1
|
(5R)-5-hydroxytriptolide for HIV immunological non-responders receiving ART: a randomized, double-blinded, placebo-controlled phase II study. THE LANCET REGIONAL HEALTH - WESTERN PACIFIC 2023. [DOI: 10.1016/j.lanwpc.2023.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
2
|
Cardinale A, De Luca CD, Locatelli F, Velardi E. Thymic Function and T-Cell Receptor Repertoire Diversity: Implications for Patient Response to Checkpoint Blockade Immunotherapy. Front Immunol 2021; 12:752042. [PMID: 34899700 PMCID: PMC8652142 DOI: 10.3389/fimmu.2021.752042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
The capacity of T cells to recognize and mount an immune response against tumor antigens depends on the large diversity of the T-cell receptor (TCR) repertoire generated in the thymus during the process of T-cell development. However, this process is dramatically impaired by immunological insults, such as that caused by cytoreductive cancer therapies and infections, and by the physiological decline of thymic function with age. Defective thymic function and a skewed TCR repertoire can have significant clinical consequences. The presence of an adequate pool of T cells capable of recognizing specific tumor antigens is a prerequisite for the success of cancer immunotherapy using checkpoint blockade therapy. However, while this approach has improved the chances of survival of patients with different types of cancer, a large proportion of them do not respond. The limited response rate to checkpoint blockade therapy may be linked to a suboptimal TCR repertoire in cancer patients prior to therapy. Here, we focus on the role of the thymus in shaping the T-cell pool in health and disease, discuss how the TCR repertoire influences patients’ response to checkpoint blockade therapy and highlight approaches able to manipulate thymic function to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Antonella Cardinale
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | | | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
3
|
Silva CS, Reis RL, Martins A, Neves NM. Recapitulation of Thymic Function by Tissue Engineering Strategies. Adv Healthc Mater 2021; 10:e2100773. [PMID: 34197034 DOI: 10.1002/adhm.202100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 11/06/2022]
Abstract
The thymus is responsible for the development and selection of T lymphocytes, which in turn also participate in the maturation of thymic epithelial cells. These events occur through the close interactions between hematopoietic stem cells and developing thymocytes with the thymic stromal cells within an intricate 3D network. The complex thymic microenvironment and function, and the current therapies to induce thymic regeneration or to overcome the lack of a functional thymus are herein reviewed. The recapitulation of the thymic function using tissue engineering strategies has been explored as a way to control the body's tolerance to external grafts and to generate ex vivo T cells for transplantation. In this review, the main advances in the thymus tissue engineering field are disclosed, including both scaffold- and cell-based strategies. In light of the current gaps and limitations of the developed systems, the design of novel biomaterials for this purpose with unique features is also discussed.
Collapse
Affiliation(s)
- Catarina S. Silva
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Albino Martins
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| | - Nuno M. Neves
- 3B's Research Group I3Bs – Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine ICVS/3B's – PT Government Associate Laboratory AvePark, Parque da Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
4
|
Ducloux D, Legendre M, Bamoulid J, Saas P, Courivaud C, Crepin T. End-Stage Renal Disease-Related Accelerated Immune Senescence: Is Rejuvenation of the Immune System a Therapeutic Goal? Front Med (Lausanne) 2021; 8:720402. [PMID: 34540869 PMCID: PMC8446427 DOI: 10.3389/fmed.2021.720402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
End-stage renal disease (ESRD) patients exhibit clinical features of premature ageing, including frailty, cardiovascular disease, and muscle wasting. Accelerated ageing also concerns the immune system. Patients with ESRD have both immune senescence and chronic inflammation that are resumed in the so-called inflammaging syndrome. Immune senescence is particularly characterised by premature loss of thymic function that is associated with hyporesponsiveness to vaccines, susceptibility to infections, and death. ESRD-related chronic inflammation has multiple causes and participates to accelerated cardiovascular disease. Although, both characterisation of immune senescence and its consequences are relatively well-known, mechanisms are more uncertain. However, prevention of immune senescence/inflammation or/and rejuvenation of the immune system are major goal to ameliorate clinical outcomes of ESRD patients.
Collapse
Affiliation(s)
- Didier Ducloux
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Mathieu Legendre
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France
| | - Jamal Bamoulid
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Philippe Saas
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Cécile Courivaud
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Thomas Crepin
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| |
Collapse
|
5
|
Yanir A, Schulz A, Lawitschka A, Nierkens S, Eyrich M. Immune Reconstitution After Allogeneic Haematopoietic Cell Transplantation: From Observational Studies to Targeted Interventions. Front Pediatr 2021; 9:786017. [PMID: 35087775 PMCID: PMC8789272 DOI: 10.3389/fped.2021.786017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Immune reconstitution (IR) after allogeneic haematopoietic cell transplantation (HCT) represents a central determinant of the clinical post-transplant course, since the majority of transplant-related outcome parameters such as graft-vs.-host disease (GvHD), infectious complications, and relapse are related to the velocity, quantity and quality of immune cell recovery. Younger age at transplant has been identified as the most important positive prognostic factor for favourable IR post-transplant and, indeed, accelerated immune cell recovery in children is most likely the pivotal contributing factor to lower incidences of GvHD and infectious complications in paediatric allogeneic HCT. Although our knowledge about the mechanisms of IR has significantly increased over the recent years, strategies to influence IR are just evolving. In this review, we will discuss different patterns of IR during various time points post-transplant and their impact on outcome. Besides IR patterns and cellular phenotypes, recovery of antigen-specific immune cells, for example virus-specific T cells, has recently gained increasing interest, as certain threshold levels of antigen-specific T cells seem to confer protection against severe viral disease courses. In contrast, the association between IR and a possible graft-vs. leukaemia effect is less well-understood. Finally, we will present current concepts of how to improve IR and how this could change transplant procedures in the near future.
Collapse
Affiliation(s)
- Asaf Yanir
- Bone Marrow Transplant Unit, Division of Haematology and Oncology, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anita Lawitschka
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University Medical Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Abstract
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.
Collapse
|
7
|
Definition of Immunological Nonresponse to Antiretroviral Therapy: A Systematic Review. J Acquir Immune Defic Syndr 2020; 82:452-461. [PMID: 31592836 DOI: 10.1097/qai.0000000000002157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Terms and criteria to classify people living with HIV on antiretroviral therapy who fail to achieve satisfactory CD4 T-cell counts are heterogeneous, and need revision and summarization. METHODS We performed a systematic review of PubMed original research articles containing a set of predefined terms, published in English between January 2009 and September 2018. The search retrieved initially 1360 studies, of which 103 were eligible. The representative terminology and criteria were extracted and analyzed. RESULTS Twenty-two terms and 73 criteria to define the condition were identified. The most frequent term was "immunological nonresponders" and the most frequent criterion was "CD4 T-cell count <350 cells/µL after ≥24 months of virologic suppression." Most criteria use CD4+ T-cell counts as a surrogate, either as an absolute value or as a change after a defined period of time [corrected]. Distinct values and time points were used. Only 9 of the 73 criteria were used by more than one independent research team. Herein we propose 2 criteria that could help to reach a consensus. CONCLUSIONS The high disparity in terms and criteria here reported precludes data aggregation and progression of the knowledge on this condition, because it renders impossible to compare data from different studies. This review will foster the discussion of terms and criteria to achieve a consensual definition.
Collapse
|
8
|
Coles AJ, Azzopardi L, Kousin-Ezewu O, Mullay HK, Thompson SA, Jarvis L, Davies J, Howlett S, Rainbow D, Babar J, Sadler TJ, Brown JWL, Needham E, May K, Georgieva ZG, Handel AE, Maio S, Deadman M, Rota I, Holländer G, Dawson S, Jayne D, Seggewiss-Bernhardt R, Douek DC, Isaacs JD, Jones JL. Keratinocyte growth factor impairs human thymic recovery from lymphopenia. JCI Insight 2019; 5:125377. [PMID: 31063156 PMCID: PMC6629095 DOI: 10.1172/jci.insight.125377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The lymphocyte-depleting antibody alemtuzumab is a highly effective treatment of relapsing-remitting multiple sclerosis (RRMS); however 50% of patients develop novel autoimmunity post-treatment. Most at risk are individuals who reconstitute their T-cell pool by proliferating residual cells, rather than producing new T-cells in the thymus; raising the possibility that autoimmunity might be prevented by increasing thymopoiesis. Keratinocyte growth factor (palifermin) promotes thymopoiesis in non-human primates. METHODS Following a dose-tolerability sub-study, individuals with RRMS (duration ≤10 years; expanded disability status scale ≤5·0; with ≥2 relapses in the previous 2 years) were randomised to placebo or 180mcg/kg/day palifermin, given for 3 days immediately prior to and after each cycle of alemtuzumab, with repeat doses at M1 and M3. The interim primary endpoint was naïve CD4+ T-cell count at M6. Exploratory endpoints included: number of recent thymic-emigrants (RTEs) and signal-joint T-cell receptor excision circles (sjTRECs)/mL of blood. The trial primary endpoint was incidence of autoimmunity at M30. FINDINGS At M6, individuals receiving palifermin had fewer naïve CD4+T-cells (2.229x107/L vs. 7.733x107/L; p=0.007), RTEs (16% vs. 34%) and sjTRECs/mL (1100 vs. 3396), leading to protocol-defined termination of recruitment. No difference was observed in the rate of autoimmunity between the two groupsConclusion: In contrast to animal studies, palifermin reduced thymopoiesis in our patients. These results offer a note of caution to those using palifermin to promote thymopoiesis in other settings, particularly in the oncology/haematology setting where alemtuzumab is often used as part of the conditioning regime. TRIAL REGISTRATION ClinicalTrials.gov NCT01712945Funding: MRC and Moulton Charitable Foundation.
Collapse
Affiliation(s)
- Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Laura Azzopardi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Onajite Kousin-Ezewu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Harpreet Kaur Mullay
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sara Aj Thompson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lorna Jarvis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jessica Davies
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Howlett
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Rainbow
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Judith Babar
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Timothy J Sadler
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - J William L Brown
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Edward Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Karen May
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Zoya G Georgieva
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Stefano Maio
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mary Deadman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Ioanna Rota
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Georg Holländer
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Sarah Dawson
- Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.,Medical Research Council (MRC) Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, United Kingdom
| | - David Jayne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Seggewiss-Bernhardt
- University Hospital of Würzburg, Würzburg, Germany.,Department of Hematology/Oncology, Soziastiftung Bamberg, Bamberg, Germany
| | - Daniel C Douek
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - John D Isaacs
- Institute of Cellular Medicine, Newcastle University, and Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Lau JS, Smith MZ, Lewin SR, McMahon JH. Clinical trials of antiretroviral treatment interruption in HIV-infected individuals. AIDS 2019; 33:773-791. [PMID: 30883388 DOI: 10.1097/qad.0000000000002113] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
: Despite the benefits of antiretroviral therapy (ART) for people living with HIV, there has been a long-standing research interest in interrupting ART as a strategy to minimize adverse effects of ART as well as to test interventions aiming to achieve a degree of virological control without ART. We performed a systematic review of HIV clinical studies involving treatment interruption from 2000 to 2017 to describe the differences between treatment interruption in studies that contained and didn't contain an intervention. We assessed differences in monitoring strategies, threshold to restart ART, duration and adverse outcomes of treatment interruption, and factors aimed at minimizing transmission. We found that treatment interruption has been incorporated into 159 clinical studies since 2000 and is increasingly being included in trials to assess the efficacy of interventions to achieve sustained virological remission off ART. Great heterogeneity was noted in immunological, virological and clinical monitoring strategies, as well as in thresholds to recommence ART. Treatment interruption in recent intervention studies were more closely monitored, had more conservative thresholds to restart ART and had a shorter treatment interruption duration, compared with older treatment interruption studies that didn't include an intervention.
Collapse
|
10
|
Moutuou MM, Pagé G, Zaid I, Lesage S, Guimond M. Restoring T Cell Homeostasis After Allogeneic Stem Cell Transplantation; Principal Limitations and Future Challenges. Front Immunol 2018; 9:1237. [PMID: 29967605 PMCID: PMC6015883 DOI: 10.3389/fimmu.2018.01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
For several leukemia patients, allogeneic stem cell transplantation (allogeneic-SCT) is the unique therapeutic modality that could potentially cure their disease. Despite significant progress made in clinical management of allogeneic-SCT, acute graft-versus-host disease (aGVHD) and infectious complications remain the second and third cause of death after disease recurrence. Clinical options to restore immunocompetence after allogeneic-SCT are very limited as studies have raised awareness about the safety with regards to graft-versus-host disease (GVHD). Preclinical works are now focusing on strategies to improve thymic functions and to restore the peripheral niche that have been damaged by alloreactive T cells. In this mini review, we will provide a brief overview about the adverse effects of GVHD on the thymus and the peripheral niche and the resulting negative outcome on peripheral T cell homeostasis. Finally, we will discuss the potential relevance of coordinating our studies on thymic rejuvenation and improvement of the peripheral lymphoid niche to achieve optimal T cell regeneration in GVHD patients.
Collapse
Affiliation(s)
- Moutuaata M Moutuou
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Gabriel Pagé
- Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Intesar Zaid
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Sylvie Lesage
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Martin Guimond
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Aspinall R, Lang PO. Interventions to restore appropriate immune function in the elderly. IMMUNITY & AGEING 2018; 15:5. [PMID: 29416551 PMCID: PMC5785902 DOI: 10.1186/s12979-017-0111-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/28/2017] [Indexed: 01/03/2023]
Abstract
Advanced age is one indicator of likely immune dysfunction. As worldwide, the global population contains progressively more and more older individuals there is likelihood of an increased prevalence and incidence of infectious diseases due to common and emergent pathogens. The resultant increase in mortality and morbidity would be matched by the risk of functional decline and disability. Maintaining immune function at a plateau throughout life may therefore be associated with considerable cost savings. The aim of improving immune function in older individuals may be achieved through considering a therapeutic approach to rejuvenate, stimulate or support the indigenous immune system to perform in a more optimal manner. In terms of cost effectiveness a therapeutic approach may prove difficult because of issues associated with; identifying those who would benefit the most from this treatment, identifying the type of treatment which would suit them and identifying whether the treatment was successful. The alternative of supporting or providing a stronger stimulus through vaccination, whilst more cost effective, may be a more valuable option in the short term. Both approaches will be addressed in this review.
Collapse
Affiliation(s)
- Richard Aspinall
- Rivock Ltd, Bury St Edmunds, UK.,3Anglia Ruskin University, Cambridge, UK
| | - Pierre Olivier Lang
- 2Geriatric and Geriatric Rehabilitation Division, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland.,3Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
12
|
Majumdar S, Nandi D. Thymic Atrophy: Experimental Studies and Therapeutic Interventions. Scand J Immunol 2017; 87:4-14. [PMID: 28960415 DOI: 10.1111/sji.12618] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
The thymus is essential for T cell development and maturation. It is extremely sensitive to atrophy, wherein loss in cellularity of the thymus and/or disruption of the thymic architecture occur. This may lead to lower naïve T cell output and limited TCR diversity. Thymic atrophy is often associated with ageing. What is less appreciated is that proper functioning of the thymus is critical for reduction in morbidity and mortality associated with various clinical conditions including infections and transplantation. Therefore, therapeutic interventions which possess thymopoietic potential and lower thymic atrophy are required. These treatments enhance thymic output, which is a vital factor in generating favourable outcomes in clinical conditions. In this review, experimental studies on thymic atrophy in rodents and clinical cases where the thymus atrophies are discussed. In addition, mechanisms leading to thymic atrophy during ageing as well as during various stress conditions are reviewed. Therapies such as zinc supplementation, IL7 administration, leptin treatment, keratinocyte growth factor administration and sex steroid ablation during thymic atrophy involving experiments in animals and various clinical scenarios are reviewed. Interventions that have been used across different scenarios to reduce the extent of thymic atrophy and enhance its output are discussed. This review aims to speculate on the roles of combination therapies, which by acting additively or synergistically may further alleviate thymic atrophy and boost its function, thereby strengthening cellular T cell responses.
Collapse
Affiliation(s)
- S Majumdar
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| | - D Nandi
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Hamazaki Y, Sekai M, Minato N. Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution. Immunol Rev 2016; 271:38-55. [PMID: 27088906 DOI: 10.1111/imr.12412] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thymus consists of two distinct anatomical regions, the cortex and the medulla; medullary thymic epithelial cells (mTECs) play a crucial role in establishing central T-cell tolerance for self-antigens. Although the understanding of mTEC development in thymic organogenesis as well as the regulation of their differentiation and maturation has improved, the mechanisms of postnatal maintenance remain poorly understood. This issue has a central importance in immune homeostasis and physiological thymic involution as well as autoimmune disorders in various clinicopathological settings. Recently, several reports have demonstrated the existence of TEC stem or progenitor cells in the postnatal thymus, which are either bipotent or unipotent. We identified stem cells specified for mTEC-lineage that are generated in the thymic ontogeny and may sustain mTEC regeneration and lifelong central T-cell self-tolerance. This finding suggested that the thymic medulla is maintained autonomously by its own stem cells. Although several issues, including the relationship with other putative TEC stem/progenitors, remain unclear, further examination of mTEC stem cells (mTECSCs) and their regulatory mechanisms may contribute to the understanding of postnatal immune homeostasis. Possible relationships between decline of mTECSC activity and early thymic involution as well as various autoimmune disorders are discussed.
Collapse
Affiliation(s)
- Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Scalea JR, Hickman JB, Moore DJ, Brayman KL. An overview of the necessary thymic contributions to tolerance in transplantation. Clin Immunol 2016; 173:S1521-6616(16)30382-5. [PMID: 27989896 DOI: 10.1016/j.clim.2016.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/04/2016] [Accepted: 10/22/2016] [Indexed: 02/08/2023]
Abstract
The thymus is important for the development of the immune system. However, aging leads to predictable involution of the thymus and immunodeficiency. These immunodeficiencies may be rectified with thymic rejuvenation. Atrophy of the thymus is governed by a complex interplay of molecular, cytokine and hormonal factors. Herein we review the interaction of these factors across age and how they may be targeted for thymic rejuvenation. We further discuss the growing pre-clinical evidence defining the necessary and sufficient contributions of the thymus to successful tolerance induction in transplantation.
Collapse
Affiliation(s)
- Joseph R Scalea
- Division of Transplantation, Department of Surgery, University of Maryland, United States.
| | - John B Hickman
- School of Medicine, University of Virginia, United States
| | - Daniel J Moore
- Division of Endocrinology, Department of Pediatrics, Department of Pathology, Microbiology and Immunology, Vanderbilt University, United States
| | - Kenneth L Brayman
- School of Medicine, University of Virginia, United States; Division of Transplantation, Department of Surgery, University of Virginia, United States
| |
Collapse
|
15
|
Discordant Immune Response with Antiretroviral Therapy in HIV-1: A Systematic Review of Clinical Outcomes. PLoS One 2016; 11:e0156099. [PMID: 27284683 PMCID: PMC4902248 DOI: 10.1371/journal.pone.0156099] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/08/2016] [Indexed: 12/16/2022] Open
Abstract
Background A discordant immune response (DIR) is a failure to satisfactorily increase CD4 counts on ART despite successful virological control. Literature on the clinical effects of DIR has not been systematically evaluated. We aimed to summarise the risk of mortality, AIDS and serious non-AIDS events associated with DIR with a systematic review. Methods The protocol is registered with the Centre for Review Dissemination, University of York (registration number CRD42014010821). Included studies investigated the effect of DIR on mortality, AIDS, or serious non-AIDS events in cohort studies or cohorts contained in arms of randomised controlled trials for adults aged 16 years or older. DIR was classified as a suboptimal CD4 count (as defined by the study) despite virological suppression following at least 6 months of ART. We systematically searched PubMed, Embase, and the Cochrane Library to December 2015. Risk of bias was assessed using the Cochrane tool for assessing risk of bias in cohort studies. Two authors applied inclusion criteria and one author extracted data. Risk ratios were calculated for each clinical outcome reported. Results Of 20 studies that met the inclusion criteria, 14 different definitions of DIR were used. Risk ratios for mortality in patients with and without DIR ranged between 1.00 (95% CI 0.26 to 3.92) and 4.29 (95% CI 1.96 to 9.38) with the majority of studies reporting a 2 to 3 fold increase in risk. Conclusions DIR is associated with a marked increase in mortality in most studies but definitions vary widely. We propose a standardised definition to aid the development of management options for DIR.
Collapse
|