1
|
Jallouli R, Moreno Salinas AL, Laniel A, Holleran B, Avet C, Jacob J, Hoang T, Lavoie C, Carmon KS, Bouvier M, Leduc R. G protein selectivity profile of GPR56/ADGRG1 and its effect on downstream effectors. RESEARCH SQUARE 2024:rs.3.rs-4869264. [PMID: 39281883 PMCID: PMC11398566 DOI: 10.21203/rs.3.rs-4869264/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
GPR56, an adhesion G-protein coupled receptor (aGPCRs) with constitutive and ligand-promoted activity, is involved in many physiological and pathological processes. Whether the receptor's constitutive or ligand-promoted activation occur through the same molecular mechanism, and whether different activation modes lead to functional selectivity between G proteins is unknown. Here we show that GPR56 constitutively activates both G12 and G13. Unlike constitutive activation and activation with 3-a-acetoxydihydrodeoxygedunin (3αDOG), stimulation with an antibody, 10C7, directed against GPR56's extracellular domain (ECD) led to an activation that favors G13 over G12. An autoproteolytically deficient mutant, GPR56-T383A, was also activated by 10C7 indicating that the tethered agonist (TA) exposed through autocatalytic cleavage, is not required for this activation modality. In contrast, this proteolysis-resistant mutant could not be activated by 3αDOG indicating different modes of activation by the two ligands. We show that an N-terminal truncated GPR56 construct (GPR56-Δ1-385) is devoid of constitutive activity but was activated by 3αDOG. Similarly to 3αDOG, 10C7 promoted the recruitment of b-arrestin-2 but GPR56 internalization was β-arrestin independent. Despite the slow activation mode of 10C7 that favors G13 over G12, it efficiently activated the downstream Rho pathway in BT-20 breast cancer cells. These data show that different GPR56 ligands have different modes of activation yielding differential G protein selectivity but converging on the activation of the Rho pathway both in heterologous expressions system and in cancer cells endogenously expressing the receptor. 10C7 is therefore an interesting tool to study both the processes underlying GPR56 activity and its role in cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Joan Jacob
- The University of Texas MD Anderson Cancer Center
| | - Trang Hoang
- University of Montreal: Universite de Montreal
| | | | | | | | | |
Collapse
|
2
|
Jallouli R, Moreno-Salinas AL, Laniel A, Holleran B, Avet C, Jacob J, Hoang T, Lavoie C, Carmon KS, Bouvier M, Leduc R. G protein selectivity profile of GPR56/ADGRG1 and its effect on downstream effectors. Cell Mol Life Sci 2024; 81:383. [PMID: 39231834 PMCID: PMC11374949 DOI: 10.1007/s00018-024-05416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/06/2024]
Abstract
GPR56, an adhesion G-protein coupled receptor (aGPCRs) with constitutive and ligand-promoted activity, is involved in many physiological and pathological processes. Whether the receptor's constitutive or ligand-promoted activation occur through the same molecular mechanism, and whether different activation modes lead to functional selectivity between G proteins is unknown. Here we show that GPR56 constitutively activates both G12 and G13. Unlike constitutive activation and activation with 3-α-acetoxydihydrodeoxygedunin (3αDOG), stimulation with an antibody, 10C7, directed against GPR56's extracellular domain (ECD) led to an activation that favors G13 over G12. An autoproteolytically deficient mutant, GPR56-T383A, was also activated by 10C7 indicating that the tethered agonist (TA) exposed through autocatalytic cleavage, is not required for this activation modality. In contrast, this proteolysis-resistant mutant could not be activated by 3αDOG indicating different modes of activation by the two ligands. We show that an N-terminal truncated GPR56 construct (GPR56-Δ1-385) is devoid of constitutive activity but was activated by 3αDOG. Similarly to 3αDOG, 10C7 promoted the recruitment of β-arrestin-2 but GPR56 internalization was β-arrestin independent. Despite the slow activation mode of 10C7 that favors G13 over G12, it efficiently activated the downstream Rho pathway in BT-20 breast cancer cells. These data show that different GPR56 ligands have different modes of activation yielding differential G protein selectivity but converging on the activation of the Rho pathway both in heterologous expressions system and in cancer cells endogenously expressing the receptor. 10C7 is therefore an interesting tool to study both the processes underlying GPR56 activity and its role in cancer cells.
Collapse
Affiliation(s)
- Raida Jallouli
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ana L Moreno-Salinas
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andréanne Laniel
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Brian Holleran
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Charlotte Avet
- Institute for Research in Immunology and Cancer (IRIC), Department of Pharmacology and Physiology, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Canada
| | - Joan Jacob
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Trang Hoang
- Institute for Research in Immunology and Cancer (IRIC), Department of Pharmacology and Physiology, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Canada
| | - Christine Lavoie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Kendra S Carmon
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Department of Pharmacology and Physiology, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Canada.
| | - Richard Leduc
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
- Institut de Pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
3
|
Munoz-Gualan AP, Güngör A, Cezayirli PC, Rahmanov S, Gurses ME, Puelles L, Türe U. Human Adapted Prosomeric Model: A Future for Brainstem Tumor Classification. Brain Res 2024; 1837:148961. [PMID: 38679312 DOI: 10.1016/j.brainres.2024.148961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
This study reevaluates the conventional understanding of midbrain anatomy and neuroanatomical nomenclature in the context of recent genetic and anatomical discoveries. The authors assert that the midbrain should be viewed as an integral part of the forebrain due to shared genetic determinants and evolutionary lineage. The isthmo-mesencephalic boundary is recognized as a significant organizer for both the caudal midbrain and the isthmo-cerebellar area. The article adopts the prosomeric model, redefining the whole brain as neuromeres, offering a more precise depiction of brain development, including processes like proliferation, neurogenesis, cell migration, and differentiation. This shift in understanding challenges traditional definitions of the midbrain based on external brain morphology. The study also delves into the historical context of neuroanatomical models, including the columnar model proposed by Herrick in 1910, which has influenced our understanding of brain structure. Furthermore, the study has clinical implications, affecting neuroanatomy, neurodevelopmental studies, and the diagnosis and treatment of brain disorders. It emphasizes the need to integrate molecular research into human neuroanatomical studies and advocates for updating neuroanatomical terminology to reflect modern genetic and molecular insights. The authors propose two key revisions. First, we suggest reclassifying the isthmo-cerebellar prepontine region as part of the hindbrain, due to its role in cerebellar development and distinct location caudal to the genetically-defined midbrain. Second, we recommend redefining the anterior boundary of the genetically-defined midbrain to align with genetic markers. In conclusion, the authors highlight the importance of harmonizing neuroanatomical nomenclature with current scientific knowledge, promoting a more precise and informed understanding of brain structure, which is crucial for both research and clinical applications related to the human brain.
Collapse
Affiliation(s)
| | - Abuzer Güngör
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey; Department of Neurosurgery, Istinye University, Istanbul, Turkey
| | - Phillip Cem Cezayirli
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey; Haynes Neurosurgical Group, Birmingham, AL, United States
| | - Serdar Rahmanov
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Muhammet Enes Gurses
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey; Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain; Institute of Biomedical Research of Murcia -IMIB, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Uğur Türe
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
4
|
Qi W, Guan W. GPR56: A potential therapeutic target for neurological and psychiatric disorders. Biochem Pharmacol 2024; 226:116395. [PMID: 38942087 DOI: 10.1016/j.bcp.2024.116395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
GPR56, also known as GPR56/ADGRG1, is a member of the ADGRG subgroup belonging to adhesion G protein-coupled receptors (aGPCRs). aGPCRs are the second largest subfamily of the GPCR superfamily, which is the largest family of membrane protein receptors in the human genome. Studies in recent years have demonstrated that GPR56 is integral to the normal development of the brain and functions as an important player in cortical development, suggesting that GPR56 is involved in many physiological processes. Indeed, aberrant expression of GPR56 has been implicated in multiple neurological and psychiatric disorders, including bilateral frontoparietal polymicrogyria (BFPP), depression and epilepsy. In a recent study, it was found that upregulated expression of GPR56 reduced depressive-like behaviours in an animal model of depression, indicating that GPR56 plays an important role in the antidepressant response. Given the link of GPR56 with the antidepressant response, the function of GPR56 has become a focus of research. Although GPR56 may be a potential target for the development of antidepressants, the underlying molecular mechanisms remain largely unknown. Therefore, in this review, we will summarize the latest findings of GPR56 function in neurological and psychiatric disorders (depression, epilepsy, autism, and BFPP) and emphasize the mechanisms of GPR56 in activation and signalling in those conditions. After reviewing several studies, attributing to its significant biological functions and exceptionally long extracellular N-terminus that interacts with multiple ligands, we draw a conclusion that GPR56 may serve as an important drug target for neuropsychological diseases.
Collapse
Affiliation(s)
- Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, China.
| |
Collapse
|
5
|
Scuderi A, Prato A, Dicanio D, Spoto G, Salpietro V, Ceravolo G, Granata F, Farello G, Iapadre G, Zagaroli L, Nanni G, Ceravolo I, Pironti E, Amore G, Rosa GD. Age-Related Neurodevelopmental Features in Children with Joubert Syndrome. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1759539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractJoubert syndrome (JS) is a rare inherited disorder of central nervous system with neonatal/infantile onset, mainly affecting cerebellum and brainstem, and clinically characterized by agenesis or dysgenesis of the cerebellar vermis with accompanying brainstem malformations. More than 20 disease-causing genes have been associated with JS but a clear genotype–phenotype correlation has not been assessed yet. Diagnosis is usually confirmed by detection of the JS neuroradiological hallmark, the molar tooth sign. Patients with JS typically present with neurological manifestations, moreover, a heterogeneous spectrum of multisystemic anomalies may be observed. Signs and symptoms onset varies according to the age range and clinical diagnosis might become complicated. Moreover, specific neurodevelopmental disorders can be associated with JS such as autism spectrum disorders, attention deficit with hyperactivity, and a wide range of behavioral disturbances. Here, we examined the main neurological and neurodevelopmental features of JS according to an age-dependent mode of presentation. Furthermore, differential diagnosis with other neurological syndromes was closely reviewed.
Collapse
Affiliation(s)
- Anna Scuderi
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Adriana Prato
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Daniela Dicanio
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | | | - Giorgia Ceravolo
- Unit of Pediatric Emergency, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Francesca Granata
- Department of Biomedical Sciences and Morphological and Functional, University of Messina, Messina, Italy
| | - Giovanni Farello
- Department of Life, Health and Environmental Sciences, Pediatric Clinic, Coppito (AQ), Italy
| | - Giulia Iapadre
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Luca Zagaroli
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Giuliana Nanni
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Ida Ceravolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Erica Pironti
- Department of Woman-Child, Unit of Child Neurology and Psychiatry, Ospedali Riuniti, University of Foggia, Foggia, Italy
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi,” University of Messina, Messina, Italy
| |
Collapse
|
6
|
Su T, Guan Q, Cheng H, Zhu Z, Jiang C, Guo P, Tai Y, Sun H, Wang M, Wei W, Wang Q. Functions of G protein-coupled receptor 56 in health and disease. Acta Physiol (Oxf) 2022; 236:e13866. [PMID: 35959520 DOI: 10.1111/apha.13866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/29/2023]
Abstract
Human G protein-coupled receptor 56 (GPR56) is encoded by gene ADGRG1 from chromosome 16q21 and is homologously encoded in mice, at chromosome 8. Both 687 and 693 splice forms are present in humans and mice. GPR56 has a 381 amino acid-long N-terminal extracellular segment and a GPCR proteolysis site upstream from the first transmembrane domain. GPR56 is mainly expressed in the heart, brain, thyroid, platelets, and peripheral blood mononuclear cells. Accumulating evidence indicates that GPR56 promotes the formation of myelin sheaths and the development of oligodendrocytes in the cerebral cortex of the central nervous system. Moreover, GPR56 contributes to the development and differentiation of hematopoietic stem cells, induces adipogenesis, and regulates the function of immune cells. The lack of GPR56 leads to nervous system dysfunction, platelet disorders, and infertility. Abnormal expression of GPR56 is related to the malignant transformation and tumor metastasis of several cancers including melanoma, neuroglioma, and gastrointestinal cancer. Metabolic disorders and cardiovascular diseases are also associated with dysregulation of GPR56 expression, and GPR56 is involved in the pharmacological resistance to some antidepressant and cancer drug treatments. In this review, the molecular structure, expression profile, and signal transduction of GPR56 are introduced, and physiological and pathological functions of GRP56 are comprehensively summarized. Attributing to its significant biological functions and its long N-terminal extracellular region that interacts with multiple ligands, GPR56 is becoming an attractive therapeutic target in treating neurological and hematopoietic diseases.
Collapse
Affiliation(s)
- Tiantian Su
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qiuyun Guan
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Huijuan Cheng
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Zhenduo Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Chunru Jiang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Paipai Guo
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Tai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Hanfei Sun
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Manman Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| | - Qingtong Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
7
|
Moosavi A, Kanekar S. Congenital Malformations of Cerebellum. Clin Perinatol 2022; 49:603-621. [PMID: 36113925 DOI: 10.1016/j.clp.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in pre and postnatal neuroimaging techniques, and molecular genetics have increased our understanding of the congenital malformation of the brain. Correct diagnosis of these malformations in regards to embryology, and molecular neurogenetics is of paramount importance to understand the inheritance pattern and risk of recurrence. Lesions detected on prenatal imaging require confirmation either with postnatal ultrasound and/or with MR imaging. With the advent of the faster (rapid) MRI techniques, which can be conducted without sedation, MRI is commonly used in the evaluation of congenital malformation of the brain. Based on neuroimaging pattern, the congenital malformations of the posterior fossa are classified into 4 main categories: (a) predominantly cerebellar, (b) cerebellar and brainstem, (c) predominantly brainstem, and (d) predominantly midbrain malformations.
Collapse
Affiliation(s)
- Ali Moosavi
- Radiology Research, Division of Neuroradiology, Penn State Health, Penn State College of Medicine, Mail Code H066 500 University Drive, Hershey, PA 17033, USA
| | - Sangam Kanekar
- Radiology Research, Division of Neuroradiology, Penn State Health, Penn State College of Medicine, Mail Code H066 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
8
|
Pascual B, Hodics T, Funk Q, Cykowski MD, Nakawah MO, Masdeu JC. Translocator Protein 18 kDa PET Imaging Highlights Asymptomatic Isolated Cerebellar Dysplasia. Neurology 2022; 98:538-539. [PMID: 35131911 PMCID: PMC8967423 DOI: 10.1212/wnl.0000000000200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Belen Pascual
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX
| | - Timea Hodics
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX
| | - Quentin Funk
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX
| | - Matthew D Cykowski
- Department ofPathology and Genomic Medicine, Houston Methodist Research Institute and Weill Cornell Medicine, Houston, TX
| | - Mohammad O Nakawah
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX
| | - Joseph C Masdeu
- Nantz National Alzheimer Center, Stanley H. Appel Department of Neurology, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX
| |
Collapse
|
9
|
Malformations of the craniocervical junction: Casamassima-morton-nance syndrome and type I Chiari malformation. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Tian C, Chen J, Ming X, Zeng X, Wang R. A 10-year-old girl with Joubert syndrome and chronic kidney disease and its related complications. Quant Imaging Med Surg 2021; 11:4223-4226. [PMID: 34476203 DOI: 10.21037/qims-20-943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/01/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Chong Tian
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiaxiang Chen
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou University School of Medicine, Guiyang, China
| | - Xing Ming
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xianchun Zeng
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rongpin Wang
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
11
|
Barker MS, Knight JL, Dean RJ, Mandelstam S, Richards LJ, Robinson GA. Verbal Adynamia and Conceptualization in Partial Rhombencephalosynapsis and Corpus Callosum Dysgenesis. Cogn Behav Neurol 2021; 34:38-52. [PMID: 33652468 DOI: 10.1097/wnn.0000000000000261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/02/2020] [Indexed: 11/26/2022]
Abstract
Verbal adynamia is characterized by markedly reduced spontaneous speech that is not attributable to a core language deficit such as impaired naming, reading, repetition, or comprehension. In some cases, verbal adynamia is severe enough to be considered dynamic aphasia. We report the case of a 40-year-old, left-handed, male native English speaker who presented with partial rhombencephalosynapsis, corpus callosum dysgenesis, and a language profile that is consistent with verbal adynamia, or subclinical dynamic aphasia, possibly underpinned by difficulties selecting and generating ideas for expression. This case is only the second investigation of dynamic aphasia in an individual with a congenital brain malformation. It is also the first detailed neuropsychological report of an adult with partial rhombencephalosynapsis and corpus callosum dysgenesis, and the only known case of superior intellectual abilities in this context.
Collapse
Affiliation(s)
- Megan S Barker
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, St Lucia, Brisbane, Australia
- Taub Institute, Columbia University Medical Center, New York, New York
| | - Jacquelyn L Knight
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, St Lucia, Brisbane, Australia
| | - Ryan J Dean
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia
| | - Simone Mandelstam
- Department of Radiology, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Linda J Richards
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Gail A Robinson
- Neuropsychology Research Unit, School of Psychology, The University of Queensland, St Lucia, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, Australia
| |
Collapse
|
12
|
Abstract
Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.
Collapse
|
13
|
Imaging of congenital cranial dysinnervation disorders: What radiologist wants to know? Clin Imaging 2020; 71:106-116. [PMID: 33189029 DOI: 10.1016/j.clinimag.2020.10.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/03/2020] [Accepted: 10/17/2020] [Indexed: 11/22/2022]
Abstract
We aim to review the imaging features of congenital cranial dysinnervation disorders. Characteristic imaging findings can define subtypes of these disorders through assessment of cranial nerves, extraocular muscles, orbital, and brain abnormalities. Duane retraction syndrome shows absent or hypoplasic 6th cranial nerve and preserved extraocular muscles (EOM). Mobius syndrome shows absent 7th and 6th cranial nerves, absence of facial colliculus, flattening of the dorsal aspect of the pons, hypoplasia of the pons and medulla, and flattening of the 4th ventricular floor. Congenital fibrosis of the extraocular muscles reveals unilateral or bilateral hypoplasia or aplasia of the 3rd cranial nerve, atrophy of superior rectus and levator palpebrae superioris muscles, and atrophy of the brainstem and cerebellar hemispheres. Horizontal gaze palsy and progressive scoliosis show characteristic split pons sign, butterfly medulla, absent facial colliculi, and spinal scoliosis. HOXA1 Mutations show a bilateral absence of 6th cranial nerves with the underdeveloped inner ear. Pontine Cap Tegmental Dysplasia shows ventral pontine hypoplasia, dorsal tegmental projection into the 4th ventricle, and variable cranial nerve deficits.
Collapse
|
14
|
Abstract
Neuronal and mixed glioneuronal tumors represent a group of neoplasms with varying degrees of neural and glial elements. Their age of presentation varies, but they are most commonly seen in children and young adults. With the exception of anaplastic ganglioglioma and other atypical variants, most lesions are low grade; however, they can have significant morbidity because of seizures, mass effect, or difficult to treat hydrocephalus. Although many tumors show overlapping clinical and imaging features, some have relatively distinctive imaging characteristics that may aid in narrowing the differential diagnosis. In this review, we discuss relevant clinical and pathologic characteristics of these tumors and provide an overview of conventional and advanced imaging features that provide clues as to the diagnosis.
Collapse
|
15
|
Moreno-Estébanez A, Martínez MF, González TGP, Agirre-Beitia G, Martín EB. Type B diencephalic-mesencephalic junction dysplasia, a congenital brainstem malformation that may be silent until adulthood: a case report. Neurol Sci 2020; 41:2293-2296. [PMID: 32170504 DOI: 10.1007/s10072-020-04326-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Moreno-Estébanez
- Department of Neurology, Cruces University Hospital, Cruces Square, 48903, Barakaldo, Basque Country, Spain.
| | - Manuel Fernández Martínez
- Department of Neurology, Cruces University Hospital, Cruces Square, 48903, Barakaldo, Basque Country, Spain
| | | | - Garazi Agirre-Beitia
- Department of Neurology, Cruces University Hospital, Cruces Square, 48903, Barakaldo, Basque Country, Spain
| | - Elisa Blanco Martín
- Department of Neurology, Urduliz-Alfredo Espinosa Hospital, Goieta Street, 48610, Urduliz, Basque Country, Spain
| |
Collapse
|
16
|
Brandsma R, Verschuuren-Bemelmans CC, Amrom D, Barisic N, Baxter P, Bertini E, Blumkin L, Brankovic-Sreckovic V, Brouwer OF, Bürk K, Catsman-Berrevoets CE, Craiu D, de Coo IFM, Gburek J, Kennedy C, de Koning TJ, Kremer HPH, Kumar R, Macaya A, Micalizzi A, Mirabelli-Badenier M, Nemeth A, Nuovo S, Poll-The B, Lerman-Sagie T, Steinlin M, Synofzik M, Tijssen MAJ, Vasco G, Willemsen MAAP, Zanni G, Valente EM, Boltshauser E, Sival DA. A clinical diagnostic algorithm for early onset cerebellar ataxia. Eur J Paediatr Neurol 2019; 23:692-706. [PMID: 31481303 DOI: 10.1016/j.ejpn.2019.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/25/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
Abstract
Early onset cerebellar Ataxia (EOAc) comprises a large group of rare heterogeneous disorders. Determination of the underlying etiology can be difficult given the broad differential diagnosis and the complexity of the genotype-phenotype relationships. This may change the diagnostic work-up into a time-consuming, costly and not always rewarding task. In this overview, the Childhood Ataxia and Cerebellar Group of the European Pediatric Neurology Society (CACG-EPNS) presents a diagnostic algorithm for EOAc patients. In seven consecutive steps, the algorithm leads the clinician through the diagnostic process, including EOA identification, application of the Inventory of Non-Ataxic Signs (INAS), consideration of the family history, neuro-imaging, laboratory investigations, genetic testing by array CGH and Next Generation Sequencing (NGS). In children with EOAc, this algorithm is intended to contribute to the diagnostic process and to allow uniform data entry in EOAc databases.
Collapse
Affiliation(s)
- R Brandsma
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - C C Verschuuren-Bemelmans
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - D Amrom
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium; Neurology Unit, Kannerklinik Centre Hospitalier de Luxembourg, Luxembourg, Grand Duchy of Luxembourg
| | - N Barisic
- Department of Pediatrics, Clinical Medical Centre Zagreb, University of Zagreb Medical School, Croatia
| | - P Baxter
- Department of Paediatric Neurology, Sheffield Children's Hospital, UK
| | - E Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - L Blumkin
- Pediatric Neurology Unit, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - V Brankovic-Sreckovic
- Clinic for Child Neurology and Psychiatry, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - O F Brouwer
- Department of Paediatric Neurology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - K Bürk
- Paracelsus-Elena-Klinik Kassel, University of Marburg, Germany
| | - C E Catsman-Berrevoets
- Department of Pediatric Neurology, Erasmus University Hospital/Sophia Children's Hospital, Rotterdam, the Netherlands
| | - D Craiu
- Carol Davila University of Medicine Bucharest, Department of Clinical Neurosciences, Pediatric Neurology II Discipline, Alexandru Obregia Hospital, Bucharest, Romania
| | - I F M de Coo
- Department of Genetics and Cell Biology, University of Maastricht, Maastricht, the Netherlands
| | - J Gburek
- Centre for Paediatrics and Adolescent Medicine, Hannover Medical School, Hannover, Germany
| | - C Kennedy
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, UK
| | - T J de Koning
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Paediatric Neurology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - H P H Kremer
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - R Kumar
- Department of Pediatric Neurology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - A Macaya
- Grup de Recerca en Neurologia Pediàtrica, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Secció de Neurologia Pediàtrica, Hospital Universitari Vall d'Hebron, 08002, Barcelona, Spain
| | - A Micalizzi
- Laboratory of Medical Genetics, Bambino Gesu Children's Hospital, Rome, Italy
| | - M Mirabelli-Badenier
- DINOGMI Department-University of Genoa/Unit of Child Neuropsychiatry, G. Gaslini Institute, Genoa, Italy
| | - A Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - S Nuovo
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - B Poll-The
- Department of Pediatric Neurology, Emma Children's Hospital, Academic Medical Centre (AMC), University of Amsterdam, the Netherlands
| | - T Lerman-Sagie
- Pediatric Neurology Unit, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Steinlin
- Division of Neuropediatrics, Development and Rehabilitation, University Children's Hospital Bern, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - M Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - M A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - G Vasco
- Division of Neurorehabilitation, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - M A A P Willemsen
- Department of Pediatric Neurology, Radboud University Medical Center/Amalia Children's Hospital, Nijmegen, the Netherlands
| | - G Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy
| | - E M Valente
- Neurogenetics Unit, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - E Boltshauser
- Department of Pediatric Neurology, University Children's Hospital, Zürich, Switzerland
| | - D A Sival
- Department of Paediatric Neurology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
17
|
Zhao MM, Feng LS, Hou S, Shen PP, Cui L, Feng JC. Gerstmann-Sträussler-Scheinker disease: A case report. World J Clin Cases 2019; 7:389-395. [PMID: 30746381 PMCID: PMC6369391 DOI: 10.12998/wjcc.v7.i3.389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Gerstmann-Sträussler-Scheinker (GSS) disease is an inherited prion disease that is clinically characterized by the early onset of progressive cerebellar ataxia. The incidence of GSS is extremely low and it is particularly rare in China. Therefore, clinicians may easily confuse this disease with other diseases that also cause ataxia, resulting in its under-diagnosis or misdiagnosis.
CASE SUMMARY Here, we report the first case of genetically diagnosed GSS disease in Northeast China. The patient exhibited typical ataxia and dysarthria 2.5 years after symptom onset. However, magnetic resonance imaging of the brain and spinal cord revealed a normal anatomy. Screening results for the spinocerebellar ataxia gene were also negative. We thus proposed to expand the scope of genetic screening to include over 200 mutations that can cause ataxia. A final diagnosis of GSS was presented and the patient was followed for more than 3.5 years, during which we noted imaging abnormalities. The patient gradually exhibited decorticate posturing and convulsions. We recommended administration of oral sodium valproate, which resolved the convulsions.
CONCLUSION Patients with inherited ataxia should be considered for a diagnosis of GSS via genetic testing at an early disease stage.
Collapse
Affiliation(s)
- Ming-Ming Zhao
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Liang-Shu Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Shuai Hou
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Ping-Ping Shen
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li Cui
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jia-Chun Feng
- Department of Neurology and Neuroscience Center, the First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
18
|
Diffusion Tensor Imaging of the Lateral Rectus Muscle in Duane Retraction Syndrome. J Comput Assist Tomogr 2019; 43:467-471. [DOI: 10.1097/rct.0000000000000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Guemez-Gamboa A, Çağlayan AO, Stanley V, Gregor A, Zaki MS, Saleem SN, Musaev D, McEvoy-Venneri J, Belandres D, Akizu N, Silhavy JL, Schroth J, Rosti RO, Copeland B, Lewis SM, Fang R, Issa MY, Per H, Gumus H, Bayram AK, Kumandas S, Akgumus GT, Erson-Omay EZ, Yasuno K, Bilguvar K, Heimer G, Pillar N, Shomron N, Weissglas-Volkov D, Porat Y, Einhorn Y, Gabriel S, Ben-Zeev B, Gunel M, Gleeson JG. Loss of Protocadherin-12 Leads to Diencephalic-Mesencephalic Junction Dysplasia Syndrome. Ann Neurol 2018; 84:638-647. [PMID: 30178464 PMCID: PMC6510237 DOI: 10.1002/ana.25327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome. METHODS Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression. RESULTS All patients showed biallelic mutations in the nonclustered protocadherin-12 (PCDH12) gene. The characteristic clinical presentation included progressive microcephaly, craniofacial dysmorphism, psychomotor disability, epilepsy, and axial hypotonia with variable appendicular spasticity. Brain imaging showed brainstem malformations and with frequent thinned corpus callosum with punctate brain calcifications, reflecting expression of PCDH12 in neural and endothelial cells. These cells showed lack of PCDH12 expression and impaired neurite outgrowth. INTERPRETATION DMJD patients have biallelic mutations in PCDH12 and lack of protein expression. These patients present with characteristic microcephaly and abnormalities of white matter tracts. Such pathogenic variants predict a poor outcome as a result of brainstem malformation and evidence of white matter tract defects, and should be added to the phenotypic spectrum associated with PCDH12-related conditions. Ann Neurol 2018;84:646-655.
Collapse
Affiliation(s)
- Alicia Guemez-Gamboa
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | | | - Valentina Stanley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Anne Gregor
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Maha S Zaki
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Sahar N Saleem
- Radiology Department-Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Damir Musaev
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | | | - Denice Belandres
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Naiara Akizu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Jennifer L Silhavy
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Jana Schroth
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Rasim Ozgur Rosti
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Brett Copeland
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Steven M Lewis
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Rebecca Fang
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Mahmoud Y Issa
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Huseyin Per
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Hakan Gumus
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayse Kacar Bayram
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Sefer Kumandas
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Gozde Tugce Akgumus
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Emine Z Erson-Omay
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Katsuhito Yasuno
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Kaya Bilguvar
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Gali Heimer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Pillar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Stacey Gabriel
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Bruria Ben-Zeev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| | - Joseph G Gleeson
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
20
|
Sun H, Wan N, Wang X, Chang L, Cheng D. Genotype-Phenotype Analysis, Neuropsychological Assessment, and Growth Hormone Response in a Patient with 18p Deletion Syndrome. Cytogenet Genome Res 2018; 154:71-78. [PMID: 29544220 DOI: 10.1159/000487371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 02/01/2023] Open
Abstract
18p deletion syndrome is a rare chromosomal disease caused by deletion of the short arm of chromosome 18. By using cytogenetic and SNP array analysis, we identified a girl with 18p deletion syndrome exhibiting craniofacial anomalies, intellectual disability, and short stature. G-banding analysis of metaphase cells revealed an abnormal karyotype 46,XX,del(18)(p10). Further, SNP array detected a 15.3-Mb deletion at 18p11.21p11.32 (chr18:12842-15375878) including 61 OMIM genes. Genotype-phenotype correlation analysis showed that clinical manifestations of the patient were correlated with LAMA1, TWSG1, and GNAL deletions. Her neuropsychological assessment test demonstrated delay in most cognitive functions including impaired mathematics, linguistic skills, visual motor perception, respond speed, and executive function. Meanwhile, her integrated visual and auditory continuous performance test (IVA-CPT) indicated a severe comprehensive attention deficit. At age 7 and 1/12 years, her height was 110.8 cm (-2.5 SD height for age). Growth hormone (GH) treatment was initiated. After 27 months treatment, her height was increased to 129.6 cm (-1.0 SD height for age) at 9 and 4/12 years, indicating an effective response to GH treatment.
Collapse
Affiliation(s)
- Huihui Sun
- Department of Pediatrics, Beijing Jishuitan Hospital, Beijing, PR China
| | | | | | | | | |
Collapse
|
21
|
Razek AAKA. MR imaging of neoplastic and non-neoplastic lesions of the brain and spine in neurofibromatosis type I. Neurol Sci 2018; 39:821-827. [PMID: 29455398 DOI: 10.1007/s10072-018-3284-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
Abstract
The aim of this work is to review the MR imaging of neoplastic and non-neoplastic lesions of the brain and spine in neurofibromatosis type I. Neoplastic lesions are optic pathway gliomas, brain stem gliomas, other gliomas of the brain, and peripheral nerve sheath tumors. Structural changes in the brain include unidentified bright objects, macrocephaly, and enlarged corpus callosum. Bony dysplasia changes as sphenoid ridge dysplasia, spinal scalloping, dural ectasia, and meningoceles. Vasculopathy and cortical cerebral and cerebellar malformations of the brain have been reported.
Collapse
|
22
|
Aboutanos SZ, McAndrew K, Unkle J, Wornom IL. Pontine Tegmental Cap Dysplasia and Challenges in Facial Reconstructive Surgery. Cleft Palate Craniofac J 2018; 55:127-131. [PMID: 34162062 DOI: 10.1177/1055665617721924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pontine tegmental cap dysplasia (PTCD) is a rare condition that affects the brain stem and multiple cranial nerves, which can result in bilateral facial palsies, hearing loss, bilateral trigeminal nerve dysfunction, oculomotor apraxia, feeding difficulties, seizures, hypotonia, and undeveloped speech. We document a case in which a patient with PTCD presents with a challenging lip deformity and requires multidisciplinary treatment to improve reconstructive surgical success and treatment outcomes. An extensive literature review was conducted. This report serves to increase awareness of PTCD and the need for multidisciplinary teams to participate in reconstruction of facial defects in a complex medical setting.
Collapse
Affiliation(s)
| | - Karen McAndrew
- The Cleft and Craniofacial Team at St. Mary's, Richmond, VA, USA
| | - John Unkle
- The Cleft and Craniofacial Team at St. Mary's, Richmond, VA, USA
| | - Isaac L Wornom
- The Cleft and Craniofacial Team at St. Mary's, Richmond, VA, USA
| |
Collapse
|
23
|
Mądry J, Szlufik S, Koziorowski D, Królicki L, Friedman A. The patient with mild diencephalic–mesencephalic junction dysplasia – Case report and review of literature. Neurol Neurochir Pol 2017; 51:514-518. [DOI: 10.1016/j.pjnns.2017.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
24
|
The New Findings in the Genetics and Pathology of Structural Brain Diseases. CURRENT PEDIATRICS REPORTS 2016. [DOI: 10.1007/s40124-016-0112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|