1
|
Connell BJ, Hermans LE, Wensing AMJ, Schellens I, Schipper PJ, van Ham PM, de Jong DTCM, Otto S, Mathe T, Moraba R, Borghans JAM, Papathanasopoulos MA, Kruize Z, Venter FWD, Kootstra NA, Tempelman H, Tesselaar K, Nijhuis M. Immune activation correlates with and predicts CXCR4 co-receptor tropism switch in HIV-1 infection. Sci Rep 2020; 10:15866. [PMID: 32985522 PMCID: PMC7522993 DOI: 10.1038/s41598-020-71699-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
HIV-1 cell entry is mediated by binding to the CD4-receptor and chemokine co-receptors CCR5 (R5) or CXCR4 (X4). R5-tropic viruses are predominantly detected during early infection. A switch to X4-tropism often occurs during the course of infection. X4-tropism switching is strongly associated with accelerated disease progression and jeopardizes CCR5-based HIV-1 cure strategies. It is unclear whether host immunological factors play a causative role in tropism switching. We investigated the relationship between immunological factors and X4-tropism in a cross-sectional study in HIV-1 subtype C (HIV-1C)-infected patients and in a longitudinal HIV-1 subtype B (HIV-1B) seroconverter cohort. Principal component analysis identified a cluster of immunological markers (%HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD8+ T-cells, %CD70+ CD4+ T-cells, %CD169+ monocytes, and absolute CD4+ T-cell count) in HIV-1C patients that was independently associated with X4-tropism (aOR 1.044, 95% CI 1.003–1.087, p = 0.0392). Analysis of individual cluster contributors revealed strong correlations of two markers of T-cell activation (%HLA-DR+ CD4+ T-cells, %HLA-DR+CD38+ CD4+ T-cells) with X4-tropism, both in HIV-1C patients (p = 0.01;p = 0.03) and HIV-1B patients (p = 0.0003;p = 0.0001). Follow-up data from HIV-1B patients subsequently revealed that T-cell activation precedes and independently predicts X4-tropism switching (aHR 1.186, 95% CI 1.065–1.321, p = 0.002), providing novel insights into HIV-1 pathogenesis and CCR5-based curative strategies.
Collapse
Affiliation(s)
- Bridgette J Connell
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Lucas E Hermans
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.,Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Annemarie M J Wensing
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.,Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Ingrid Schellens
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Pauline J Schipper
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Petra M van Ham
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Dorien T C M de Jong
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Sigrid Otto
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Tholakele Mathe
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Robert Moraba
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | | | - Maria A Papathanasopoulos
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zita Kruize
- Amsterdam University Medical Center, Amsterdam Infection and Immunity Institute, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Francois W D Venter
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neeltje A Kootstra
- Amsterdam University Medical Center, Amsterdam Infection and Immunity Institute, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Hugo Tempelman
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Kiki Tesselaar
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands. .,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa. .,HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Godinho-Santos A, Hance AJ, Gonçalves J, Mammano F. CIB1 and CIB2 are HIV-1 helper factors involved in viral entry. Sci Rep 2016; 6:30927. [PMID: 27489023 PMCID: PMC4973253 DOI: 10.1038/srep30927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/05/2016] [Indexed: 01/05/2023] Open
Abstract
HIV-1 relies on the host-cell machinery to accomplish its replication cycle, and characterization of these helper factors contributes to a better understanding of HIV-host interactions and can identify potential novel antiviral targets. Here we explored the contribution of CIB2, previously identified by RNAi screening as a potential helper factor, and its homolog, CIB1. Knockdown of either CIB1 or CIB2 strongly impaired viral replication in Jurkat cells and in primary CD4+ T-lymphocytes, identifying these proteins as non-redundant helper factors. Knockdown of CIB1 and CIB2 impaired envelope-mediated viral entry for both for X4- and R5-tropic HIV-1, and both cell-free and cell-associated entry pathways were affected. In contrast, the level of CIB1 and CIB2 expression did not influence cell viability, cell proliferation, receptor-independent viral binding to the cell surface, or later steps in the viral replication cycle. CIB1 and CIB2 knockdown was found to reduce the expression of surface molecules implicated in HIV-1 infection, including CXCR4, CCR5 and integrin α4β7, suggesting at least one mechanism through which these proteins promote viral infection. Thus, this study identifies CIB1 and CIB2 as host helper factors for HIV-1 replication that are required for optimal receptor-mediated viral entry.
Collapse
Affiliation(s)
- Ana Godinho-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal.,INSERM, U941, Paris, F-75010, France
| | - Allan J Hance
- INSERM, U941, Paris, F-75010, France.,Univ Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France
| | - João Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Fabrizio Mammano
- INSERM, U941, Paris, F-75010, France.,Univ Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France
| |
Collapse
|
3
|
Quaranta MT, Olivetta E, Sanchez M, Spinello I, Paolillo R, Arenaccio C, Federico M, Labbaye C. miR-146a controls CXCR4 expression in a pathway that involves PLZF and can be used to inhibit HIV-1 infection of CD4(+) T lymphocytes. Virology 2015; 478:27-38. [PMID: 25705792 DOI: 10.1016/j.virol.2015.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/19/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022]
Abstract
MicroRNA miR-146a and PLZF are reported as major players in the control of hematopoiesis, immune function and cancer. PLZF is described as a miR-146a repressor, whereas CXCR4 and TRAF6 were identified as miR-146a direct targets in different cell types. CXCR4 is a co-receptor of CD4 molecule that facilitates HIV-1 entry into T lymphocytes and myeloid cells, whereas TRAF6 is involved in immune response. Thus, the role of miR-146a in HIV-1 infection is currently being thoroughly investigated. In this study, we found that PLZF mediates suppression of miR-146a to control increases of CXCR4 and TRAF6 protein levels in human primary CD4(+) T lymphocytes. We show that miR-146a upregulation by AMD3100 treatment or PLZF silencing, decreases CXCR4 protein expression and prevents HIV-1 infection of leukemic monocytic cell line and CD4(+) T lymphocytes. Our findings improve the prospects of developing new therapeutic strategies to prevent HIV-1 entry via CXCR4 by using the PLZF/miR-146a axis.
Collapse
Affiliation(s)
- Maria Teresa Quaranta
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | | | - Massimo Sanchez
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella Spinello
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Rosa Paolillo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Claudia Arenaccio
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy; Department of Science, University Roma Tre, Rome, Italy
| | | | - Catherine Labbaye
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
4
|
Association between HIV-1 tropism and CCR5 human haplotype E in a Caucasian population. J Acquir Immune Defic Syndr 2014; 66:239-44. [PMID: 24508837 DOI: 10.1097/qai.0000000000000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The influence of the diversity of CCR5 on HIV susceptibility and disease progression has been clearly demonstrated but how the variability of this gene influences the HIV tropism is poorly understood. We investigated whether CCR5 haplotypes are associated with HIV tropism in a Caucasian population. METHODS We evaluated 161 HIV-positive subjects in a cross-sectional study. CCR5 haplotypes were derived after genotyping 9 CCR2-CCR5 polymorphisms. The HIV subtype was determined by phylogenetic analysis using the maximum likelihood method and viral tropism by the genotypic tropism assay (geno2pheno). Associations between CCR5 haplotypes and viral tropism were determined using logistic regression analyses. Samples from 500 blood donors were used to evaluate the representativeness of HIV-positives in terms of CCR5 haplotype distribution. RESULTS The distribution of CCR5 haplotypes was similar in HIV-positive subjects and blood donors. The majority of viruses (93.8%) belonged to HIV-1 CRF06_cpx; 7.5% were X4, and the remaining were R5 tropic. X4 tropic viruses were over represented among people with CCR5 human haplotype E (HHE) compared with those without this haplotype (13.0% vs 1.4%; P = 0.006). People possessing CCR5 HHE had 11 times increased odds (odds ratio = 11.00; 95% confidence interval: 1.38 to 87.38) of having X4 tropic viruses than those with non-HHE. After adjusting for antiretroviral (ARV) therapy, neither the presence of HHE nor the use of ARV was associated with X4 tropic viruses. CONCLUSIONS Our results suggest that CCR5 HHE and ARV treatment might be associated with the presence of HIV-1 X4 tropic viruses.
Collapse
|
5
|
Duquenne C, Psomas C, Gimenez S, Guigues A, Carles MJ, Barbuat C, Lavigne JP, Sotto A, Reynes J, Guglielmi P, Mettling C, François V, Corbeau P. The two human CXCR4 isoforms display different HIV receptor activities: consequences for the emergence of X4 strains. THE JOURNAL OF IMMUNOLOGY 2014; 193:4188-94. [PMID: 25230750 DOI: 10.4049/jimmunol.1303298] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CXCR4 is a chemokine receptor that plays key roles with its specific ligand, CXCL12, in stem cell homing and immune trafficking. It is also used as a coreceptor by some HIV-1 strains (X4 strains), whereas other strains (R5 strains) use an alternative coreceptor, CCR5. X4 strains mainly emerge at late stages of the infection and are linked to disease progression. Two isoforms of this coreceptor have been described in humans: CXCR4-A and CXCR4-B, corresponding to an unspliced and a spliced mRNA, respectively. In this study, we show that CXCR4-B, but not CXCR4-A, mediates an efficient HIV-1 X4 entry and productive infection. Yet, the chemotactic activity of CXCL12 on both isoforms was similar. Furthermore, HIV-R5 infection favored CXCR4-B expression over that of CXCR4-A. In vitro infection with an R5 strain increased CXCR4-B/CXCR4-A mRNA ratio in PBMCs, and this ratio correlated with HIV RNA plasma level in R5-infected individuals. In addition, the presence of the CXCR4-B isoform favored R5 to X4 switch more efficiently than did CXCR4-A in vitro. Hence, the predominance of CXCR4-B over CXCR4-A expression in PBMCs was linked to the ability of circulating HIV-1 strains to use CXCR4, as determined by genotyping. These data suggest that R5 to X4 switch could be favored by R5 infection-induced overexpression of CXCR4-B. Finally, we achieved a specific small interfering RNA-mediated knockdown of CXCR4-B. This represents a proof of concept for a possible gene-therapeutic approach aimed at blocking the HIV coreceptor activity of CXCR4 without knocking down its chemotactic activity.
Collapse
Affiliation(s)
- Charline Duquenne
- Institut de Génétique Humaine, Unité Propre de Recherche 1142 du Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 5, France
| | - Christina Psomas
- Infectious Diseases Department, Montpellier University Hospital, 34295 Montpellier Cedex 5, France; Unité Mixte Internationale 233, Institut de Recherche pour le Développement-Université Montpellier 1, 34294 Montpellier Cedex 5, France
| | - Sandrine Gimenez
- Institut de Génétique Humaine, Unité Propre de Recherche 1142 du Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 5, France
| | - Adeline Guigues
- Institut de Génétique Humaine, Unité Propre de Recherche 1142 du Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 5, France
| | - Marie-Josée Carles
- Microbiology Department, Nîmes University Hospital, 30029 Nîmes Cedex 9, France
| | - Claudine Barbuat
- Infectious Diseases Department, Nîmes University Hospital, 30029 Nîmes Cedex 9, France
| | - Jean-Philippe Lavigne
- Microbiology Department, Nîmes University Hospital, 30029 Nîmes Cedex 9, France; Faculté de Médecine, Université Montpellier 1, 34967 Montpellier Cedex 2, France; INSERM U1047, 30908 Nîmes Cedex 9, France
| | - Albert Sotto
- Infectious Diseases Department, Nîmes University Hospital, 30029 Nîmes Cedex 9, France; Faculté de Médecine, Université Montpellier 1, 34967 Montpellier Cedex 2, France; INSERM U1047, 30908 Nîmes Cedex 9, France
| | - Jacques Reynes
- Infectious Diseases Department, Montpellier University Hospital, 34295 Montpellier Cedex 5, France; Unité Mixte Internationale 233, Institut de Recherche pour le Développement-Université Montpellier 1, 34294 Montpellier Cedex 5, France; Faculté de Médecine, Université Montpellier 1, 34967 Montpellier Cedex 2, France
| | - Paul Guglielmi
- Unité Mixte de Recherche 5235, Centre National de la Recherche Scientifique-Université Montpellier 2, 34095 Montpellier, France; and
| | - Clément Mettling
- Institut de Génétique Humaine, Unité Propre de Recherche 1142 du Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 5, France
| | - Vincent François
- Institut de Génétique Humaine, Unité Propre de Recherche 1142 du Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 5, France
| | - Pierre Corbeau
- Institut de Génétique Humaine, Unité Propre de Recherche 1142 du Centre National de la Recherche Scientifique, 34396 Montpellier Cedex 5, France; Faculté de Médecine, Université Montpellier 1, 34967 Montpellier Cedex 2, France; Immunology Department, Nîmes University Hospital, 30029 Nîmes Cedex 9, France
| |
Collapse
|
6
|
Mild M, Gray RR, Kvist A, Lemey P, Goodenow MM, Fenyö EM, Albert J, Salemi M, Esbjörnsson J, Medstrand P. High intrapatient HIV-1 evolutionary rate is associated with CCR5-to-CXCR4 coreceptor switch. INFECTION GENETICS AND EVOLUTION 2013; 19:369-77. [PMID: 23672855 DOI: 10.1016/j.meegid.2013.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/29/2013] [Accepted: 05/04/2013] [Indexed: 12/20/2022]
Abstract
In approximately 70% of individuals infected with HIV-1 subtype B, the virus switches coreceptor use from exclusively CCR5 use (R5 virus) to either inclusion of or exclusively CXCR4 use (X4 virus) during infection. This switch is associated with an accelerated loss of CD4(+) T-cells and a faster progression to AIDS. Despite intensive research, the mechanisms responsible for coreceptor switch remains elusive. In the present study, we investigated associations between viral evolutionary rate and selection pressure versus viral coreceptor use and rate of disease progression in eight patients with longitudinally sampled HIV-1 env V1-V3 sequences. By employing a Bayesian hierarchical phylogenetic model, we found that the HIV-1 evolutionary rate was more strongly associated with coreceptor switch than with rate of disease progression in terms of CD4(+)T-cell decline. Phylogenetic analyses showed that X4 variants evolved from R5 populations. In addition, coreceptor switch was associated with higher evolutionary rates on both the synonymous and non-synonymous substitution level, but not with dN/dS ratio rates. Our findings suggest that X4 viruses evolved from pre-existing R5 viral populations and that the evolution of coreceptor switch is governed by high replication rates rather than by selective pressure. Furthermore, the association of viral evolutionary rate was more strongly associated with coreceptor switch than disease progression. This adds to the understanding of the complex virus-host interplay that influences the evolutionary dynamics of HIV-1 coreceptor use.
Collapse
Affiliation(s)
- Mattias Mild
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
CCR5 expression is elevated on endocervical CD4+ T cells in healthy postmenopausal women. J Acquir Immune Defic Syndr 2012; 59:221-8. [PMID: 22083068 DOI: 10.1097/qai.0b013e31823fd215] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND New HIV-1 infections are increasing in older American women largely through heterosexual transmission. Activated CD4+ T cells and CCR5 expression are linked to HIV-1 susceptibility, but whether these parameters are altered in the cervix of older women is unknown. METHODS Whole blood and in some instances endocervical brush samples were collected from healthy premenopausal (n = 22) and postmenopausal women (n = 24). Percentages of HLA-DR(DR)+CD38(38)+CD4+ T cells and HIV-1 chemokine coreceptor expression were determined by flow cytometry. RESULTS Percentages of DR+38+CD4+ T cells were 6 times greater in cervix (median: 6.4%) than blood (median: 1.1%; P < 0.001) but did not differ within each compartment between premenopausal and postmenopausal women (P = 0.2). Postmenopausal women had greater percentages of CCR5+CD4+ and CCR5+DR+38+CD4+ T cells compared with premenopausal women in cervix (median: 70% vs. 42%, P = 0.005; and 80% vs. 57%; P = 0.05, respectively) and blood (medians: 22% vs. 13%, and 76% vs. 62%, respectively; P < 0.001). Postmenopausal women had more CCR5 molecules on cervical DR+38+CD4+ T cells (median: 3176) than premenopausal women (median: 1776; P = 0.02). Age and percent CCR5+CD4+ and CCR5+DR+38+CD4+ cells were linearly related in cervix (r(2) = 0.47, P < 0.001 and r(2) = 0.25, P = 0.01, respectively) and blood (r(2) = 0.20, P = 0.001 and r(2) = 0.31, P < 0.001; respectively), but confounding of age with menopause could not be excluded. Cervical CXCR4 expression did not differ substantially between premenopausal and postmenopausal women. CONCLUSIONS Elevated cervical CCR5 expression in postmenopausal women may increase their risk for HIV-1 acquisition. Studies are needed to confirm whether elevated CCR5 expression confers increased HIV-1 susceptibility in postmenopausal women, and if it is related to hormonal or nonhormonal effects of aging.
Collapse
|
8
|
Cossarini F, Galli A, Galli L, Bigoloni A, Salpietro S, Vinci C, Della Torre L, Gianotti N, Spagnuolo V, Lazzarin A, Castagna A, Nozza S. Immune recovery and T cell subset analysis during effective treatment with maraviroc. J Antimicrob Chemother 2012; 67:2474-8. [PMID: 22678730 DOI: 10.1093/jac/dks216] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Patients treated with maraviroc frequently show high CD4+ T cell increases. The aim of this study was to detail the characteristics of maraviroc-induced immune recovery. PATIENTS AND METHODS We studied T cell subsets from frozen peripheral blood mononuclear cells of patients treated with raltegravir, etravirine and either maraviroc (REM, n = 24) or darunavir/ritonavir (RED, n = 17). RESULTS The two groups showed a similar decrease in activated CD4+ and CD8+ T cells. A greater loss of naive CD4+ T cells and a reduction in cells expressing CXCR4 were observed in REM patients, while RED patients showed a greater loss of cells expressing CCR5. CONCLUSIONS Our findings do not support a role for reduction in activated T cell subsets to explain the greater maraviroc-induced immune recovery. Reduction in CXCR4+CD4+ and higher expression of CCR5+CD4+ T cells might represent a potential protection from non-R5 tropic viral strain overgrowth.
Collapse
Affiliation(s)
- Francesca Cossarini
- Department of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Maraviroc and other HIV-1 entry inhibitors exhibit a class-specific redistribution effect that results in increased extracellular viral load. Antimicrob Agents Chemother 2012; 56:4154-60. [PMID: 22615275 DOI: 10.1128/aac.00409-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV entry inhibitors, such as maraviroc (MVC), prevent cell-free viruses from entering the cells. In clinical trials, patients who were treated with MVC often displayed viral loads that were above the limit of conventional viral load detection compared to efavirenz-based regimens. We hypothesize that viruses blocked by entry inhibitors may be redistributed to plasma, where they artificially increase viral load measurements compared to those with the use of antiretroviral drugs (ARVs) that act intracellularly. We infected PM-1 cells with CCR5-tropic HIV-1 BaL or CXCR4-tropic HIV-1 NL4-3 in the presence of inhibitory concentrations of efavirenz, raltegravir, enfuvirtide, maraviroc, and AMD3100, the latter three being entry inhibitors. Supernatant viral load, reverse transcriptase enzyme activity, and intracellular nucleic acid levels were measured at times up to 24 h postinfection. Infectivity of redistributed dual-tropic HIV-1 was assessed using TZM-bl cells. Extracellular viral load analysis revealed that entry inhibitor-treated cells had higher levels of virus in the supernatant than the cells treated with other ARVs at 8 h postinfection. By 24 h, the supernatant viral load was still higher for entry inhibitors than other ARVs. We observed a correlation between viral load and the step of entry inhibition. Dual-tropic virus infectivity was undiminished utilizing the CCR5 coreceptor following redistribution by CXCR4 entry inhibition. This in vitro model indicates that entry inhibitors exhibit a redistribution effect unseen with intracellular ARV drugs. Based on these results, the effectiveness of some entry inhibitors may be underestimated if plasma viral load is used as a sole indicator of clinical success.
Collapse
|
10
|
Khoury G, Rajasuriar R, Cameron PU, Lewin SR. The role of naïve T-cells in HIV-1 pathogenesis: an emerging key player. Clin Immunol 2011; 141:253-67. [PMID: 21996455 DOI: 10.1016/j.clim.2011.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
Functional naïve T-cells are critical for an effective immune response to multiple pathogens. HIV leads to a significant reduction in CD4+ naïve T-cell number and impaired function and there is incomplete recovery following combination antiretroviral therapy (cART). Here we review the basic homeostatic mechanisms that maintain naïve CD4+ T-cells and discuss recent developments in understanding the impact of HIV infection on naïve CD4+ T-cells. Finally we review therapeutic interventions in HIV-infected individuals aimed at specifically enhancing recovery of naïve CD4+ T-cells.
Collapse
Affiliation(s)
- Gabriela Khoury
- Department of Medicine, Monash University, Melbourne Victoria, 3004, Australia
| | | | | | | |
Collapse
|
11
|
Virological response after short-term CCR5 antagonist exposure in HIV-infected patients: frequency of subjects with virological response and associated factors. Antimicrob Agents Chemother 2011; 55:4664-9. [PMID: 21807977 DOI: 10.1128/aac.00753-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virological response after an 8-day maraviroc monotherapy has been proposed to be an alternative method to determine whether an CCR5 antagonist should be prescribed to HIV-infected patients. The frequency of patients eligible for a combined antiretroviral therapy which includes maraviroc on the basis of the result of this clinical test is not well-known at the moment. In the same way, clinical and immunovirological factors associated with the virological response after antagonist exposure need to be determined. Ninety consecutive HIV-infected patients were exposed to an 8-day maraviroc monotherapy. The virological response was considered positive if either a reduction of ≥1-log(10) HIV RNA copies/ml or an undetectable viral load (<40 HIV RNA copies/ml) was achieved. CXCR4- and CCR5-tropic virus levels were determined by using patients' viral isolates and multiple rounds of infection of indicator cell lines (U87-CXCR4 and U87-CCR5). The frequency of patients with a positive virological response was 72.2% (94.7% and 66.2% for treatment-naïve and pretreated patients, respectively). The positive response rates dramatically decreased in patients with lower CD4(+) T-cell counts. The CXCR4-tropic virus level was the only variable independently associated with the virological response after short-term maraviroc exposure. Lower CD4(+) T-cell strata were associated with higher CXCR4-tropic virus levels. These results support the suggestion that CCR5 antagonists should be an early treatment option before the expansion of CXCR4-tropic strains.
Collapse
|
12
|
|