1
|
Extensive proteomic and transcriptomic changes quench the TCR/CD3 activation signal of latently HIV-1 infected T cells. PLoS Pathog 2021; 17:e1008748. [PMID: 33465149 PMCID: PMC7846126 DOI: 10.1371/journal.ppat.1008748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/29/2021] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
The biomolecular mechanisms controlling latent HIV-1 infection, despite their importance for the development of a cure for HIV-1 infection, are only partially understood. For example, ex vivo studies have recently shown that T cell activation only triggered HIV-1 reactivation in a fraction of the latently infected CD4+ T cell reservoir, but the molecular biology of this phenomenon is unclear. We demonstrate that HIV-1 infection of primary T cells and T cell lines indeed generates a substantial amount of T cell receptor (TCR)/CD3 activation-inert latently infected T cells. RNA-level analysis identified extensive transcriptomic differences between uninfected, TCR/CD3 activation-responsive and -inert T cells, but did not reveal a gene expression signature that could functionally explain TCR/CD3 signaling inertness. Network analysis suggested a largely stochastic nature of these gene expression changes (transcriptomic noise), raising the possibility that widespread gene dysregulation could provide a reactivation threshold by impairing overall signal transduction efficacy. Indeed, compounds that are known to induce genetic noise, such as HDAC inhibitors impeded the ability of TCR/CD3 activation to trigger HIV-1 reactivation. Unlike for transcriptomic data, pathway enrichment analysis based on phospho-proteomic data directly identified an altered TCR signaling motif. Network analysis of this data set identified drug targets that would promote TCR/CD3-mediated HIV-1 reactivation in the fraction of otherwise TCR/CD3-reactivation inert latently HIV-1 infected T cells, regardless of whether the latency models were based on T cell lines or primary T cells. The data emphasize that latent HIV-1 infection is largely the result of extensive, stable biomolecular changes to the signaling network of the host T cells harboring latent HIV-1 infection events. In extension, the data imply that therapeutic restoration of host cell responsiveness prior to the use of any activating stimulus will likely have to be an element of future HIV-1 cure therapies. A curative therapy for HIV-1 infection will at least require the eradication of a small pool of CD4+ helper T cells in which the virus can persist in an inactive, latent state, even after years of successful antiretroviral therapy. It has been assumed that activation of these viral reservoir T cells will also reactivate the latent virus, which is a prerequisite for the destruction of these cells. Remarkably, this is not always the case and following application of even the most potent stimuli that activate normal T cells through their T cell receptor, a large portion of the latent virus pool remains in a dormant state. Herein we demonstrate that a large part of latent HIV-1 infection events reside in T cells that have been rendered activation inert. We provide a systemwide, biomolecular description of the changes that render latently HIV-1 infected T cells activation inert and using this description, devise pharmacologic interference strategies that render initially activation inert T cells responsive to stimulation. This in turn allows for efficient triggering of HIV-1 reactivation in a large part of the otherwise unresponsive latently HIV-1 infected T cell reservoir.
Collapse
|
2
|
Cellular Gene Modulation of HIV-Infected CD4 T Cells in Response to Serial Treatment with the Histone Deacetylase Inhibitor Vorinostat. J Virol 2020; 94:JVI.00351-20. [PMID: 32295913 PMCID: PMC7307144 DOI: 10.1128/jvi.00351-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase inhibitors are widely studied HIV latency-reversing agents (LRAs). VOR, an HDACi, induces histone acetylation and chromatin remodeling and modulates host and HIV gene expression. However, the relationship between these events is poorly defined, and clinical studies suggest diminished HIV reactivation in resting CD4 T cells with daily exposure to VOR. Our study provides evidence that VOR induces a consistent level of host cell gene transcription following intermittent exposure. In addition, in response to VOR exposure a gene signature that was conserved across single and serial exposures both in vitro and in vivo was identified, indicating that VOR can consistently and reproducibly modulate transcriptional host responses. However, as the HIV response to HDACi declines over time, other factors modulate viral reactivation in vivo despite robust HDAC activity. The identified host gene VOR biomarkers can be used for monitoring the pharmacodynamic activity of HDAC inhibitors. Histone deacetylase inhibitors (HDACi) are the most widely studied HIV latency-reversing agents (LRAs). The HDACi suberoylanilide hydroxamic acid (vorinostat [VOR]) has been employed in several clinical HIV latency reversal studies, as well as in vitro models of HIV latency, and has been shown to effectively induce HIV RNA and protein expression. Despite these findings, response to HDACi can vary, particularly with intermittent dosing, and information is lacking on the relationship between the host transcriptional response and HIV latency reversal. Here, we report on global gene expression responses to VOR and examine the longevity of the transcriptional response in various cellular models. We found that many genes are modulated at 6 h post-VOR treatment in HCT116, Jurkat, and primary resting CD4 T cells, yet return to baseline levels after an 18-h VOR-free period. With repeat exposure to VOR in resting CD4 T cells, we found similar and consistent transcriptional changes at 6 h following each serial treatment. In addition, serial exposure in HIV-infected suppressed donor CD4 T cells showed consistent transcriptional changes after each exposure to VOR. We identified five host genes that were strongly and consistently modulated following histone deacetylase (HDAC) inhibition; three (H1F0, IRGM, and WIPI49) were upregulated, and two (PHF15 and PRDM10) were downregulated. These genes demonstrated consistent modulation in peripheral blood mononuclear cell (PBMC) samples from HIV-positive (HIV+) participants who received either single or multiple doses of 400 mg of VOR. Interestingly, the host transcriptional response did not predict induction of cell-associated HIV RNA, suggesting that other cellular factors play key roles in HIV latency reversal in vivo despite robust HDACi pharmacological activity. IMPORTANCE Histone deacetylase inhibitors are widely studied HIV latency-reversing agents (LRAs). VOR, an HDACi, induces histone acetylation and chromatin remodeling and modulates host and HIV gene expression. However, the relationship between these events is poorly defined, and clinical studies suggest diminished HIV reactivation in resting CD4 T cells with daily exposure to VOR. Our study provides evidence that VOR induces a consistent level of host cell gene transcription following intermittent exposure. In addition, in response to VOR exposure a gene signature that was conserved across single and serial exposures both in vitro and in vivo was identified, indicating that VOR can consistently and reproducibly modulate transcriptional host responses. However, as the HIV response to HDACi declines over time, other factors modulate viral reactivation in vivo despite robust HDAC activity. The identified host gene VOR biomarkers can be used for monitoring the pharmacodynamic activity of HDAC inhibitors.
Collapse
|
3
|
Assessing the impact of AGS-004, a dendritic cell-based immunotherapy, and vorinostat on persistent HIV-1 Infection. Sci Rep 2020; 10:5134. [PMID: 32198428 PMCID: PMC7083965 DOI: 10.1038/s41598-020-61878-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/03/2020] [Indexed: 11/09/2022] Open
Abstract
Approaches to deplete persistent HIV infection are needed. We investigated the combined impact of the latency reversing agent vorinostat (VOR) and AGS-004, an autologous dendritic cell immunotherapeutic, on the HIV reservoir. HIV+, stably treated participants in whom resting CD4+ T cell-associated HIV RNA (rca-RNA) increased after VOR exposure ex vivo and in vivo received 4 doses of AGS-004 every 3 weeks, followed by VOR every 72 hours for 30 days, and then the cycle repeated. Change in VOR-responsive host gene expression, HIV-specific T cell responses, low-level HIV viremia, rca-RNA, and the frequency of resting CD4+ T-cell infection (RCI) was measured at baseline and after each cycle. No serious treatment-related adverse events were observed among five participants. As predicted, VOR-responsive host genes responded uniformly to VOR dosing. Following cycles of AGS-004 and VOR, rca-RNA decreased significantly in only two participants, with a significant decrease in SCA observed in one of these participants. However, unlike other cohorts dosed with AGS-004, no uniform increase in HIV-specific immune responses following vaccination was observed. Finally, no reproducible decline of RCI, defined as a decrease of >50%, was observed. AGS-004 and VOR were safe and well-tolerated, but no substantial impact on RCI was measured. In contrast to previous clinical data, AGS-004 did not induce HIV-specific immune responses greater than those measured at baseline. More efficacious antiviral immune interventions, perhaps paired with more effective latency reversal, must be developed to clear persistent HIV infection.
Collapse
|
4
|
Abewe H, Deshmukh S, Mukim A, Beliakova-Bethell N. Use of GapmeRs for gene expression knockdowns in human primary resting CD4+ T cells. J Immunol Methods 2020; 476:112674. [PMID: 31629740 PMCID: PMC6939142 DOI: 10.1016/j.jim.2019.112674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
Human primary resting CD4+ T cells are difficult to transfect while preserving viability. The present study evaluated gymnotic delivery and RNase H1-dependent gene expression knockdown mediated by antisense oligonucleotides, called GapmeRs. Exposure of primary resting CD4+ T cells to GapmeRs did not cause cell activation or affect cell viability. Gene expression knockdowns were stable at least up to 48 h after removal of GapmeRs from culture. Exposure to GapmeRs resulted in comparable levels of degradation along the entire transcript, which could be important when studying function of regulatory long non-coding RNAs. Efficiency of transcript degradation was not solely dependent on the dose of GapmeR, RNA target and its localization. When using GapmeRs, some optimization is required, and all targets have to be individually tested; however, using GapmeRs is advantageous in experiments where preservation of the resting state of the human primary CD4+ T cells and targeting nuclear RNAs are desired. In certain cases, combining GapmeR with siRNA for the same target may improve knockdown efficiency.
Collapse
Affiliation(s)
- Hosiana Abewe
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; University of California San Diego, La Jolla, CA 92093, USA
| | - Savitha Deshmukh
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | - Amey Mukim
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | - Nadejda Beliakova-Bethell
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Trypsteen W, White CH, Mukim A, Spina CA, De Spiegelaere W, Lefever S, Planelles V, Bosque A, Woelk CH, Vandekerckhove L, Beliakova-Bethell N. Long non-coding RNAs and latent HIV - A search for novel targets for latency reversal. PLoS One 2019; 14:e0224879. [PMID: 31710657 PMCID: PMC6844474 DOI: 10.1371/journal.pone.0224879] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
The latent cellular reservoir of HIV is recognized as the major barrier to cure from HIV infection. Long non-coding RNAs (lncRNAs) are more tissue and cell type-specific than protein coding genes, and may represent targets of choice for HIV latency reversal. Using two in vitro primary T-cell models, we identified lncRNAs dysregulated in latency. PVT1 and RP11-347C18.3 were up-regulated in common between the two models, and RP11-539L10.2 was down-regulated. The major component of the latent HIV reservoir, memory CD4+ T-cells, had higher expression of these lncRNAs, compared to naïve T-cells. Guilt-by-association analysis demonstrated that lncRNAs dysregulated in latency were associated with several cellular pathways implicated in HIV latency establishment and maintenance: proteasome, spliceosome, p53 signaling, and mammalian target of rapamycin (MTOR). PVT1, RP11-347C18.3, and RP11-539L10.2 were down-regulated by latency reversing agents, suberoylanilide hydroxamic acid and Romidepsin, suggesting that modulation of lncRNAs is a possible secondary mechanism of action of these compounds. These results will facilitate prioritization of lncRNAs for evaluation as targets for HIV latency reversal. Importantly, our study provides insights into regulatory function of lncRNA during latent HIV infection.
Collapse
Affiliation(s)
- Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Cory H. White
- Faculty of Medicine, University of Southampton, Southampton, Hants, United Kingdom
| | - Amey Mukim
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States of America
| | - Celsa A. Spina
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States of America
- Department of Pathology, University of California San Diego, La Jolla, CA, United States of America
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Sciences, Ghent University, Ghent, Belgium
| | - Steve Lefever
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States of America
| | - Christopher H. Woelk
- Faculty of Medicine, University of Southampton, Southampton, Hants, United Kingdom
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Nadejda Beliakova-Bethell
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States of America
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
6
|
Beliakova-Bethell N, Mukim A, White CH, Deshmukh S, Abewe H, Richman DD, Spina CA. Histone deacetylase inhibitors induce complex host responses that contribute to differential potencies of these compounds in HIV reactivation. J Biol Chem 2019; 294:5576-5589. [PMID: 30745362 PMCID: PMC6462528 DOI: 10.1074/jbc.ra118.005185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/07/2019] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase (HDAC) inhibitors (HDACis) have been widely tested in clinical trials for their ability to reverse HIV latency but have yielded only limited success. One HDACi, suberoylanilide hydroxamic acid (SAHA), exhibits off-target effects on host gene expression predicted to interfere with induction of HIV transcription. Romidepsin (RMD) has higher potency and specificity for class I HDACs implicated in maintaining HIV provirus in the latent state. More robust HIV reactivation has indeed been achieved with RMD use ex vivo than with SAHA; however, reduction of viral reservoir size has not been observed in clinical trials. Therefore, using RNA-Seq, we sought to compare the effects of SAHA and RMD on gene expression in primary CD4+ T cells. Among the genes whose expression was modulated by both HDACi agents, we identified genes previously implicated in HIV latency. Two genes, SMARCB1 and PARP1, whose modulation by SAHA and RMD is predicted to inhibit HIV reactivation, were evaluated in the major maturation subsets of CD4+ T cells and were consistently either up- or down-regulated by both HDACi compounds. Our results indicate that despite having different potencies and HDAC specificities, SAHA and RMD modulate an overlapping set of genes, implicated in HIV latency regulation. Some of these genes merit exploration as additional targets to improve the therapeutic outcomes of "shock and kill" strategies. The overall complexity of HDACi-induced responses among host genes with predicted stimulatory or inhibitory effects on HIV expression likely contributes to differential HDACi potencies and dictates the outcome of HIV reactivation.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| | - Amey Mukim
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
| | - Cory H White
- the University of California San Diego, La Jolla, California 92093
| | - Savitha Deshmukh
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
| | - Hosiana Abewe
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| | - Douglas D Richman
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| | - Celsa A Spina
- From the Veterans Affairs San Diego Healthcare System and Veterans Medical Research Foundation, San Diego, California 92161 and
- the University of California San Diego, La Jolla, California 92093
| |
Collapse
|
7
|
Choi G, Yang TJ, Yoo S, Choi SI, Lim JY, Cho PS, Hwang SW. TRPV4-Mediated Anti-nociceptive Effect of Suberanilohydroxamic Acid on Mechanical Pain. Mol Neurobiol 2018; 56:444-453. [PMID: 29707744 DOI: 10.1007/s12035-018-1093-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/19/2018] [Indexed: 11/29/2022]
Abstract
Biological effects of suberanilohydroxamic acid (SAHA) have mainly been observed in the context of tumor suppression via epigenetic mechanisms, but other potential outcomes from its use have also been proposed in different fields such as pain modulation. Here, we tried to understand whether SAHA modulates specific pain modalities by a non-epigenetic unknown mechanism. From 24 h Complete Freund's Adjuvant (CFA)-inflamed hind paws of mice, mechanical and thermal inflammatory pain indices were collected with or without immediate intraplantar injection of SAHA. To examine the action of SAHA on sensory receptor-specific pain, transient receptor potential (TRP) ion channel-mediated pain indices were collected in the same manner of intraplantar treatment. Activities of primarily cultured sensory neurons and heterologous cells transfected with TRP channels were monitored to determine the molecular mechanism underlying the pain-modulating effect of SAHA. As a result, immediate and localized pretreatment with SAHA, avoiding an epigenetic intervention, acutely attenuated mechanical inflammatory pain and receptor-specific pain evoked by injection of a TRP channel agonist in animal models. We show that a component of the mechanisms involves TRPV4 inhibition based on in vitro intracellular Ca2+ imaging and electrophysiological assessments with heterologous expression systems and cultured sensory neurons. Taken together, the present study provides evidence of a novel off-target action and its mechanism of SAHA in its modality-specific anti-nociceptive effect and suggests the utility of this compound for pharmacological modulation of pain.
Collapse
Affiliation(s)
- Geunyeol Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Tae-Jin Yang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Sungjae Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Seung-In Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Pyung Sun Cho
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea. .,Department of Physiology, Korea University College of Medicine, Seoul, 02841, South Korea.
| |
Collapse
|
8
|
White CH, Beliakova-Bethell N, Lada SM, Breen MS, Hurst TP, Spina CA, Richman DD, Frater J, Magiorkinis G, Woelk CH. Transcriptional Modulation of Human Endogenous Retroviruses in Primary CD4+ T Cells Following Vorinostat Treatment. Front Immunol 2018; 9:603. [PMID: 29706951 PMCID: PMC5906534 DOI: 10.3389/fimmu.2018.00603] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
The greatest obstacle to a cure for HIV is the provirus that integrates into the genome of the infected cell and persists despite antiretroviral therapy. A "shock and kill" approach has been proposed as a strategy for an HIV cure whereby drugs and compounds referred to as latency-reversing agents (LRAs) are used to "shock" the silent provirus into active replication to permit "killing" by virus-induced pathology or immune recognition. The LRA most utilized to date in clinical trials has been the histone deacetylase (HDAC) inhibitor-vorinostat. Potentially, pathological off-target effects of vorinostat may result from the activation of human endogenous retroviruses (HERVs), which share common ancestry with exogenous retroviruses including HIV. To explore the effects of HDAC inhibition on HERV transcription, an unbiased pharmacogenomics approach (total RNA-Seq) was used to evaluate HERV expression following the exposure of primary CD4+ T cells to a high dose of vorinostat. Over 2,000 individual HERV elements were found to be significantly modulated by vorinostat, whereby elements belonging to the ERVL family (e.g., LTR16C and LTR33) were predominantly downregulated, in contrast to LTR12 elements of the HERV-9 family, which exhibited the greatest signal, with the upregulation of 140 distinct elements. The modulation of three different LTR12 elements by vorinostat was confirmed by droplet digital PCR along a dose-response curve. The monitoring of LTR12 expression during clinical trials with vorinostat may be indicated to assess the impact of this HERV on the human genome and host immunity.
Collapse
Affiliation(s)
- Cory H. White
- Faculty of Medicine, University of Southampton, Southampton, Hants, United Kingdom
| | - Nadejda Beliakova-Bethell
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Steven M. Lada
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States
| | - Michael S. Breen
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tara P. Hurst
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Celsa A. Spina
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| | - Douglas D. Richman
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA, United States
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| | - John Frater
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford, United Kingdom
| | | | - Christopher H. Woelk
- Faculty of Medicine, University of Southampton, Southampton, Hants, United Kingdom
| |
Collapse
|
9
|
Garcia-Vidal E, Castellví M, Pujantell M, Badia R, Jou A, Gomez L, Puig T, Clotet B, Ballana E, Riveira-Muñoz E, Esté JA. Evaluation of the Innate Immune Modulator Acitretin as a Strategy To Clear the HIV Reservoir. Antimicrob Agents Chemother 2017; 61:e01368-17. [PMID: 28874382 PMCID: PMC5655051 DOI: 10.1128/aac.01368-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
The persistence of HIV despite suppressive antiretroviral therapy is a major roadblock to HIV eradication. Current strategies focused on inducing the expression of latent HIV fail to clear the persistent reservoir, prompting the development of new approaches for killing HIV-positive cells. Recently, acitretin was proposed as a pharmacological enhancer of the innate cellular defense network that led to virus reactivation and preferential death of infected cells. We evaluated the capacity of acitretin to reactivate and/or to facilitate immune-mediated clearance of HIV-positive cells. Acitretin did not induce HIV reactivation in latently infected cell lines (J-Lat and ACH-2). We could observe only modest induction of HIV reactivation by acitretin in latently green fluorescent protein-HIV-infected Jurkat cells, comparable to suboptimal concentrations of vorinostat, a known latency-reversing agent (LRA). Acitretin induction was insignificant, however, compared to optimal concentrations of LRAs. Acitretin failed to reactivate HIV in a model of latently infected primary CD4+ T cells but induced retinoic acid-inducible gene I (RIG-I) and mitochondrial antiviral signaling (MAVS) expression in infected and uninfected cells, confirming the role of acitretin as an innate immune modulator. However, this effect was not associated with selective killing of HIV-positive cells. In conclusion, acitretin-mediated stimulation of the RIG-I pathway for HIV reactivation is modest and thus may not meaningfully affect the HIV reservoir. Stimulation of the RIG-I-dependent interferon (IFN) cascade by acitretin may not significantly affect the selective destruction of latently infected HIV-positive cells.
Collapse
Affiliation(s)
- Edurne Garcia-Vidal
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marc Castellví
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pujantell
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Roger Badia
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Antoni Jou
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lucia Gomez
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Teresa Puig
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José A Esté
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
10
|
Archin NM, Kirchherr JL, Sung JA, Clutton G, Sholtis K, Xu Y, Allard B, Stuelke E, Kashuba AD, Kuruc JD, Eron J, Gay CL, Goonetilleke N, Margolis DM. Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency. J Clin Invest 2017; 127:3126-3135. [PMID: 28714868 DOI: 10.1172/jci92684] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/01/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The histone deacetylase (HDAC) inhibitor vorinostat (VOR) can increase HIV RNA expression in vivo within resting CD4+ T cells of aviremic HIV+ individuals. However, while studies of VOR or other HDAC inhibitors have reported reversal of latency, none has demonstrated clearance of latent infection. We sought to identify the optimal dosing of VOR for effective serial reversal of HIV latency. METHODS In a study of 16 HIV-infected, aviremic individuals, we measured resting CD4+ T cell-associated HIV RNA ex vivo and in vivo following a single exposure to VOR, and then in vivo after a pair of doses separated by 48 or 72 hours, and finally following a series of 10 doses given at 72-hour intervals. RESULTS Serial VOR exposures separated by 72 hours most often resulted in an increase in cell-associated HIV RNA within circulating resting CD4+ T cells. VOR was well tolerated by all participants. However, despite serial reversal of latency over 1 month of VOR dosing, we did not observe a measurable decrease (>0.3 log10) in the frequency of latent infection within resting CD4+ T cells. CONCLUSIONS These findings outline parameters for the experimental use of VOR to clear latent infection. Latency reversal can be achieved by VOR safely and repeatedly, but effective depletion of persistent HIV infection will require additional advances. In addition to improvements in latency reversal, these advances may include the sustained induction of potent antiviral immune responses capable of recognizing and clearing the rare cells in which HIV latency has been reversed. TRIAL REGISTRATION Clinicaltrials.gov NCT01319383. FUNDING NIH grants U01 AI095052, AI50410, and P30 CA016086 and National Center for Advancing Translational Sciences grant KL2 TR001109.
Collapse
Affiliation(s)
- Nancie M Archin
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases.,Departments of Medicine and
| | - Jennifer L Kirchherr
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases
| | - Julia Am Sung
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases.,Departments of Medicine and
| | - Genevieve Clutton
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases.,Microbiology and Immunology, UNC Chapel Hill School of Medicine
| | - Katherine Sholtis
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases
| | - Yinyan Xu
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases
| | - Brigitte Allard
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases
| | - Erin Stuelke
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases
| | - Angela D Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy
| | - Joann D Kuruc
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases.,Departments of Medicine and
| | - Joseph Eron
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases.,Departments of Medicine and.,Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cynthia L Gay
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases.,Departments of Medicine and
| | - Nilu Goonetilleke
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases.,Microbiology and Immunology, UNC Chapel Hill School of Medicine
| | - David M Margolis
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases.,Departments of Medicine and.,Microbiology and Immunology, UNC Chapel Hill School of Medicine.,Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Achieving HIV-1 Control through RNA-Directed Gene Regulation. Genes (Basel) 2016; 7:genes7120119. [PMID: 27941595 PMCID: PMC5192495 DOI: 10.3390/genes7120119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
HIV-1 infection has been transformed by combined anti-retroviral therapy (ART), changing a universally fatal infection into a controllable infection. However, major obstacles for an HIV-1 cure exist. The HIV latent reservoir, which exists in resting CD4+ T cells, is not impacted by ART, and can reactivate when ART is interrupted or ceased. Additionally, multi-drug resistance can arise. One alternate approach to conventional HIV-1 drug treatment that is being explored involves gene therapies utilizing RNA-directed gene regulation. Commonly known as RNA interference (RNAi), short interfering RNA (siRNA) induce gene silencing in conserved biological pathways, which require a high degree of sequence specificity. This review will provide an overview of the silencing pathways, the current RNAi technologies being developed for HIV-1 gene therapy, current clinical trials, and the challenges faced in progressing these treatments into clinical trials.
Collapse
|
12
|
White CH, Moesker B, Ciuffi A, Beliakova-Bethell N. Systems biology applications to study mechanisms of human immunodeficiency virus latency and reactivation. World J Clin Infect Dis 2016; 6:6-21. [DOI: 10.5495/wjcid.v6.i2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/15/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023] Open
Abstract
Eradication of human immunodeficiency virus (HIV) in infected individuals is currently not possible because of the presence of the persistent cellular reservoir of latent infection. The identification of HIV latency biomarkers and a better understanding of the molecular mechanisms contributing to regulation of HIV expression might provide essential tools to eliminate these latently infected cells. This review aims at summarizing gene expression profiling and systems biology applications to studies of HIV latency and eradication. Studies comparing gene expression in latently infected and uninfected cells identify candidate latency biomarkers and novel mechanisms of latency control. Studies that profiled gene expression changes induced by existing latency reversing agents (LRAs) highlight uniting themes driving HIV reactivation and novel mechanisms that contribute to regulation of HIV expression by different LRAs. Among the reviewed gene expression studies, the common approaches included identification of differentially expressed genes and gene functional category assessment. Integration of transcriptomic data with other biological data types is presently scarce, and the field would benefit from increased adoption of these methods in future studies. In addition, designing prospective studies that use the same methods of data acquisition and statistical analyses will facilitate a more reliable identification of latency biomarkers using different model systems and the comparison of the effects of different LRAs on host factors with a role in HIV reactivation. The results from such studies would have the potential to significantly impact the process by which candidate drugs are selected and combined for future evaluations and advancement to clinical trials.
Collapse
|
13
|
Kazanets A, Shorstova T, Hilmi K, Marques M, Witcher M. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1865:275-88. [PMID: 27085853 DOI: 10.1016/j.bbcan.2016.04.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022]
Abstract
Cancer constitutes a set of diseases with heterogeneous molecular pathologies. However, there are a number of universal aberrations common to all cancers, one of these being the epigenetic silencing of tumor suppressor genes (TSGs). The silencing of TSGs is thought to be an early, driving event in the oncogenic process. With this in consideration, great efforts have been made to develop small molecules aimed at the restoration of TSGs in order to limit tumor cell proliferation and survival. However, the molecular forces that drive the broad epigenetic reprogramming and transcriptional repression of these genes remain ill-defined. Undoubtedly, understanding the molecular underpinnings of transcriptionally silenced TSGs will aid us in our ability to reactivate these key anti-cancer targets. Here, we describe what we consider to be the five most logical molecular mechanisms that may account for this widely observed phenomenon: 1) ablation of transcription factor binding, 2) overexpression of DNA methyltransferases, 3) disruption of CTCF binding, 4) elevation of EZH2 activity, 5) aberrant expression of long non-coding RNAs. The strengths and weaknesses of each proposed mechanism is highlighted, followed by an overview of clinical efforts to target these processes.
Collapse
Affiliation(s)
- Anna Kazanets
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Tatiana Shorstova
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Khalid Hilmi
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Maud Marques
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| | - Michael Witcher
- The Lady Davis Institute of the Jewish General Hospital, Department of Oncology, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Abstract
DESIGN Persistent latently infected CD4 T cells represent a major obstacle to HIV eradication. Histone deacetylase inhibitors (HDACis) are a proposed activation therapy. However, off-target effects on gene expression in host immune cells are poorly understood. We hypothesized that HDACi-modulated genes would be best identified with a dose-response analysis. METHODS Resting primary CD4 T cells were treated with 0.34, 1, 3, or 10 μmol/l of the HDACi, suberoylanilide hydroxamic acid (SAHA), for 24 h and subjected to microarray gene expression analysis. Genes with dose-correlated expression were filtered to identify a subset with consistent up or downregulation at each SAHA dose. Histone modifications were characterized in six SAHA dose-responsive genes by chromatin immunoprecipitation (ChIP-RT-qPCR). RESULTS A large number of genes were shown to be upregulated (N = 657) or downregulated (N = 725) by SAHA in a dose-responsive manner (FDR-corrected P-value ≤ 0.5, fold change ≥|2|). Several genes (e.g. CINNAL1, DPEP2, H1F0, IRGM, PHF15, and SELL) are potential in-vivo biomarkers of SAHA activity. SAHA dose-responsive genes included transcription factors, HIV restriction factors, histone methyltransferases, and host proteins that interact with HIV. Pathway analysis suggested net downregulation of T-cell activation with increasing SAHA dose. Histone acetylation was not correlated with host gene expression, but plausible alternative mechanisms for SAHA-modulated gene expression were identified. CONCLUSION Numerous genes in CD4 T cells are modulated by SAHA in a dose-responsive manner, including genes that may negatively influence HIV activation from latency. Our study suggests that SAHA influences gene expression through a confluence of several mechanisms, including histone modification, and altered expression and activity of transcription factors.
Collapse
|
15
|
White CH, Johnston HE, Moesker B, Manousopoulou A, Margolis DM, Richman DD, Spina CA, Garbis SD, Woelk CH, Beliakova-Bethell N. Mixed effects of suberoylanilide hydroxamic acid (SAHA) on the host transcriptome and proteome and their implications for HIV reactivation from latency. Antiviral Res 2015; 123:78-85. [PMID: 26343910 PMCID: PMC5606336 DOI: 10.1016/j.antiviral.2015.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/22/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Suberoylanilide hydroxamic acid (SAHA) has been assessed in clinical trials as part of a "shock and kill" strategy to cure HIV-infected patients. While it was effective at inducing expression of HIV RNA ("shock"), treatment with SAHA did not result in a reduction of reservoir size ("kill"). We therefore utilized a combined analysis of effects of SAHA on the host transcriptome and proteome to dissect its mechanisms of action that may explain its limited success in "shock and kill" strategies. CD4+ T cells from HIV seronegative donors were treated with 1μM SAHA or its solvent dimethyl sulfoxide (DMSO) for 24h. Protein expression and post-translational modifications were measured with iTRAQ proteomics using ultra high-precision two-dimensional liquid chromatography-tandem mass spectrometry. Gene expression was assessed by Illumina microarrays. Using limma package in the R computing environment, we identified 185 proteins, 18 phosphorylated forms, 4 acetylated forms and 2982 genes, whose expression was modulated by SAHA. A protein interaction network integrating these 4 data types identified the HIV transcriptional repressor HMGA1 to be upregulated by SAHA at the transcript, protein and acetylated protein levels. Further functional category assessment of proteins and genes modulated by SAHA identified gene ontology terms related to NFκB signaling, protein folding and autophagy, which are all relevant to HIV reactivation. In summary, SAHA modulated numerous host cell transcripts, proteins and post-translational modifications of proteins, which would be expected to have very mixed effects on the induction of HIV-specific transcription and protein function. Proteome profiling highlighted a number of potential counter-regulatory effects of SAHA with respect to viral induction, which transcriptome profiling alone would not have identified. These observations could lead to a more informed selection and design of other HDACi with a more refined targeting profile, and prioritization of latency reversing agents of other classes to be used in combination with SAHA to achieve more potent induction of HIV expression.
Collapse
Affiliation(s)
- Cory H White
- Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA; San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | - Harvey E Johnston
- Cancer Sciences Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK
| | - Bastiaan Moesker
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK
| | - Antigoni Manousopoulou
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK
| | - David M Margolis
- Departments of Medicine, Microbiology and Immunology, Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Douglas D Richman
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Celsa A Spina
- San Diego VA Medical Center and Veterans Medical Research Foundation, San Diego, CA 92161, USA; Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Spiros D Garbis
- Cancer Sciences Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK; Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, UK; Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK.
| | - Christopher H Woelk
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hants SO16 6YD, UK.
| | | |
Collapse
|
16
|
Kroesen M, Gielen P, Brok IC, Armandari I, Hoogerbrugge PM, Adema GJ. HDAC inhibitors and immunotherapy; a double edged sword? Oncotarget 2015; 5:6558-72. [PMID: 25115382 PMCID: PMC4196144 DOI: 10.18632/oncotarget.2289] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epigenetic modifications, like histone acetylation, are essential for regulating gene expression within cells. Cancer cells acquire pathological epigenetic modifications resulting in gene expression patterns that facilitate and sustain tumorigenesis. Epigenetic manipulation therefore is emerging as a novel targeted therapy for cancer. Histone Acetylases (HATs) and Histone Deacetylases (HDACs) regulate histone acetylation and hence gene expression. Histone deacetylase (HDAC) inhibitors are well known to affect cancer cell viability and biology and are already in use for the treatment of cancer patients. Immunotherapy can lead to clinical benefit in selected cancer patients, especially in patients with limited disease after tumor debulking. HDAC inhibitors can potentially synergize with immunotherapy by elimination of tumor cells. The direct effects of HDAC inhibitors on immune cell function, however, remain largely unexplored. Initial data have suggested HDAC inhibitors to be predominantly immunosuppressive, but more recent reports have challenged this view. In this review we will discuss the effects of HDAC inhibitors on tumor cells and different immune cell subsets, synergistic interactions and possible mechanisms. Finally, we will address future challenges and potential application of HDAC inhibitors in immunocombination therapy of cancer.
Collapse
Affiliation(s)
- Michiel Kroesen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paul Gielen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; These authors contributed equally to this work
| | - Ingrid C Brok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; These authors contributed equally to this work
| | - Inna Armandari
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter M Hoogerbrugge
- Department of Pediatric Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands; Princes Máxima Center for Pediatric Oncology, The Bilt, The Netherlands
| | - Gosse J Adema
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Mohammadi P, di Iulio J, Muñoz M, Martinez R, Bartha I, Cavassini M, Thorball C, Fellay J, Beerenwinkel N, Ciuffi A, Telenti A. Dynamics of HIV latency and reactivation in a primary CD4+ T cell model. PLoS Pathog 2014; 10:e1004156. [PMID: 24875931 PMCID: PMC4038609 DOI: 10.1371/journal.ppat.1004156] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/18/2014] [Indexed: 12/11/2022] Open
Abstract
HIV latency is a major obstacle to curing infection. Current strategies to eradicate HIV aim at increasing transcription of the latent provirus. In the present study we observed that latently infected CD4+ T cells from HIV-infected individuals failed to produce viral particles upon ex vivo exposure to SAHA (vorinostat), despite effective inhibition of histone deacetylases. To identify steps that were not susceptible to the action of SAHA or other latency reverting agents, we used a primary CD4+ T cell model, joint host and viral RNA sequencing, and a viral-encoded reporter. This model served to investigate the characteristics of latently infected cells, the dynamics of HIV latency, and the process of reactivation induced by various stimuli. During latency, we observed persistence of viral transcripts but only limited viral translation. Similarly, the reactivating agents SAHA and disulfiram successfully increased viral transcription, but failed to effectively enhance viral translation, mirroring the ex vivo data. This study highlights the importance of post-transcriptional blocks as one mechanism leading to HIV latency that needs to be relieved in order to purge the viral reservoir. HIV-infected individuals must receive lifelong antiviral therapy because treatment discontinuation generally results in rapid viral rebound. The field has identified a state of latency at the level of transcription of the integrated provirus as the major mechanism of persistence. A number of drugs are now tested that aim at inducing viral transcription as a step to purge the reservoir. The assessment of viral production in cells from HIV-infected individuals with optimal viral suppression revealed the failure of SAHA/vorinostat to efficiently generate viral particle production. To further investigate and characterize the process of latency at the transcriptome level, and the response to SAHA as well as various reactivating agents, we use a model of primary CD4+ lymphocytes. The main observation from this study is that viral transcripts persist during latency, and that the accumulation of viral transcripts does not result in efficient viral protein expression upon reactivation with agents such as SAHA. Our data suggest that post-transcriptional blocks also contribute to latency, and that additional strategies need to be explored to efficiently purge the viral reservoir.
Collapse
Affiliation(s)
- Pejman Mohammadi
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel and Lausanne, Switzerland
| | - Julia di Iulio
- Swiss Institute of Bioinformatics, Basel and Lausanne, Switzerland
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Miguel Muñoz
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Raquel Martinez
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - István Bartha
- Swiss Institute of Bioinformatics, Basel and Lausanne, Switzerland
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Matthias Cavassini
- Service of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Christian Thorball
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jacques Fellay
- Swiss Institute of Bioinformatics, Basel and Lausanne, Switzerland
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Service of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel and Lausanne, Switzerland
- * E-mail: (NB); (AC); (AT)
| | - Angela Ciuffi
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
- * E-mail: (NB); (AC); (AT)
| | - Amalio Telenti
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
- * E-mail: (NB); (AC); (AT)
| |
Collapse
|
18
|
Wei DG, Chiang V, Fyne E, Balakrishnan M, Barnes T, Graupe M, Hesselgesser J, Irrinki A, Murry JP, Stepan G, Stray KM, Tsai A, Yu H, Spindler J, Kearney M, Spina CA, McMahon D, Lalezari J, Sloan D, Mellors J, Geleziunas R, Cihlar T. Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathog 2014; 10:e1004071. [PMID: 24722454 PMCID: PMC3983056 DOI: 10.1371/journal.ppat.1004071] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART. Combination antiretroviral therapy has greatly improved the clinical outcome of HIV infection treatment. However, latent viral reservoirs established primarily in memory CD4 T cells persist even after long periods of suppressive antiretroviral therapy, which hinders the ability to achieve a prolonged drug-free remission or a cure of the HIV infection. Activation of HIV expression from latent reservoirs is a part of proposed strategies that may potentially lead to virus elimination and ultimately cure of the infection. In this study, we show that romidepsin, a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, is a potent activator of HIV expression in an in vitro model of viral latency as well as ex vivo in resting and memory CD4 T cells isolated from HIV-infected patients with suppressed viremia. Importantly, the ex vivo activation of latent HIV occurred at romidepsin concentrations lower than those achieved in drug-treated lymphoma patients. In addition, romidepsin exhibited a more potent effect than other drugs in the same class that have already been shown to activate HIV expression in vivo. Together, these results support the clinical assessment of romidepsin in HIV-infected patients on suppressive antiretroviral therapy.
Collapse
Affiliation(s)
| | - Vicki Chiang
- Gilead Sciences, Foster City, California, United States of America
| | - Elizabeth Fyne
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | | | - Tiffany Barnes
- Gilead Sciences, Foster City, California, United States of America
| | - Michael Graupe
- Gilead Sciences, Foster City, California, United States of America
| | | | - Alivelu Irrinki
- Gilead Sciences, Foster City, California, United States of America
| | - Jeffrey P. Murry
- Gilead Sciences, Foster City, California, United States of America
| | - George Stepan
- Gilead Sciences, Foster City, California, United States of America
| | - Kirsten M. Stray
- Gilead Sciences, Foster City, California, United States of America
| | - Angela Tsai
- Gilead Sciences, Foster City, California, United States of America
| | - Helen Yu
- Gilead Sciences, Foster City, California, United States of America
| | - Jonathan Spindler
- HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Mary Kearney
- HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Celsa A. Spina
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Deborah McMahon
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jacob Lalezari
- Quest Clinical Research, San Francisco, California, United States of America
| | - Derek Sloan
- Gilead Sciences, Foster City, California, United States of America
| | - John Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Romas Geleziunas
- Gilead Sciences, Foster City, California, United States of America
| | - Tomas Cihlar
- Gilead Sciences, Foster City, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Archin NM, Bateson R, Tripathy MK, Crooks AM, Yang KH, Dahl NP, Kearney MF, Anderson EM, Coffin JM, Strain MC, Richman DD, Robertson KR, Kashuba AD, Bosch RJ, Hazuda DJ, Kuruc JD, Eron JJ, Margolis DM. HIV-1 expression within resting CD4+ T cells after multiple doses of vorinostat. J Infect Dis 2014; 210:728-35. [PMID: 24620025 DOI: 10.1093/infdis/jiu155] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A single dose of the histone deacetylase inhibitor vorinostat (VOR) up-regulates HIV RNA expression within resting CD4(+) T cells of treated, aviremic human immunodeficiency virus (HIV)-positive participants. The ability of multiple exposures to VOR to repeatedly disrupt latency has not been directly measured, to our knowledge. METHODS Five participants in whom resting CD4(+) T-cell-associated HIV RNA (rc-RNA) increased after a single dose of VOR agreed to receive daily VOR Monday through Wednesday for 8 weekly cycles. VOR serum levels, peripheral blood mononuclear cell histone acetylation, plasma HIV RNA single-copy assays, rc-RNA, total cellular HIV DNA, and quantitative viral outgrowth assays from resting CD4(+) T cells were assayed. RESULTS VOR was well tolerated, with exposures within expected parameters. However, rc-RNA measured after dose 11 (second dose of cycle 4) or dose 22 (second dose of cycle 8) increased significantly in only 3 of the 5 participants, and the magnitude of the rc-RNA increase was much reduced compared with that after a single dose. Changes in histone acetylation were blunted. Results of quantitative viral outgrowth and other assays were unchanged. CONCLUSIONS Although HIV latency is disrupted by an initial VOR dose, the effect of subsequent doses in this protocol was much reduced. We hypothesize that the global effect of VOR results in a refractory period of ≥ 24 hours. The optimal schedule for VOR administration is still to be defined.
Collapse
Affiliation(s)
- Nancy M Archin
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Rosalie Bateson
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Manoj K Tripathy
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Amanda M Crooks
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Kuo-Hsiung Yang
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Noelle P Dahl
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Mary F Kearney
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Elizabeth M Anderson
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - John M Coffin
- HIV Drug Resistance Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland Departments of Genetics and Molecular Biology, Tufts University School of Medicine, School of Public Health, Boston, Massachusetts
| | - Matthew C Strain
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, La Jolla
| | - Douglas D Richman
- Department of Medicine, University of California San Diego and Veterans Affairs San Diego Healthcare System, La Jolla
| | | | - Angela D Kashuba
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Ronald J Bosch
- Department of Biostatistics, School of Public Health, Boston, Massachusetts
| | - Daria J Hazuda
- Merck Research Laboratories, White Horse Junction, Pennsylvania
| | - Joann D Kuruc
- Department of Medicine, University of North Carolina at Chapel Hill
| | - Joseph J Eron
- Department of Medicine, University of North Carolina at Chapel Hill
| | - David M Margolis
- Department of Medicine, University of North Carolina at Chapel Hill
| |
Collapse
|
20
|
Kelleher AD. Promoter targeted small RNAs: stabilising viral reservoirs. MICROBIOLOGY AUSTRALIA 2014. [DOI: 10.1071/ma14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Abstract
The HIV/AIDS field is gaining momentum in the goal of finding a functional cure for HIV infection by utilizing strategies that specifically reactivate the latent viral reservoir in combination with the HAART regimen to prevent further viral spread. Small-molecule inhibitors such as histone deacetylase (HDAC) and bromodomain and extraterminal (BET) inhibitors can successfully activate HIV transcription and reverse viral latency in clonal cell lines. However, in resting CD4+ T cells, thought to be the principal physiological reservoir of latent HIV, their effect in reactivating the viral reservoir is more variable. It is possible that the discrepant responsiveness of quiescent primary CD4+ T cells to HDAC and BET inhibitors could be attributed to the limiting levels of P-TEFb, a key viral transcription host cofactor, in these cells. In this review, we discuss the role of P-TEFb and the necessity for its mobilization in stimulating viral reactivation from latency upon treatment with HDAC and BET inhibitors.
Collapse
Affiliation(s)
- Sona Budhiraja
- Department of Molecular Microbiology & Virology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrew P Rice
- Department of Molecular Microbiology & Virology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Rasmussen TA, Schmeltz Søgaard O, Brinkmann C, Wightman F, Lewin SR, Melchjorsen J, Dinarello C, Østergaard L, Tolstrup M. Comparison of HDAC inhibitors in clinical development: effect on HIV production in latently infected cells and T-cell activation. Hum Vaccin Immunother 2013; 9:993-1001. [PMID: 23370291 PMCID: PMC3899169 DOI: 10.4161/hv.23800] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective: We aimed to compare the potential for inducing HIV production and the effect on T-cell activation of potent HDAC inhibitors undergoing clinical investigation. Design: In vitro study Methods: The latently infected cell lines ACH2 and U1 were treated with the HDAC inhibitors panobinostat, givinostat, belinostat, vorinostat and valproic acid. Viral induction was estimated by p24 production. Peripheral blood mononuclear cells from uninfected donors were treated with the HDAC inhibitors and the expression of activation markers on T-cell phenotypes was measured using flow cytometry. Finally, the ability of givinostat, belinostat and panobinostat to reactivate latent HIV-1 expression in primary T-cells was investigated employing a CCL19-induced latent primary CD4+ T cell infection model. Results: The various HDAC inhibitors displayed significant potency differences in stimulating HIV-1 expression from the latently infected cell lines with panobinostat > givinostat ≈belinostat > vorinostat > valproic acid. Panobinostat was significantly more potent than all other HDAC inhibitors and induced virus production even in the very low concentration range 8–31 nM. The proportion of primary T-cells expressing the early activation marker CD69 increased moderately in all HDAC inhibitor-treated cells compared with untreated cells. Finally, proof was obtained that panobinostat, givinostat and belinostat induce virus production in latently infected primary cells at therapeutic concentrations with panobinostat being the most potent stimulator. Conclusion: At therapeutic concentrations panobinostat stimulate HIV-1 expression in latently infected cells with greater potency than other HDAC inhibitors undergoing clinical investigation. These findings warrant further investigation and panobinostat is now being advanced into clinical testing against latent HIV infection.
Collapse
|