1
|
Loong SK, Liam CK, Karunakaran R, Tan KK, Mahfodz NH, AbuBakar S. Non-classical Bordetella sp. (closely related to Bordetella hinzii and Bordetella pseudohinzii) lower respiratory tract infection in a patient with extensive bronchiectasis: a case report. J Int Med Res 2024; 52:3000605231214464. [PMID: 38216150 PMCID: PMC10787532 DOI: 10.1177/03000605231214464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
An increasing number of reports have described the pathogenic nature of several non-classical Bordetella spp. Among them, Bordetella hinzii and Bordetella pseudohinzii have been implicated in a myriad of respiratory-associated infections in humans and animals. We report the isolation of a genetically close relative of B. hinzii and B. pseudohinzii from the sputum of a woman in her early 60s with extensive bronchiectasis who presented with fever and brown colored sputum. The isolate had initially been identified as Bordetella avium by API 20NE, the identification system for non-enteric Gram-negative rod bacteria. Sequencing of the 16S rDNA, ompA, nrdA, and genes used in the Bordetella multilocus sequence typing scheme could not resolve the identity of this Bordetella isolate. Whole-genome single nucleotide polymorphism analysis positioned the isolate between B. hinzii and B. pseudohinzii in the phylogenetic tree, forming a distinct cluster. Whole-genome sequencing enabled the further identification of this rare organism, and should be considered for wider applications, especially the confirmation of organism identity in the clinical diagnostic microbiology laboratory.
Collapse
Affiliation(s)
- Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chong Kin Liam
- Department of Medicine, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
- Department of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rina Karunakaran
- Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
- Department of Medical Microbiology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nur Hidayana Mahfodz
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Dewan KK, Caulfield A, Su Y, Sedney CJ, Callender M, Masters J, Blas-Machado U, Harvill ET. Adaptive immune protection of the middle ears differs from that of the respiratory tract. Front Cell Infect Microbiol 2023; 13:1288057. [PMID: 38125908 PMCID: PMC10731285 DOI: 10.3389/fcimb.2023.1288057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023] Open
Abstract
The efficacy of the adaptive immune system in the middle ear (ME) is well established, but the mechanisms are not as well defined as those of gastrointestinal or respiratory tracts. While cellular elements of the adaptive response have been detected in the MEs following infections (or intranasal immunizations), their specific contributions to protecting the organ against reinfections are unknown. How immune protection mechanisms of the MEs compares with those in the adjacent and attached upper and lower respiratory airways remains unclear. To address these knowledge gaps, we used an established mouse respiratory infection model that we recently showed also involves ME infections. Bordetella bronchiseptica delivered to the external nares of mice in tiny numbers very efficiently infects the respiratory tract and ascends the Eustachian tube to colonize and infect the MEs, where it causes severe but acute inflammation resembling human acute otitis media (AOM). Since this AOM naturally resolves, we here examine the immunological mechanisms that clear infection and protect against subsequent infection, to guide efforts to induce protective immunity in the ME. Our results show that once the MEs are cleared of a primary B. bronchiseptica infection, the convalescent organ is strongly protected from reinfection by the pathogen despite its persistence in the upper respiratory tract, suggesting important immunological differences in these adjacent and connected organs. CD4+ and CD8+ T cells trafficked to the MEs following infection and were necessary to robustly protect against secondary challenge. Intranasal vaccination with heat killed B. bronchiseptica conferred robust protection against infection to the MEs, even though the nasopharynx itself was only partially protected. These data establish the MEs as discrete effector sites of adaptive immunity and shows that effective protection in the MEs and the respiratory tract is significantly different. This model system allows the dissection of immunological mechanisms that can prevent bacteria in the nasopharynx from ascending the ET to colonize the ME.
Collapse
Affiliation(s)
- Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Amanda Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Yang Su
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Colleen J. Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Maiya Callender
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jillian Masters
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Uriel Blas-Machado
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Roohparvar Basmenj E, Izadkhah H, Hosseinpour M, Saburi E, Abhaji Ezabadi M, Alipourfard I. A novel approach to design a multiepitope peptide as a vaccine candidate for Bordetella pertussis. J Biomol Struct Dyn 2023; 42:13738-13750. [PMID: 37937610 DOI: 10.1080/07391102.2023.2278081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Bordetella pertussis is a very contagious pathogen in humans, causing pertussis disease. Pertussis is one of the 10 leading causes of death due to infectious diseases, especially among infants and children. Antibiotic-resistant strains have recently emerged in this bacterium, and despite the high vaccination coverage, the prevalence of this disease has been increasing recently in both developed and developing countries. The objective of this study is to introduce a novel in silico vaccine candidate aimed at countering B. pertussis effectively. Differing from other comparable studies, this research employed a computational screening methodology to assess the genome of 'Bordetella pertussis 18323.' The purpose was to identify an innovative antigen for the development of a vaccine against B. pertussis. Notably, our investigation introduces an innovative antigen distinguished by its elevated immunogenicity score. Importantly, this antigen lacks toxicity and allergenicity, making it recognizable to the immune system and thus capable of inducing a robust immune response. In the subsequent phase, our antigen was utilized to identify potential epitopes conducive to the construction of a B. pertussis vaccine. These epitopes, alongside linkers, his-tag and adjuvants, were amalgamated to form the vaccine candidate. Subsequently, a comprehensive evaluation of the vaccine was conducted, encompassing various computational tests such as secondary and tertiary structure analysis, physicochemical examination, and structural analysis involving docking and molecular dynamics simulations. Importantly, our vaccine successfully passed all in silico tests.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Habib Izadkhah
- Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran
| | - Maryam Hosseinpour
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Abhaji Ezabadi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Li M, Chen L, Zhao F, Tang J, Bu Q, Feng Q, Yang L. An innovative risk evaluation method on soil pathogens in urban-rural ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132286. [PMID: 37595464 DOI: 10.1016/j.jhazmat.2023.132286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023]
Abstract
The presence and reproduction of pathogens in soil environment have significant negative impacts on soil security and human health in urban-rural ecosystem. Rapid urbanization has dramatically changed the land use, soil ecosystems, and the presence of pathogens in soil environment, however, the risk associated with soil pathogens remains unknown. Identifying the potential risk of pathogens in soils in urban-rural ecosystem has become an urgent issue. In this study, we established a risk evaluation method for soil pathogens based on analytic hierarchy process and entropy methods to quantitatively estimate the potential risk of soil pathogens to children and adults in urban-rural ecosystem. The abundance and species number of soil pathogens, network structure of soil microbial community, and human exposure factors were considered with 12 indicators to establish the risk evaluation system. The results revealed that 19 potential pathogenic bacteria were detected in soils within a typical urban-rural ecosystem. Substantial differences were observed in both abundance and species of soil pathogens as well as network structure of soil microbial community from urban to rural areas. Urban areas exhibited relatively lower levels of soil pathogenic abundance, but the microbial network was considerably unstable. Rural areas supported relatively higher levels of soil pathogenic abundance and stable microbial networks. Notably, peri-urban areas showed relatively unstable microbial networks alongside higher levels of soil pathogenic abundance compared to other areas. The risk evaluation of soil pathogens for both adults and children showed that peri-urban areas presented the highest potential risk, with children being more susceptible than adults to threats posed by soil pathogens in both urban and peri-urban areas. The established evaluation system provides an innovative approach for quantifying risk of soil pathogens at regional scale and can be used as a reference for preventing soil pathogens contamination and enhancing soil health in areas with intense human activities.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liding Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangkai Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Qingyu Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Yuan C, Zhao L, Tong L, Wang L, Ke Z, Yang Y, He J. Expression and Characterization of 3,6-Dihydroxy-picolinic Acid Decarboxylase PicC of Bordetella bronchiseptica RB50. Microorganisms 2023; 11:microorganisms11040854. [PMID: 37110277 PMCID: PMC10142695 DOI: 10.3390/microorganisms11040854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Picolinic acid (PA) is a typical mono-carboxylated pyridine derivative produced by human/animals or microorganisms which could be served as nutrients for bacteria. Most Bordetella strains are pathogens causing pertussis or respiratory disease in humans and/or various animals. Previous studies indicated that Bordetella strains harbor the PA degradation pic gene cluster. However, the degradation of PA by Bordetella strains remains unknown. In this study, a reference strain of genus Bordetella, B. bronchiseptica RB50, was investigated. The organization of pic gene cluster of strain RB50 was found to be similar with that of Alcaligenes faecalis, in which the sequence similarities of each Pic proteins are between 60% to 80% except for PicB2 (47% similarity). The 3,6-dihydroxypicolinic acid (3,6DHPA) decarboxylase gene (BB0271, designated as picCRB50) of strain RB50 was synthesized and over-expressed in E. coli BL21(DE3). The PicCRB50 showed 75% amino acid similarities against known PicC from Alcaligenes faecalis. The purified PicCRB50 can efficiently transform 3,6DHPA to 2,5-dihydroxypyridine. The PicCRB50 exhibits optimal activities at pH 7.0, 35 °C, and the Km and kcat values of PicCRB50 for 3,6DHPA were 20.41 ± 2.60 μM and 7.61 ± 0.53 S−1, respectively. The present study provided new insights into the biodegradation of PA by pathogens of Bordetella spp.
Collapse
Affiliation(s)
- Cansheng Yuan
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China
| | - Lingling Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Tong
- Suzhou Kaisiling Environmental Sci-Technology Co., Ltd., Suzhou 215413, China
| | - Lin Wang
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China
| | - Zhuang Ke
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China
| | - Ying Yang
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China
| | - Jian He
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
6
|
Bridel S, Bouchez V, Brancotte B, Hauck S, Armatys N, Landier A, Mühle E, Guillot S, Toubiana J, Maiden MCJ, Jolley KA, Brisse S. A comprehensive resource for Bordetella genomic epidemiology and biodiversity studies. Nat Commun 2022; 13:3807. [PMID: 35778384 PMCID: PMC9249784 DOI: 10.1038/s41467-022-31517-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
The genus Bordetella includes bacteria that are found in the environment and/or associated with humans and other animals. A few closely related species, including Bordetella pertussis, are human pathogens that cause diseases such as whooping cough. Here, we present a large database of Bordetella isolates and genomes and develop genotyping systems for the genus and for the B. pertussis clade. To generate the database, we merge previously existing databases from Oxford University and Institut Pasteur, import genomes from public repositories, and add 83 newly sequenced B. bronchiseptica genomes. The public database currently includes 2582 Bordetella isolates and their provenance data, and 2085 genomes ( https://bigsdb.pasteur.fr/bordetella/ ). We use core-genome multilocus sequence typing (cgMLST) to develop genotyping systems for the whole genus and for B. pertussis, as well as specific schemes to define antigenic, virulence and macrolide resistance profiles. Phylogenetic analyses allow us to redefine evolutionary relationships among known Bordetella species, and to propose potential new species. Our database provides an expandable resource for genotyping of environmental and clinical Bordetella isolates, thus facilitating evolutionary and epidemiological research on whooping cough and other Bordetella infections.
Collapse
Affiliation(s)
- Sébastien Bridel
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Bryan Brancotte
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France
| | - Sofia Hauck
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Nathalie Armatys
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Estelle Mühle
- Collection de l´Institut Pasteur, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France.,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France.,Department of General Pediatrics and Pediatric Infectious Diseases, Université Paris Cité, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Keith A Jolley
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France. .,National Reference Center for Whooping Cough and other Bordetella Infections, Institut Pasteur, Paris, France.
| |
Collapse
|
7
|
Fenwick BW. Bordetella. Vet Microbiol 2022. [DOI: 10.1002/9781119650836.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Zhang R, Hu L, Xu C, Wu J, Xu C, Feng C. Bordetella avium-associated endophthalmitis: case report. BMC Infect Dis 2021; 21:833. [PMID: 34412580 PMCID: PMC8375195 DOI: 10.1186/s12879-021-06546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background Bordetella avium, an aerobic bacterium that rarely causes infection in humans, is a species of Bordetella that generally inhabits the respiratory tracts of turkeys and other birds. It causes a highly contagious bordetellosis. Few reports describe B. avium as a causative agent of eye-related infections. Case presentation We report a case of acute infectious endophthalmitis associated with infection by B. avium after open trauma. After emergency vitrectomy and subsequent broad-spectrum antibiotic treatment, the infection was controlled successfully, and the patient’s vision improved. Conclusions B. avium can cause infection in the human eye, which can manifest as acute purulent endophthalmitis. Nanopore targeted sequencing technology can quickly identify this organism. Emergency vitrectomy combined with lens removal and silicone oil tamponade and the early application of broad-spectrum antibiotics are key for successful treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liping Hu
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chong Xu
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jianhua Wu
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Changzhong Xu
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chao Feng
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Gorrasi S, Franzetti A, Ambrosini R, Pittino F, Pasqualetti M, Fenice M. Spatio-Temporal Variation of the Bacterial Communities along a Salinity Gradient within a Thalassohaline Environment (Saline di Tarquinia Salterns, Italy). Molecules 2021; 26:molecules26051338. [PMID: 33801538 PMCID: PMC7958962 DOI: 10.3390/molecules26051338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 01/18/2023] Open
Abstract
The “Saline di Tarquinia” salterns have been scarcely investigated regarding their microbiological aspects. This work studied the structure and composition of their bacterial communities along the salinity gradient (from the nearby sea through different ponds). The communities showed increasing simplification of pond bacterial diversity along the gradient (particularly if compared to those of the sea). Among the 38 assigned phyla, the most represented were Proteobacteria, Actinobacteria and Bacteroidetes. Differently to other marine salterns, where at the highest salinities Bacteroidetes dominated, preponderance of Proteobacteria was observed. At the genus level the most abundant taxa were Pontimonas, Marivita, Spiribacter, Bordetella, GpVII and Lentibacter. The α-diversity analysis showed that the communities were highly uneven, and the Canonical Correspondence Analysis indicated that they were structured by various factors (sampling site, sampling year, salinity, and sampling month). Moreover, the taxa abundance variation in relation to these significant parameters were investigated by Generalized Linear Models. This work represents the first investigation of a marine saltern, carried out by a metabarcoding approach, which permitted a broad vision of the bacterial diversity, covering both a wide temporal span (two years with monthly sampling) and the entire salinity gradient (from the nearby sea up to the crystallisation ponds).
Collapse
Affiliation(s)
- Susanna Gorrasi
- Dipartimento di Ecologia e Biologia, Università degli Studi della Tuscia, Largo Università snc, 01100 Viterbo, Italy; (S.G.); (M.P.)
| | - Andrea Franzetti
- Dipartimento di Scienze dell’Ambiente e della Terra, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (A.F.); (F.P.)
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy;
| | - Francesca Pittino
- Dipartimento di Scienze dell’Ambiente e della Terra, Università di Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (A.F.); (F.P.)
| | - Marcella Pasqualetti
- Dipartimento di Ecologia e Biologia, Università degli Studi della Tuscia, Largo Università snc, 01100 Viterbo, Italy; (S.G.); (M.P.)
- Laboratoro di Ecologia dei Funghi Marini CONISMA, Università degli Studi della Tuscia, Largo Università snc, 01100 Viterbo, Italy
| | - Massimiliano Fenice
- Dipartimento di Ecologia e Biologia, Università degli Studi della Tuscia, Largo Università snc, 01100 Viterbo, Italy; (S.G.); (M.P.)
- Laboratorio di Microbiologia Marina Applicata, CONISMA, Università degli Studi della Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Correspondence: ; Tel.: +39-0761-357318
| |
Collapse
|
10
|
Novák J, Jurnečka D, Linhartová I, Holubová J, Staněk O, Štipl D, Dienstbier A, Večerek B, Azevedo N, Provazník J, Beneš V, Šebo P. A Mutation Upstream of the rplN-rpsD Ribosomal Operon Downregulates Bordetella pertussis Virulence Factor Production without Compromising Bacterial Survival within Human Macrophages. mSystems 2020; 5:e00612-20. [PMID: 33293402 PMCID: PMC7742992 DOI: 10.1128/msystems.00612-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
The BvgS/BvgA two-component system controls expression of ∼550 genes of Bordetella pertussis, of which, ∼245 virulence-related genes are positively regulated by the BvgS-phosphorylated transcriptional regulator protein BvgA (BvgA∼P). We found that a single G-to-T nucleotide transversion in the 5'-untranslated region (5'-UTR) of the rplN gene enhanced transcription of the ribosomal protein operon and of the rpoA gene and provoked global dysregulation of B. pertussis genome expression. This comprised overproduction of the alpha subunit (RpoA) of the DNA-dependent RNA polymerase, downregulated BvgA and BvgS protein production, and impaired production and secretion of virulence factors by the mutant. Nonetheless, the mutant survived like the parental bacteria for >2 weeks inside infected primary human macrophages and persisted within infected mouse lungs for a longer period than wild-type B. pertussis These observations suggest that downregulation of virulence factor production by bacteria internalized into host cells may enable persistence of the whooping cough agent in the airways.IMPORTANCE We show that a spontaneous mutation that upregulates transcription of an operon encoding ribosomal proteins and causes overproduction of the downstream-encoded α subunit (RpoA) of RNA polymerase causes global effects on gene expression levels and proteome composition of Bordetella pertussis Nevertheless, the resulting important downregulation of the BvgAS-controlled expression of virulence factors of the whooping cough agent did not compromise its capacity to persist for prolonged periods inside primary human macrophage cells, and it even enhanced its capacity to persist in infected mouse lungs. These observations suggest that the modulation of BvgAS-controlled expression of virulence factors may occur also during natural infections of human airways by Bordetella pertussis and may possibly account for long-term persistence of the pathogen within infected cells of the airways.
Collapse
Affiliation(s)
- Jakub Novák
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnečka
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Irena Linhartová
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Holubová
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondřej Staněk
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Štipl
- Laboratory of Post-Transcriptional Control of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ana Dienstbier
- Laboratory of Post-Transcriptional Control of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Branislav Večerek
- Laboratory of Post-Transcriptional Control of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nayara Azevedo
- Genomics Core Facility, European Molecular Biology Laboratory, Services and Technology Unit, Heidelberg, Germany
| | - Jan Provazník
- Genomics Core Facility, European Molecular Biology Laboratory, Services and Technology Unit, Heidelberg, Germany
| | - Vladimír Beneš
- Genomics Core Facility, European Molecular Biology Laboratory, Services and Technology Unit, Heidelberg, Germany
| | - Peter Šebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Rivera I, Linz B, Harvill ET. Evolution and Conservation of Bordetella Intracellular Survival in Eukaryotic Host Cells. Front Microbiol 2020; 11:557819. [PMID: 33178148 PMCID: PMC7593398 DOI: 10.3389/fmicb.2020.557819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/28/2020] [Indexed: 11/25/2022] Open
Abstract
The classical bordetellae possess several partially characterized virulence mechanisms that are studied in the context of a complete extracellular life cycle in their mammalian hosts. Yet, classical bordetellae have repeatedly been reported within dendritic cells (DCs) and alveolar macrophages in clinical samples, and in vitro experiments convincingly demonstrate that the bacteria can survive intracellularly within mammalian phagocytic cells, an ability that appears to have descended from ancestral progenitor species that lived in the environment and acquired the mechanisms to resist unicellular phagocytic predators. Many pathogens, including Mycobacterium tuberculosis, Salmonella enterica, Francisella tularensis, and Legionella pneumophila, are known to parasitize and multiply inside eukaryotic host cells. This strategy provides protection, nutrients, and the ability to disseminate systemically. While some work has been dedicated at characterizing intracellular survival of Bordetella pertussis, there is limited understanding of how this strategy has evolved within the genus Bordetella and the contributions of this ability to bacterial pathogenicity, evasion of host immunity as well as within and between-host dissemination. Here, we explore the mechanisms that control the metabolic changes accompanying intracellular survival and how these have been acquired and conserved throughout the evolutionary history of the Bordetella genus and discuss the possible implications of this strategy in the persistence and reemergence of B. pertussis in recent years.
Collapse
Affiliation(s)
- Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
12
|
Kamanova J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol 2020; 10:466. [PMID: 33014891 PMCID: PMC7498569 DOI: 10.3389/fcimb.2020.00466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Pertussis, also known as whooping cough, is a resurging acute respiratory disease of humans primarily caused by the Gram-negative coccobacilli Bordetella pertussis, and less commonly by the human-adapted lineage of B. parapertussis HU. The ovine-adapted lineage of B. parapertussis OV infects only sheep, while B. bronchiseptica causes chronic and often asymptomatic respiratory infections in a broad range of mammals but rarely in humans. A largely overlapping set of virulence factors inflicts the pathogenicity of these bordetellae. Their genomes also harbor a pathogenicity island, named bsc locus, that encodes components of the type III secretion injectosome, and adjacent btr locus with the type III regulatory proteins. The Bsc injectosome of bordetellae translocates the cytotoxic BteA effector protein, also referred to as BopC, into the cells of the mammalian hosts. While the role of type III secretion activity in the persistent colonization of the lower respiratory tract by B. bronchiseptica is well recognized, the functionality of the type III secretion injectosome in B. pertussis was overlooked for many years due to the adaptation of laboratory-passaged B. pertussis strains. This review highlights the current knowledge of the type III secretion system in the so-called classical Bordetella species, comprising B. pertussis, B. parapertussis, and B. bronchiseptica, and discusses its functional divergence. Comparison with other well-studied bacterial injectosomes, regulation of the type III secretion on the transcriptional and post-transcriptional level, and activities of BteA effector protein and BopN protein, homologous to the type III secretion gatekeepers, are addressed.
Collapse
Affiliation(s)
- Jana Kamanova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
13
|
Rivera I, Linz B, Dewan KK, Ma L, Rice CA, Kyle DE, Harvill ET. Conservation of Ancient Genetic Pathways for Intracellular Persistence Among Animal Pathogenic Bordetellae. Front Microbiol 2019; 10:2839. [PMID: 31921025 PMCID: PMC6917644 DOI: 10.3389/fmicb.2019.02839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022] Open
Abstract
Animal and human pathogens of the genus Bordetella are not commonly considered to be intracellular pathogens, although members of the closely related classical bordetellae are known to enter and persist within macrophages in vitro and have anecdotally been reported to be intracellular in clinical samples. B. bronchiseptica, the species closest to the ancestral lineage of the classical bordetellae, infects a wide range of mammals but is known to have an alternate life cycle, persisting, replicating and disseminating with amoeba. These observations give rise to the hypothesis that the ability for intracellular survival has an ancestral origin and is common among animal-pathogenic and environmental Bordetella species. Here we analyzed the survival of B. bronchiseptica and defined its transcriptional response to internalization by murine macrophage-like cell line RAW 264.7. Although the majority of the bacteria were killed and digested by the macrophages, a consistent fraction survived and persisted inside the phagocytes. Internalization prompted the activation of a prominent stress response characterized by upregulation of genes involved in DNA repair, oxidative stress response, pH homeostasis, chaperone functions, and activation of specific metabolic pathways. Cross species genome comparisons revealed that most of these upregulated genes are highly conserved among both the classical and non-classical Bordetella species. The diverse Bordetella species also shared the ability to survive inside RAW 264.7 cells, with the single exception being the bird pathogen B. avium, which has lost several of those genes. Knock-out mutations in genes expressed intracellularly resulted in decreased persistence inside the phagocytic cells, emphasizing the importance of these genes in this environment. These data show that the ability to persist inside macrophage-like RAW 264.7 cells is shared among nearly all Bordetella species, suggesting that resisting phagocytes may be an ancient mechanism that precedes speciation in the genus and may have facilitated the adaptation of Bordetella species from environmental bacteria to mammalian respiratory pathogens.
Collapse
Affiliation(s)
- Israel Rivera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Bodo Linz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kalyan K Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Longhuan Ma
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Christopher A Rice
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States.,Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Dennis E Kyle
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
14
|
Antoine R, Rivera-Millot A, Roy G, Jacob-Dubuisson F. Relationships Between Copper-Related Proteomes and Lifestyles in β Proteobacteria. Front Microbiol 2019; 10:2217. [PMID: 31608037 PMCID: PMC6769254 DOI: 10.3389/fmicb.2019.02217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Copper is an essential transition metal whose redox properties are used for a variety of enzymatic oxido-reductions and in electron transfer chains. It is also toxic to living beings, and therefore its cellular concentration must be strictly controlled. We have performed in silico analyses of the predicted proteomes of more than one hundred species of β proteobacteria to characterize their copper-related proteomes, including cuproproteins, i.e., proteins with active-site copper ions, copper chaperones, and copper-homeostasis systems. Copper-related proteomes represent between 0 and 1.48% of the total proteomes of β proteobacteria. The numbers of cuproproteins are globally proportional to the proteome sizes in all phylogenetic groups and strongly linked to aerobic respiration. In contrast, environmental bacteria have considerably larger proportions of copper-homeostasis systems than the other groups of bacteria, irrespective of their proteome sizes. Evolution toward commensalism, obligate, host-restricted pathogenesis or symbiosis is globally reflected in the loss of copper-homeostasis systems. In endosymbionts, defense systems and copper chaperones have disappeared, whereas residual cuproenzymes are electron transfer proteins for aerobic respiration. Lifestyle is thus a major determinant of the size and composition of the copper-related proteome, and it is particularly reflected in systems involved in copper homeostasis. Analyses of the copper-related proteomes of a number of species belonging to the Burkholderia, Bordetella, and Neisseria genera indicates that commensals are in the process of shedding their copper-homeostasis systems and chaperones to greater extents yet than pathogens.
Collapse
Affiliation(s)
| | | | | | - Françoise Jacob-Dubuisson
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|