1
|
Kono K, Kataoka K, Yuan Y, Yusa K, Uchida K, Sato Y. A highly sensitive method for the detection of recombinant PERV-A/C env RNA using next generation sequencing technologies. Sci Rep 2020; 10:21935. [PMID: 33318655 PMCID: PMC7736861 DOI: 10.1038/s41598-020-78890-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Several xenogenic cell-based therapeutic products are currently under development around the world for the treatment of human diseases. Porcine islet cell products for treating human diabetes are a typical example. Since porcine cells possess endogenous retrovirus (PERV), which can replicate in human cells in vitro, the potential transmission of PERV has raised concerns in the development of these products. Four subgroups of infectious PERV have been identified, namely PERV-A, -B, -C, and recombinant PERV-A/C. Among them, PERV-A/C shows a high titre and there was a paper reported that an incidence of PERV-A/C viremia was increased in diseased pigs; thus, it would be important to monitor the emergence of PERV-A/C after transplantation of porcine products. In this study, we developed a highly sensitive method for the detection of PERV-A/C using next generation sequencing (NGS) technologies. A model PERV-C spiked with various doses of PERV-A/C were amplified by RT-PCR and the amplicons were analysed by NGS. We found that the NGS analysis allowed the detection of PERV-A/C at the abundance ratios of 1% and 0.1% with true positive rates of 100% and 57%, respectively, indicating that it would be useful for the rapid detection of PERV-A/C emergence after transplantation of porcine products.
Collapse
Affiliation(s)
- Ken Kono
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa, 210-9501, Japan
| | - Kiyoko Kataoka
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa, 210-9501, Japan
| | - Yuzhe Yuan
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, Japan
| | - Keisuke Yusa
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, Japan
| | - Kazuhisa Uchida
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa, 210-9501, Japan. .,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan. .,Department of Cellular and Gene Therapy Products, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Kariuki SM, Selhorst P, Anthony C, Matten D, Abrahams MR, Martin DP, Ariën KK, Rebe K, Williamson C, Dorfman JR. Compartmentalization and Clonal Amplification of HIV-1 in the Male Genital Tract Characterized Using Next-Generation Sequencing. J Virol 2020; 94:e00229-20. [PMID: 32269124 PMCID: PMC7307092 DOI: 10.1128/jvi.00229-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Compartmentalization of HIV-1 between the systemic circulation and the male genital tract may have a substantial impact on which viruses are available for sexual transmission to new hosts. We studied compartmentalization and clonal amplification of HIV-1 populations between the blood and the genital tract from 10 antiretroviral-naive men using Illumina MiSeq with a PrimerID approach. We found evidence of some degree of compartmentalization in every study participant, unlike previous studies, which collectively showed that only ∼50% of analyzed individuals exhibited compartmentalization of HIV-1 lineages between the male genital tract (MGT) and blood. Using down-sampling simulations, we determined that this disparity can be explained by differences in sampling depth in that had we sequenced to a lower depth, we would also have found compartmentalization in only ∼50% of the study participants. For most study participants, phylogenetic trees were rooted in blood, suggesting that the male genital tract reservoir is seeded by incoming variants from the blood. Clonal amplification was observed in all study participants and was a characteristic of both blood and semen viral populations. We also show evidence for independent viral replication in the genital tract in the individual with the most severely compartmentalized HIV-1 populations. The degree of clonal amplification was not obviously associated with the extent of compartmentalization. We were also unable to detect any association between history of sexually transmitted infections and level of HIV-1 compartmentalization. Overall, our findings contribute to a better understanding of the dynamics that affect the composition of virus populations that are available for transmission.IMPORTANCE Within an individual living with HIV-1, factors that restrict the movement of HIV-1 between different compartments-such as between the blood and the male genital tract-could strongly influence which viruses reach sites in the body from which they can be transmitted. Using deep sequencing, we found strong evidence of restricted HIV-1 movements between the blood and genital tract in all 10 men that we studied. We additionally found that neither the degree to which particular genetic variants of HIV-1 proliferate (in blood or genital tract) nor an individual's history of sexually transmitted infections detectably influenced the degree to which virus movements were restricted between the blood and genital tract. Last, we show evidence that viral replication gave rise to a large clonal amplification in semen in a donor with highly compartmentalized HIV-1 populations, raising the possibility that differential selection of HIV-1 variants in the genital tract may occur.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Department of Biological Sciences, School of Science, University of Eldoret, Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Colin Anthony
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - David Matten
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Insitute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kevin Rebe
- Anova Health Institute, Cape Town, South Africa
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Insitute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
3
|
Nicot F, Jeanne N, Raymond S, Delfour O, Carcenac R, Lefebvre C, Sauné K, Delobel P, Izopet J. Performance comparison of deep sequencing platforms for detecting HIV-1 variants in the pol gene. J Med Virol 2018; 90:1486-1492. [PMID: 29750364 DOI: 10.1002/jmv.25224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 01/08/2023]
Abstract
The present study compares the performances of an in-house sequencing protocol developed on MiSeq, the Sanger method, and the 454 GS-FLX for detecting and quantifying drug-resistant mutations (DRMs) in the human immunodeficiency virus polymerase gene (reverse transcriptase [RT] and protease [PR]). MiSeq sequencing identified all the resistance mutations detected by bulk sequencing (n = 84). Both the MiSeq and 454 GS-FLX platforms identified 67 DRMs in the RT and PR regions, but a further 25 DRMs were identified by only one or other of them. Pearson's analysis showed good concordance between the percentage of drug-resistant variants determined by MiSeq and 454 GS-FLX sequencing (ρ = .77, P < .0001). The MiSeq platform is as accurate as the 454 GS-FLX Roche system for determining RT and PR DRMs and could be used for monitoring human immunodeficiency virus type 1 drug resistance.
Collapse
Affiliation(s)
- Florence Nicot
- Laboratoire de Virologie, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Nicolas Jeanne
- Laboratoire de Virologie, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Stéphanie Raymond
- Laboratoire de Virologie, CHU de Toulouse, Hôpital Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,Faculté de Médecine Toulouse-Purpan, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Olivier Delfour
- Laboratoire de Virologie, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Romain Carcenac
- Laboratoire de Virologie, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Caroline Lefebvre
- Laboratoire de Virologie, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Karine Sauné
- Laboratoire de Virologie, CHU de Toulouse, Hôpital Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,Faculté de Médecine Toulouse-Purpan, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Pierre Delobel
- INSERM, U1043, Toulouse, France.,Faculté de Médecine Toulouse-Purpan, Université Toulouse III Paul-Sabatier, Toulouse, France.,CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- Laboratoire de Virologie, CHU de Toulouse, Hôpital Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,Faculté de Médecine Toulouse-Purpan, Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
4
|
Hayashida T, Tsuchiya K, Kikuchi Y, Oka S, Gatanaga H. Emergence of CXCR4-tropic HIV-1 variants followed by rapid disease progression in hemophiliac slow progressors. PLoS One 2017; 12:e0177033. [PMID: 28472121 PMCID: PMC5417636 DOI: 10.1371/journal.pone.0177033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The association between emergence of CXCR4-tropic HIV-1 variants (X4 variants) and disease progression of HIV-1 infection has been reported. However, it is not known whether the emergence of X4 variants is the cause or result of HIV-1 disease progression. We tried to answer this question. DESIGN HIV-1 env sequences around the V3 region were analyzed in serially stocked samples in order to determine whether X4 variants emerged before or after the fall in CD4+ T-cell count. METHODS The study subjects were five HIV-1-infected hemophiliac slow progressors. Deep sequencing around the HIV-1 env V3 region was conducted in duplicate. Tropism was predicted by geno2pheno [coreceptor] 2.5 with cutoff value of false positive ratio at <5%. When X4 variant was identified in the latest stocked sample before the introduction of antiretroviral therapy, we checked viral genotype in previously stocked samples to determine the time of emergence of X4 variants. RESULTS Emergence of X4 variants was noted in two of the five patients when their CD4+ T-cell counts were still high. The rate of decrease of CD4+ T-cell count or of rise of HIV-1 load accelerated significantly after the emergence of X4 variants in these two cases. Phylogenetic analysis showed that these X4 variants emerged from CCR5-tropic HIV-1 viruses with several amino acid changes in the V3 region. CONCLUSIONS The emergence of X4 variants preceded HIV-1 disease progression in two hemophiliac slow progressors.
Collapse
Affiliation(s)
- Tsunefusa Hayashida
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshimi Kikuchi
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Performance comparison of next-generation sequencing platforms for determining HIV-1 coreceptor use. Sci Rep 2017; 7:42215. [PMID: 28186189 PMCID: PMC5301480 DOI: 10.1038/srep42215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/06/2017] [Indexed: 01/31/2023] Open
Abstract
The coreceptor used by HIV-1 must be determined before a CCR5 antagonist, part of the arsenal of antiretroviral drugs, is prescribed because viruses that enter cells using the CXCR4 coreceptor are responsible for treatment failure. HIV-1 tropism is also correlated with disease progression and so must be determined for virological studies. Tropism can be determined by next-generation sequencing (NGS), but not all of these new technologies have been fully validated for use in clinical practice. The Illumina NGS technology is used in many laboratories but its ability to predict HIV-1 tropism has not been evaluated while the 454 GS-Junior (Roche) is used for routine diagnosis. The genotypic prediction of HIV-1 tropism is based on sequencing the V3 region and interpreting the results with an appropriate algorithm. We compared the performances of the MiSeq (Illumina) and 454 GS-Junior (Roche) systems with a reference phenotypic assay. We used clinical samples for the NGS tropism predictions and assessed their ability to quantify CXCR4-using variants. The data show that the Illumina platform can be used to detect minor CXCR4-using variants in clinical practice but technical optimization are needed to improve quantification.
Collapse
|
6
|
Casadellà M, Paredes R. Deep sequencing for HIV-1 clinical management. Virus Res 2016; 239:69-81. [PMID: 27818211 DOI: 10.1016/j.virusres.2016.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/10/2016] [Accepted: 10/18/2016] [Indexed: 02/05/2023]
Abstract
The emerging HIV-1 resistance epidemic is threatening the impressive global advances in HIV-1 infection treatment and prevention achieved in the last decade. Next-generation sequencing is improving our ability to understand, diagnose and prevent HIV-1 resistance, being increasingly cost-effective and more accessible. However, NGS still faces a number of limitations that need to be addressed to enable its widespread use. Here, we will review the main NGS platforms available for HIV-1 diagnosis, the factors affecting the clinical utility of NGS testing and the evidence supporting -or not- ultrasensitive genotyping over Sanger sequencing for routine HIV-1 diagnosis. Now that global HIV-1 eradication might be within our reach, making NGS accessible also to LMICs has become a priority. Reductions in sequencing costs, particularly in library preparation, and accessibility to low-cost, robust but simplified automated bioinformatic analyses of NGS data will remain essential to end the HIV-1 pandemic.
Collapse
Affiliation(s)
- Maria Casadellà
- IrsiCaixa AIDS Research Institute, Badalona, Spain; Universitat Autònoma de Barcelona, Catalonia, Spain.
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain; Universitat Autònoma de Barcelona, Catalonia, Spain; Universitat de Vic - Central de Catalunya, Vic, Catalonia, Spain; HIV-1 Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| |
Collapse
|
7
|
Deep Sequencing of the HIV-1 env Gene Reveals Discrete X4 Lineages and Linkage Disequilibrium between X4 and R5 Viruses in the V1/V2 and V3 Variable Regions. J Virol 2016; 90:7142-58. [PMID: 27226378 DOI: 10.1128/jvi.00441-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED HIV-1 requires the CD4 receptor and a coreceptor (CCR5 [R5 phenotype] or CXCR4 [X4 phenotype]) to enter cells. Coreceptor tropism can be assessed by either phenotypic or genotypic analysis, the latter using bioinformatics algorithms to predict tropism based on the env V3 sequence. We used the Primer ID sequencing strategy with the MiSeq sequencing platform to reveal the structure of viral populations in the V1/V2 and C2/V3 regions of the HIV-1 env gene in 30 late-stage and 6 early-stage subjects. We also used endpoint dilution PCR followed by cloning of env genes to create pseudotyped virus to explore the link between genotypic predictions and phenotypic assessment of coreceptor usage. We found out that the most stringently sequence-based calls of X4 variants (Geno2Pheno false-positive rate [FPR] of ≤2%) formed distinct lineages within the viral population, and these were detected in 24 of 30 late-stage samples (80%), which was significantly higher than what has been seen previously by using other approaches. Non-X4 lineages were not skewed toward lower FPR scores in X4-containing populations. Phenotypic assays showed that variants with an intermediate FPR (2 to 20%) could be either X4/dual-tropic or R5 variants, although the X4 variants made up only about 25% of the lineages with an FPR of <10%, and these variants carried a distinctive sequence change. Phylogenetic analysis of both the V1/V2 and C2/V3 regions showed evidence of recombination within but very little recombination between the X4 and R5 lineages, suggesting that these populations are genetically isolated. IMPORTANCE Primer ID sequencing provides a novel approach to study genetic structures of viral populations. X4 variants may be more prevalent than previously reported when assessed by using next-generation sequencing (NGS) and with a greater depth of sampling than single-genome amplification (SGA). Phylogenetic analysis to identify lineages of sequences with intermediate FPR values may provide additional information for accurately predicting X4 variants by using V3 sequences. Limited recombination occurs between X4 and R5 lineages, suggesting that X4 and R5 variants are genetically isolated and may be replicating in different cell types or that X4/R5 recombinants have reduced fitness.
Collapse
|
8
|
The temporal increase in HIV-1 non-R5 tropism frequency among newly diagnosed patients from northern Poland is associated with clustered transmissions. J Int AIDS Soc 2015; 18:19993. [PMID: 26297538 PMCID: PMC4545195 DOI: 10.7448/ias.18.1.19993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 07/06/2015] [Accepted: 07/21/2015] [Indexed: 01/27/2023] Open
Abstract
Introduction CCR5 (R5) tropic viruses are associated with early stages of infection, whereas CXCR4 (X4) HIV-1 tropism has been associated with severe immunodeficiency. We investigated the temporal changes in the genotype-predicted tropism frequency and the phylogenetic relationships between the R5 and non-R5 clades. Methods A cohort of 194 patients with a newly diagnosed HIV infection that was linked to their care from 2007 to 2014 was analyzed. Baseline plasma samples were used to assess the HIV-1 genotypic tropism with triplicate V3-loop sequencing. The non-R5 tropism prediction thresholds were assigned using a false positive rate (FPR) of 10 and 5.75% and associated with clinical and laboratory data. The transmission clusters were analyzed using pol sequences with a maximum likelihood and Bayesian inference. Results The overall non-R5 tropism frequency for 5.75% FPR was 15.5% (n=30) and 27.8% (n=54) for 10% FPR. The frequency of the non-R5 tropism that was predicted using 5.75% FPR increased significantly from 2007 (0%) to 2014 (n=5/17, 29.4%) (p=0.004, rough slope +3.73%/year) and from 0% (2007) to 35.3% (2014, n=6/17) (p=0.071, rough slope +2.9%/year) using 10% FPR. Increase in the asymptomatic diagnoses over time was noted (p=0.05, rough slope +3.53%/year) along with a tendency to increase the lymphocyte CD4 nadir (p=0.069). Thirty-two clusters were identified, and non-R5 tropic viruses were found for 26 (30.95%) sequences contained within 14 (43.8%) clusters. Non-R5 tropism was associated with subtype D variants (p=0.0001) and the presence of CCR5 Δ32/wt genotype (p=0.052). Conclusions R5 tropism predominates among the treatment of naive individuals, but the increases in the frequency of non-R5 tropic variants may limit the clinical efficacy of the co-receptor inhibitors. The rising prevalence of non-R5 HIV-1 may indicate transmission of X4 clades.
Collapse
|
9
|
Quiñones-Mateu ME, Avila S, Reyes-Teran G, Martinez MA. Deep sequencing: becoming a critical tool in clinical virology. J Clin Virol 2014; 61:9-19. [PMID: 24998424 DOI: 10.1016/j.jcv.2014.06.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 02/07/2023]
Abstract
Population (Sanger) sequencing has been the standard method in basic and clinical DNA sequencing for almost 40 years; however, next-generation (deep) sequencing methodologies are now revolutionizing the field of genomics, and clinical virology is no exception. Deep sequencing is highly efficient, producing an enormous amount of information at low cost in a relatively short period of time. High-throughput sequencing techniques have enabled significant contributions to multiples areas in virology, including virus discovery and metagenomics (viromes), molecular epidemiology, pathogenesis, and studies of how viruses to escape the host immune system and antiviral pressures. In addition, new and more affordable deep sequencing-based assays are now being implemented in clinical laboratories. Here, we review the use of the current deep sequencing platforms in virology, focusing on three of the most studied viruses: human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus.
Collapse
Affiliation(s)
- Miguel E Quiñones-Mateu
- University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Santiago Avila
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Miguel A Martinez
- Fundació irsicaixa, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
10
|
Next-Generation Sequencing to Help Monitor Patients Infected with HIV: Ready for Clinical Use? Curr Infect Dis Rep 2014; 16:401. [DOI: 10.1007/s11908-014-0401-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Ransy DG, Motorina A, Merindol N, Akouamba BS, Samson J, Lie Y, Napolitano LA, Lapointe N, Boucher M, Soudeyns H. Evolution of HIV-1 coreceptor usage and coreceptor switching during pregnancy. AIDS Res Hum Retroviruses 2014; 30:312-24. [PMID: 24090041 DOI: 10.1089/aid.2013.0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. To document the evolution of coreceptor tropism during pregnancy, a longitudinal study of envelope gene sequences was performed in a group of pregnant women infected with HIV-1 of clade B (n=10) or non-B (n=9). Polymerase chain reaction (PCR) amplification of the V1-V3 region was performed on plasma viral RNA, followed by cloning and sequencing. Using geno2pheno and PSSMX4R5, the presence of X4 variants was predicted in nine of 19 subjects (X4 subjects) independent of HIV-1 clade. Six of nine X4 subjects exhibited CD4(+) T cell counts <200 cells/mm(3), and the presence of X4-capable virus was confirmed using a recombinant phenotypic assay in four of seven cases where testing was successful. In five of nine X4 subjects, a statistically significant decline in the geno2pheno false-positive rate was observed during the course of pregnancy, invariably accompanied by progressive increases in the PSSMX4R5 score, the net charge of V3, and the relative representation of X4 sequences. Evolution toward X4 tropism was also echoed in the primary structure of V2, as an accumulation of substitutions associated with CXCR4 tropism was seen in X4 subjects. Results from these experiments provide the first evidence of the ongoing evolution of coreceptor utilization from CCR5 to CXCR4 during pregnancy in a significant fraction of HIV-infected women. These results inform changes in host-pathogen interactions that lead to a directional shaping of viral populations and viral tropism during pregnancy, and provide insights into the biology of HIV transmission from mother to child.
Collapse
Affiliation(s)
- Doris G. Ransy
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Alena Motorina
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Natacha Merindol
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Bertine S. Akouamba
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Johanne Samson
- Centre maternel et infantile sur le SIDA, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Yolanda Lie
- Monogram Biosciences Inc., South San Francisco, California
| | | | - Normand Lapointe
- Centre maternel et infantile sur le SIDA, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Marc Boucher
- Centre maternel et infantile sur le SIDA, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Hugo Soudeyns
- Unité d'immunopathologie virale, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Sensitive deep-sequencing-based HIV-1 genotyping assay to simultaneously determine susceptibility to protease, reverse transcriptase, integrase, and maturation inhibitors, as well as HIV-1 coreceptor tropism. Antimicrob Agents Chemother 2014; 58:2167-85. [PMID: 24468782 DOI: 10.1128/aac.02710-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With 29 individual antiretroviral drugs available from six classes that are approved for the treatment of HIV-1 infection, a combination of different phenotypic and genotypic tests is currently needed to monitor HIV-infected individuals. In this study, we developed a novel HIV-1 genotypic assay based on deep sequencing (DeepGen HIV) to simultaneously assess HIV-1 susceptibilities to all drugs targeting the three viral enzymes and to predict HIV-1 coreceptor tropism. Patient-derived gag-p2/NCp7/p1/p6/pol-PR/RT/IN- and env-C2V3 PCR products were sequenced using the Ion Torrent Personal Genome Machine. Reads spanning the 3' end of the Gag, protease (PR), reverse transcriptase (RT), integrase (IN), and V3 regions were extracted, truncated, translated, and assembled for genotype and HIV-1 coreceptor tropism determination. DeepGen HIV consistently detected both minority drug-resistant viruses and non-R5 HIV-1 variants from clinical specimens with viral loads of ≥1,000 copies/ml and from B and non-B subtypes. Additional mutations associated with resistance to PR, RT, and IN inhibitors, previously undetected by standard (Sanger) population sequencing, were reliably identified at frequencies as low as 1%. DeepGen HIV results correlated with phenotypic (original Trofile, 92%; enhanced-sensitivity Trofile assay [ESTA], 80%; TROCAI, 81%; and VeriTrop, 80%) and genotypic (population sequencing/Geno2Pheno with a 10% false-positive rate [FPR], 84%) HIV-1 tropism test results. DeepGen HIV (83%) and Trofile (85%) showed similar concordances with the clinical response following an 8-day course of maraviroc monotherapy (MCT). In summary, this novel all-inclusive HIV-1 genotypic and coreceptor tropism assay, based on deep sequencing of the PR, RT, IN, and V3 regions, permits simultaneous multiplex detection of low-level drug-resistant and/or non-R5 viruses in up to 96 clinical samples. This comprehensive test, the first of its class, will be instrumental in the development of new antiretroviral drugs and, more importantly, will aid in the treatment and management of HIV-infected individuals.
Collapse
|
13
|
Immunological Recovery After 24 Weeks of Antiretroviral Therapy in Patients With X4 Virus During Primary HIV Infection. J Acquir Immune Defic Syndr 2014; 65:e27-9. [DOI: 10.1097/qai.0b013e3182a03ed2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Genotypic analysis of the V3 region of HIV from virologic nonresponders to maraviroc-containing regimens reveals distinct patterns of failure. Antimicrob Agents Chemother 2013; 57:6122-30. [PMID: 24080655 DOI: 10.1128/aac.01534-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Changes in HIV tropism from R5 to non-R5 or development of drug resistance is often associated with virologic failure in patients treated with maraviroc, a CCR5 antagonist. We sought to examine changes in HIV envelope sequences and inferred tropism in patients who did not respond to maraviroc-based regimens. We selected 181 patients who experienced early virologic failure on maraviroc-containing therapy in the MOTIVATE trials. All patients had R5 HIV by the original Trofile assay before entry. We used population-based sequencing methods and the geno2pheno algorithm to examine changes in tropism and V3 sequences at the time of failure. Using deep sequencing, we assessed whether V3 sequences observed at failure emerged from preexisting subpopulations. From population genotyping data at failure, 90 patients had R5 results, and 91 had non-R5 results. Of the latter group, the geno2pheno false-positive rate (FPR) value fell from a median of 20 at screening to 1.1 at failure. By deep sequencing, the median percentage of non-R5 variants in these patients rose from 1.4% to 99.5% after a median of 4 weeks on maraviroc. In 70% of cases, deep sequencing could detect a pretreatment CXCR4-using subpopulation, which emerged at failure. Overall, there were two distinct patterns of failure of maraviroc. Patients failing with R5 generally had few V3 substitutions and low non-R5 prevalence by deep sequencing. Patients with non-R5 HIV who were failing developed very-high-prevalence non-R5 HIV (median, 99%) and had very low geno2pheno values.
Collapse
|
15
|
Pérez-Álvarez L, Delgado E, Vega Y, Montero V, Cuevas T, Fernández-García A, García-Riart B, Pérez-Castro S, Rodríguez-Real R, López-Álvarez MJ, Fernández-Rodríguez R, Lezaun MJ, Ordóñez P, Ramos C, Bereciartua E, Calleja S, Sánchez-García AM, Thomson MM. Predominance of CXCR4 tropism in HIV-1 CRF14_BG strains from newly diagnosed infections. J Antimicrob Chemother 2013; 69:246-53. [PMID: 23900735 DOI: 10.1093/jac/dkt305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES R5-tropic viruses are associated with HIV-1 transmission and predominate during the early stages of infection. X4-tropic populations have been detected in ~50% of patients with late-stage disease infected with subtype B viruses. In this study, we compared the frequency of X4 tropism in individuals infected with HIV-1 CRF14_BG viruses, which have a V3 loop of subtype B, with a control group of individuals infected with subtype B viruses. METHODS Sixty-three individuals infected with HIV-1 CRF14_BG (n = 31) or subtype B (n = 32) were studied. Similar proportions of newly diagnosed and chronically infected individuals were included in the subtype B and CRF14_BG groups. V3 sequences were obtained and coreceptor tropism was predicted using the Geno2pheno[coreceptor] algorithm. V3 net charge and 11/25 rules were also used for coreceptor prediction. RESULTS Overall, X4 tropism was more frequent among individuals infected with CRF14_BG viruses (87.1%) than subtype B viruses (34.3%), a difference that was statistically highly significant (P = 0.00001). Importantly, the frequencies among newly diagnosed individuals were 90% and 13.3%, respectively (P = 0.0007). Characteristic amino acids in the V3 loop (T13, M14, V19 and W20) were identified at higher frequencies in CRF14_BG viruses (54%) than subtype B viruses (0%; P < 0.000001). CONCLUSIONS CRF14_BG is the genetic form with the highest proportion of X4-tropic viruses reported to date in newly diagnosed and chronic infections. This suggests high pathogenicity for CRF14_BG viruses, potentially leading to rapid disease progression. CCR5 antagonists will be ineffective in most CRF14_BG-infected patients, even at early stages of infection.
Collapse
Affiliation(s)
- Lucía Pérez-Álvarez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Raymond S, Saliou A, Nicot F, Delobel P, Dubois M, Carcenac R, Saune K, Marchou B, Massip P, Izopet J. Characterization of CXCR4-using HIV-1 during primary infection by ultra-deep pyrosequencing. J Antimicrob Chemother 2013; 68:2875-81. [DOI: 10.1093/jac/dkt290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
17
|
Abstract
Technologic advances in human immunodeficiency virus type 1 (HIV-1) sequencing have revolutionized the study of antiretroviral drug resistance and are increasingly moving from the laboratory to clinical practice. These techniques are able to detect HIV-1 drug resistance mutations present at low frequencies not detectable by current HIV-1 genotyping assays. For a number of commonly used antiretroviral medications, such as nonnucleoside reverse transcriptase inhibitors, the detection of these drug-resistant minority variants significantly increases the risk of treatment failure. The level of evidence, however, is insufficient to determine the impact of HIV-1 minority variants for several other classes of antiretroviral medications. Clinicians should be aware of the novel technologies that are moving into routine clinical use and the clinical implications of HIV-1 minority variants. Additional studies are needed to determine the optimal platform for clinical application of these new technologies and to provide guidance to clinicians on the type and frequency of clinically important HIV-1 minority variants.
Collapse
Affiliation(s)
- Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
18
|
Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism. PLoS One 2012; 7:e49602. [PMID: 23166726 PMCID: PMC3498215 DOI: 10.1371/journal.pone.0049602] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/27/2012] [Indexed: 12/17/2022] Open
Abstract
HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5) viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences) and genotypic (e.g., population sequencing linked to bioinformatic algorithms) assays are the most widely used. Although several next-generation sequencing (NGS) platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences), Illumina®, and Ion Torrent™ (Life Technologies). Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels) and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used), compared to Trofile (80%) and population sequencing (70%). In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.
Collapse
|
19
|
Beerenwinkel N, Günthard HF, Roth V, Metzner KJ. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Front Microbiol 2012; 3:329. [PMID: 22973268 PMCID: PMC3438994 DOI: 10.3389/fmicb.2012.00329] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/24/2012] [Indexed: 12/17/2022] Open
Abstract
Many viruses, including the clinically relevant RNA viruses HIV (human immunodeficiency virus) and HCV (hepatitis C virus), exist in large populations and display high genetic heterogeneity within and between infected hosts. Assessing intra-patient viral genetic diversity is essential for understanding the evolutionary dynamics of viruses, for designing effective vaccines, and for the success of antiviral therapy. Next-generation sequencing (NGS) technologies allow the rapid and cost-effective acquisition of thousands to millions of short DNA sequences from a single sample. However, this approach entails several challenges in experimental design and computational data analysis. Here, we review the entire process of inferring viral diversity from sample collection to computing measures of genetic diversity. We discuss sample preparation, including reverse transcription and amplification, and the effect of experimental conditions on diversity estimates due to in vitro base substitutions, insertions, deletions, and recombination. The use of different NGS platforms and their sequencing error profiles are compared in the context of various applications of diversity estimation, ranging from the detection of single nucleotide variants (SNVs) to the reconstruction of whole-genome haplotypes. We describe the statistical and computational challenges arising from these technical artifacts, and we review existing approaches, including available software, for their solution. Finally, we discuss open problems, and highlight successful biomedical applications and potential future clinical use of NGS to estimate viral diversity.
Collapse
Affiliation(s)
- Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH ZurichBasel, Switzerland
- Swiss Institute of BioinformaticsBasel, Switzerland
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of ZurichZurich, Switzerland
| | - Volker Roth
- Department of Mathematics and Computer Science, University of BaselBasel, Switzerland
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of ZurichZurich, Switzerland
| |
Collapse
|
20
|
Lythgoe KA, Fraser C. New insights into the evolutionary rate of HIV-1 at the within-host and epidemiological levels. Proc Biol Sci 2012; 279:3367-75. [PMID: 22593106 PMCID: PMC3385732 DOI: 10.1098/rspb.2012.0595] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/23/2012] [Indexed: 01/15/2023] Open
Abstract
Over calendar time, HIV-1 evolves considerably faster within individuals than it does at the epidemic level. This is a surprising observation since, from basic population genetic theory, we would expect the genetic substitution rate to be similar across different levels of biological organization. Three different mechanisms could potentially cause the observed mismatch in phylogenetic rates of divergence: temporal changes in selection pressure during the course of infection; frequent reversion of adaptive mutations after transmission; and the storage of the virus in the body followed by the preferential transmission of stored ancestral virus. We evaluate each of these mechanisms to determine whether they are likely to make a major contribution to the mismatch in phylogenetic rates. We conclude that the cycling of the virus through very long-lived memory CD4(+) T cells, a process that we call 'store and retrieve', is probably the major contributing factor to the rate mismatch. The preferential transmission of ancestral virus needs to be integrated into evolutionary models if we are to accurately predict the evolution of immune escape, drug resistance and virulence in HIV-1 at the population level. Moreover, early infection viruses should be the major target for vaccine design, because these are the viral strains primarily involved in transmission.
Collapse
Affiliation(s)
- Katrina A Lythgoe
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, London W2 1PG, UK.
| | | |
Collapse
|
21
|
Radford AD, Chapman D, Dixon L, Chantrey J, Darby AC, Hall N. Application of next-generation sequencing technologies in virology. J Gen Virol 2012; 93:1853-1868. [PMID: 22647373 PMCID: PMC3709572 DOI: 10.1099/vir.0.043182-0] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The progress of science is punctuated by the advent of revolutionary technologies that provide new ways and scales to formulate scientific questions and advance knowledge. Following on from electron microscopy, cell culture and PCR, next-generation sequencing is one of these methodologies that is now changing the way that we understand viruses, particularly in the areas of genome sequencing, evolution, ecology, discovery and transcriptomics. Possibilities for these methodologies are only limited by our scientific imagination and, to some extent, by their cost, which has restricted their use to relatively small numbers of samples. Challenges remain, including the storage and analysis of the large amounts of data generated. As the chemistries employed mature, costs will decrease. In addition, improved methods for analysis will become available, opening yet further applications in virology including routine diagnostic work on individuals, and new understanding of the interaction between viral and host transcriptomes. An exciting era of viral exploration has begun, and will set us new challenges to understand the role of newly discovered viral diversity in both disease and health.
Collapse
Affiliation(s)
- Alan D Radford
- University of Liverpool, Institute of Infection and Global Health, Leahurst Campus, Chester High Road, Neston, South Wirral CH64 7TE, UK
| | - David Chapman
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Linda Dixon
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Julian Chantrey
- University of Liverpool, School of Veterinary Science, Leahurst Campus, Chester High Road, Neston, South Wirral CH64 7TE, UK
| | - Alistair C Darby
- Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| | - Neil Hall
- Institute of Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
22
|
Hedskog C, Mild M, Albert J. Transmission of the X4 phenotype of HIV-1: is there evidence against the "random transmission" hypothesis? J Infect Dis 2011; 205:163-5. [PMID: 22147793 DOI: 10.1093/infdis/jir719] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
23
|
Bordería AV, Stapleford KA, Vignuzzi M. RNA virus population diversity: implications for inter-species transmission. Curr Opin Virol 2011; 1:643-8. [PMID: 22440922 DOI: 10.1016/j.coviro.2011.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/13/2011] [Accepted: 09/30/2011] [Indexed: 01/25/2023]
Abstract
RNA viruses are notorious for rapidly generating genetically diverse populations during a single replication cycle, and the implications of this mutant population, often referred to as quasispecies, can be vast. Previous studies have linked RNA virus genetic variability to changes in viral pathogenesis, the ability to adapt to a host during infection, and to the acquisition of mechanisms required to switch hosts entirely. However, these initial studies are just the beginning. With the development of next generation technologies, groups will be able to dig deeper into the sequence space that is generated during an RNA virus infection and more clearly understand the development, role, and consequences of viral genetic diversity.
Collapse
Affiliation(s)
- Antonio V Bordería
- Institut Pasteur, Viral Populations and Pathogenesis Group and CNRS 3015, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|