocompatibility complex (MHC) class I, MHC class II, and MHC-like proteins (for example, MIC molecules and CD1 molecules), the Vδ1 segment can be rearranged with Dδ-Jδ-Cδ or Jα-Cα segments to form classical γδTCRs or uncommon αβTCRs using a Vδ1 segment (δ/αβTCR). Here we have determined two complex structures of the δ/αβTCRs (S19-2 and TU55) bound to different locus-disparate MHC class I molecules with HIV peptides (HLA-A*2402-Nef138-10 and HLA-B*3501-Pol448-9). The overall binding modes resemble those of classical αβTCRs but display a strong tilt binding geometry of the Vδ1 domain toward the HLA α1 helix, due to a conserved extensive interaction between the CDR1δ loop and the N-terminal region of the α1 helix (mainly in position 62). The aromatic amino acids of the CDR1δ loop exploit different conformations ("aromatic ladder" or "aromatic hairpin") to accommodate distinct MHC helical scaffolds. This tolerance helps to explain how a particular TCR V region can similarly dock onto multiple MHC molecules and thus may potentially explain the nature of TCR cross-reactivity. In addition, the length of the CDR3δ loop could affect the extent of tilt binding of the Vδ1 domain, and adaptively, the pairing Vβ domains adjust their mass centers to generate differential MHC contacts, hence probably ensuring TCR specificity for a certain peptide-MHC class I (pMHC-I). Our data have provided further structural insights into the TCR recognition of classical pMHC-I molecules, unifying cross-reactivity and specificity.IMPORTANCE The specificity of αβ T cell recognition is determined by the CDR loops of the αβTCR, and the general mode of binding of αβTCRs to pMHC has been established over the last decade. Due to the intrinsic genomic structure of the TCR α/δ chain locus, some Vδ segments can rearrange with the Cα segment, forming a hybrid VδCαVβCβ TCR, the δ/αβTCR. However, the basis for the molecular recognition of such TCRs of their ligands is elusive. Here an αβTCR using the Vδ1 segment, S19-2, was isolated from an HIV-infected patient in an HLA-A*24:02-restricted manner. We then solved the crystal structures of the S19-2 TCR and another δ/αβTCR, TU55, bound to their respective ligands, revealing a conserved Vδ1 binding feature. Further binding kinetics analysis revealed that the S19-2 and TU55 TCRs bind pHLA very tightly and in a long-lasting manner. Our results illustrate the mode of binding of a TCR using the Vδ1 segment to its ligand, virus-derived pHLA.
Collapse
|
3
|
Katoh J, Kawana-Tachikawa A, Shimizu A, Zhu D, Han C, Nakamura H, Koga M, Kikuchi T, Adachi E, Koibuchi T, Gao GF, Brumme ZL, Iwamoto A. Rapid HIV-1 Disease Progression in Individuals Infected with a Virus Adapted to Its Host Population. PLoS One 2016; 11:e0150397. [PMID: 26953793 PMCID: PMC4783116 DOI: 10.1371/journal.pone.0150397] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/12/2016] [Indexed: 12/21/2022] Open
Abstract
HIV-1 escape from CTL is predictable based on the Human Leukocyte Antigen (HLA) class I alleles expressed by the host. As such, HIV-1 sequences circulating in a population of hosts will harbor escape mutations specific to the HLA alleles of that population. In theory, this should increase the frequency of escape mutation transmission to persons expressing the restricting HLA allele, thereby compromising host immunity to the incoming HIV-1 strain. However, the clinical impact of infection with HIV-1 containing immune escape mutations has not conclusively been demonstrated. Japan’s population features limited HLA diversity which is driving population-level HIV adaptation: for example, >60% of Japanese express HLA-A*24:02 and its associated Nef-Y135F escape mutation represents the population consensus. As such, Japan is an ideal population in which to examine this phenomenon. Here, we combine genetic and immunological analyses to identify A*24:02-positive individuals likely to have been infected with Y135F-containing HIV-1. Over a ~5 year follow-up, these individuals exhibited significantly lower CD4 counts compared to individuals inferred to have been infected with wild-type HIV-1. Our results support a significant negative clinical impact of pathogen adaptation to host pressures at the population level.
Collapse
Affiliation(s)
- Jiro Katoh
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo. Kashiwa-shi, Chiba, Japan
| | - Ai Kawana-Tachikawa
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Akihisa Shimizu
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Dayong Zhu
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Chungyong Han
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Hitomi Nakamura
- Department of Infectious Disease Control, the International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Tadashi Kikuchi
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Tomohiko Koibuchi
- Department of Infectious Diseases and Applied Immunology, Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Aikichi Iwamoto
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, the University of Tokyo. Kashiwa-shi, Chiba, Japan
- Department of Infectious Disease Control, the International Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Department of Infectious Diseases and Applied Immunology, Hospital, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- Asian Research Center for Infectious Diseases, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
4
|
Kamata M, Kim PY, Ng HL, Ringpis GEE, Kranz E, Chan J, O'Connor S, Yang OO, Chen ISY. Ectopic expression of anti-HIV-1 shRNAs protects CD8(+) T cells modified with CD4ζ CAR from HIV-1 infection and alleviates impairment of cell proliferation. Biochem Biophys Res Commun 2015; 463:216-21. [PMID: 25998390 DOI: 10.1016/j.bbrc.2015.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptors (CARs) are artificially engineered receptors that confer a desired specificity to immune effector T cells. As an HIV-1-specific CAR, CD4ζ CAR has been extensively tested in vitro as well as in clinical trials. T cells modified with this CAR mediated highly potent anti-HIV-1 activities in vitro and were well-tolerated in vivo, but exerted limited effects on viral load and reservoir size due to poor survival and/or functionality of the transduced cells in patients. We hypothesize that ectopic expression of CD4ζ on CD8(+) T cells renders them susceptible to HIV-1 infection, resulting in poor survival of those cells. To test this possibility, highly purified CD8(+) T cells were genetically modified with a CD4ζ-encoding lentiviral vector and infected with HIV-1. CD8(+) T cells were vulnerable to HIV-1 infection upon expression of CD4ζ as evidenced by elevated levels of p24(Gag) in cells and culture supernatants. Concurrently, the number of CD4ζ-modified CD8(+) T cells was reduced relative to control cells upon HIV-1 infection. To protect these cells from HIV-1 infection, we co-expressed two anti-HIV-1 shRNAs previously developed by our group together with CD4ζ. This combination vector was able to suppress HIV-1 infection without impairing HIV-1-dependent effector activities of CD4ζ. In addition, the number of CD4ζ-modified CD8(+) T cells maintained similar levels to that of the control even under HIV-1 infection. These results suggest that protecting CD4ζ-modified CD8(+) T cells from HIV-1 infection is required for prolonged HIV-1-specific immune surveillance.
Collapse
Affiliation(s)
- Masakazu Kamata
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Patrick Y Kim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Hwee L Ng
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gene-Errol E Ringpis
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emiko Kranz
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Joshua Chan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sean O'Connor
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Otto O Yang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA AIDS Institute, Los Angeles, CA, USA; AIDS Healthcare Foundation, Los Angeles, CA, USA
| | - Irvin S Y Chen
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; UCLA AIDS Institute, Los Angeles, CA, USA
| |
Collapse
|
5
|
Narrowing of human influenza A virus-specific T cell receptor α and β repertoires with increasing age. J Virol 2015; 89:4102-16. [PMID: 25609818 DOI: 10.1128/jvi.03020-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Alterations in memory CD8 T cell responses may contribute to the high morbidity and mortality caused by seasonal influenza A virus (IAV) infections in older individuals. We questioned whether memory CD8 responses to this nonpersistent virus, to which recurrent exposure with new strains is common, changed over time with increasing age. Here, we show a direct correlation between increasing age and narrowing of the HLA-A2-restricted IAV Vα and Vβ T cell repertoires specific to M1 residues 58 to 66 (M158-66), which simultaneously lead to oligoclonal expansions, including the usage of a single identical VA12-JA29 clonotype in all eight older donors. The Vα repertoire of older individuals also had longer CDR3 regions with increased usage of G/A runs, whose molecular flexibility may enhance T cell receptor (TCR) promiscuity. Collectively, these results suggest that CD8 memory T cell responses to nonpersistent viruses like IAV in humans are dynamic, and with aging there is a reduced diversity but a preferential retention of T cell repertoires with features of enhanced cross-reactivity. IMPORTANCE With increasing age, the immune system undergoes drastic changes, and older individuals have declined resistance to infections. Vaccinations become less effective, and infection with influenza A virus in older individuals is associated with higher morbidity and mortality. Here, we questioned whether T cell responses directed against the highly conserved HLA-A2-restricted M158-66 peptide of IAV evolves with increasing age. Specifically, we postulated that CD8 T cell repertoires narrow with recurrent exposure and may thus be less efficient in response to new infections with new strains of IAV. Detailed analyses of the VA and VB TCR repertoires simultaneously showed a direct correlation between increasing age and narrowing of the TCR repertoire. Features of the TCRs indicated potentially enhanced cross-reactivity in all older donors. In summary, T cell repertoire analysis in older individuals may be useful as one of the predictors of protection after vaccination.
Collapse
|
6
|
Han C, Kawana-Tachikawa A, Shimizu A, Zhu D, Nakamura H, Adachi E, Kikuchi T, Koga M, Koibuchi T, Gao GF, Sato Y, Yamagata A, Martin E, Fukai S, Brumme ZL, Iwamoto A. Switching and emergence of CTL epitopes in HIV-1 infection. Retrovirology 2014; 11:38. [PMID: 24886641 PMCID: PMC4036671 DOI: 10.1186/1742-4690-11-38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/28/2014] [Indexed: 01/16/2023] Open
Abstract
Background Human Leukocyte Antigen (HLA) class I restricted Cytotoxic T Lymphocytes (CTLs) exert substantial evolutionary pressure on HIV-1, as evidenced by the reproducible selection of HLA-restricted immune escape mutations in the viral genome. An escape mutation from tyrosine to phenylalanine at the 135th amino acid (Y135F) of the HIV-1 nef gene is frequently observed in patients with HLA-A*24:02, an HLA Class I allele expressed in ~70% of Japanese persons. The selection of CTL escape mutations could theoretically result in the de novo creation of novel epitopes, however, the extent to which such dynamic “CTL epitope switching” occurs in HIV-1 remains incompletely known. Results Two overlapping epitopes in HIV-1 nef, Nef126-10 and Nef134-10, elicit the most frequent CTL responses restricted by HLA-A*24:02. Thirty-five of 46 (76%) HLA-A*24:02-positive patients harbored the Y135F mutation in their plasma HIV-1 RNA. Nef codon 135 plays a crucial role in both epitopes, as it represents the C-terminal anchor for Nef126-10 and the N-terminal anchor for Nef134-10. While the majority of patients with 135F exhibited CTL responses to Nef126-10, none harboring the “wild-type” (global HIV-1 subtype B consensus) Y135 did so, suggesting that Nef126-10 is not efficiently presented in persons harboring Y135. Consistent with this, peptide binding and limiting dilution experiments confirmed F, but not Y, as a suitable C-terminal anchor for HLA-A*24:02. Moreover, experiments utilizing antigen specific CTL clones to recognize endogenously-expressed peptides with or without Y135F indicated that this mutation disrupted the antigen expression of Nef134-10. Critically, the selection of Y135F also launched the expression of Nef126-10, indicating that the latter epitope is created as a result of escape within the former. Conclusions Our data represent the first example of the de novo creation of a novel overlapping CTL epitope as a direct result of HLA-driven immune escape in a neighboring epitope. The robust targeting of Nef126-10 following transmission (or in vivo selection) of HIV-1 containing Y135F may explain in part the previously reported stable plasma viral loads over time in the Japanese population, despite the high prevalence of both HLA-A*24:02 and Nef-Y135F in circulating HIV-1 sequences.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Aikichi Iwamoto
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
7
|
Daniel V, Scherer S, Sadeghi M, Terness P, Huth-Kühne A, Opelz G. HIV-Specific CD8(+) T Lymphocytes in Blood of Long-Term HIV-Infected Hemophilia Patients. Biores Open Access 2013; 2:399-411. [PMID: 24380050 PMCID: PMC3869412 DOI: 10.1089/biores.2013.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hemophilia patients infected with human immunodeficiency virus (HIV) 30 years ago show increased proportions of activated CD8+DR+ blood lymphocytes. We hypothesized that this might indicate a cellular immune response directed against HIV and might be the reason for long-term clinical stability of these patients. CD8+ peripheral blood lymphocytes (PBL) reactive with six HIV and two cytomegalovirus (CMV) pentamers were determined in heparinized whole blood. Additional lymphocyte subsets as well as plasma cytokines and HIV-1 load were studied. Long-term HIV-infected hemophilia patients with (n=15) or without (n=33) currently detectable HIV-1 load in the plasma showed higher proportions of CD8+ lymphocytes reactive with HIV (p<0.001) and CMV pentamers (p=0.010) than healthy individuals. The cellular anti-HIV response tended to be stronger and more polyclonal in patients during periods of viral replication than in patients with retroviral quiescence (p=0.077). Anti-HIV CD8+ lymphocyte responses were strongest in patients with high counts of activated CD8+DR+ T (r=0.353; p=0.014) and low CD19+ B lymphocyte counts (r=−0.472; p=0.001). Patients with or without HIV-1 viral load showed normal Th1 and Th2 plasma cytokine levels and high plasma interleukin-6 (versus healthy controls, p=0.001) and tumor necrosis factor-α (p=0.020). Hemophilia patients who have been living with HIV for more than 30 years showed a polyclonal CD8+ T-cell response against HIV and CMV. This cellular antiviral immune response was strongest during periods of HIV-1 replication and remained detectable during periods of HIV-1 quiescence. We hypothesize that the consistent cellular anti-HIV-1 response in combination with highly active antiretroviral therapy ensures stability and survival of these chronically HIV-1–infected hemophilia patients.
Collapse
Affiliation(s)
- Volker Daniel
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg , Heidelberg, Germany
| | - Sabine Scherer
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg , Heidelberg, Germany
| | - Mahmoud Sadeghi
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg , Heidelberg, Germany
| | - Peter Terness
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg , Heidelberg, Germany
| | | | - Gerhard Opelz
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg , Heidelberg, Germany
| |
Collapse
|
8
|
Shimizu A, Kawana-Tachikawa A, Yamagata A, Han C, Zhu D, Sato Y, Nakamura H, Koibuchi T, Carlson J, Martin E, Brumme CJ, Shi Y, Gao GF, Brumme ZL, Fukai S, Iwamoto A. Structure of TCR and antigen complexes at an immunodominant CTL epitope in HIV-1 infection. Sci Rep 2013; 3:3097. [PMID: 24192765 PMCID: PMC3818656 DOI: 10.1038/srep03097] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/15/2013] [Indexed: 12/13/2022] Open
Abstract
We investigated the crystal structure of an HLA-A*2402-restricted CTL epitope in the HIV-1 nef gene (Nef134-10) before (pHLA) or after TCR docking. The wild type epitope and two escape mutants were included in the study. Y135F was an early-appearing major mutation, while F139L was a late-appearing mutation which was selected in the patients without Y135F. F139 was an eminent feature of the Nef134-10 epitope. Wild type-specific TCR was less fit to F139L mutant suggesting that F139L is an escape from the CTL against the wild type epitope. Although Y135F mutation disrupted the hydrogen bond to HLA-A*2402 His70, newly formed hydrogen bond between T138 and His70 kept the conformation of the epitope in the reconstituted pMHC. TCR from Y135F- or dually-specific CTL had unique mode of binding to the mutant epitope. Y135F has been reported as a processing mutant but CTL carrying structurally adequate TCR can be found in the patients.
Collapse
Affiliation(s)
- Akihisa Shimizu
- Division of Infectious Diseases, Advanced Clinical Research Center, the Institute of Medical Science, the University of Tokyo. 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mesko B, Poliska S, Szamosi S, Szekanecz Z, Podani J, Varadi C, Guttman A, Nagy L. Peripheral blood gene expression and IgG glycosylation profiles as markers of tocilizumab treatment in rheumatoid arthritis. J Rheumatol 2012; 39:916-28. [PMID: 22467923 DOI: 10.3899/jrheum.110961] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Tocilizumab, a humanized anti-interleukin-6 receptor monoclonal antibody, has recently been approved as a biological therapy for rheumatoid arthritis (RA) and other diseases. It is not known if there are characteristic changes in gene expression and immunoglobulin G glycosylation during therapy or in response to treatment. METHODS Global gene expression profiles from peripheral blood mononuclear cells of 13 patients with RA and active disease at Week 0 (baseline) and Week 4 following treatment were obtained together with clinical measures, serum cytokine levels using ELISA, and the degree of galactosylation of the IgG N-glycan chains. Gene sets separating responders and nonresponders were tested using canonical variates analysis. This approach also revealed important gene groups and pathways that differentiate responders from nonresponders. RESULTS Fifty-nine genes showed significant differences between baseline and Week 4 and thus correlated with treatment. Significantly, 4 genes determined responders after correction for multiple testing. Ten of the 12 genes with the most significant changes were validated using real-time quantitative polymerase chain reaction. An increase in the terminal galactose content of N-linked glycans of IgG was observed in responders versus nonresponders, as well as in treated samples versus samples obtained at baseline. CONCLUSION As a preliminary report, gene expression changes as a result of tocilizumab therapy in RA were examined, and gene sets discriminating between responders and nonresponders were found and validated. A significant increase in the degree of galactosylation of IgG N-glycans in patients with RA treated with tocilizumab was documented.
Collapse
Affiliation(s)
- Bertalan Mesko
- Department of Biochemistry and Molecular Biology, Apoptosis and Genomics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|