1
|
Beaton L, Tregidgo HFJ, Znati SA, Forsyth S, Counsell N, Clarkson MJ, Bandula S, Chouhan M, Lowe HL, Thin MZ, Hague J, Sharma D, Pollok JM, Davidson BR, Raja J, Munneke G, Stuckey DJ, Bascal ZA, Wilde PE, Cooper S, Ryan S, Czuczman P, Boucher E, Hartley JA, Atkinson D, Lewis AL, Jansen M, Meyer T, Sharma RA. Phase 0 Study of Vandetanib-Eluting Radiopaque Embolics as a Preoperative Embolization Treatment in Patients with Resectable Liver Malignancies. J Vasc Interv Radiol 2022; 33:1034-1044.e29. [PMID: 35526675 DOI: 10.1016/j.jvir.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To assess the safety and tolerability of a vandetanib-eluting radiopaque embolic (BTG-002814) for transarterial chemoembolization (TACE) in patients with resectable liver malignancies. MATERIALS AND METHODS The VEROnA clinical trial was a first-in-human, phase 0, single-arm, window-of-opportunity study. Eligible patients were aged ≥18 years and had resectable hepatocellular carcinoma (HCC) (Child-Pugh A) or metastatic colorectal cancer (mCRC). Patients received 1 mL of BTG-002814 transarterially (containing 100 mg of vandetanib) 7-21 days prior to surgery. The primary objectives were to establish the safety and tolerability of BTG-002814 and determine the concentrations of vandetanib and the N-desmethyl vandetanib metabolite in the plasma and resected liver after treatment. Biomarker studies included circulating proangiogenic factors, perfusion computed tomography, and dynamic contrast-enhanced magnetic resonance imaging. RESULTS Eight patients were enrolled: 2 with HCC and 6 with mCRC. There was 1 grade 3 adverse event (AE) before surgery and 18 after surgery; 6 AEs were deemed to be related to BTG-002814. Surgical resection was not delayed. Vandetanib was present in the plasma of all patients 12 days after treatment, with a mean maximum concentration of 24.3 ng/mL (standard deviation ± 13.94 ng/mL), and in resected liver tissue up to 32 days after treatment (441-404,000 ng/g). The median percentage of tumor necrosis was 92.5% (range, 5%-100%). There were no significant changes in perfusion imaging parameters after TACE. CONCLUSIONS BTG-002814 has an acceptable safety profile in patients before surgery. The presence of vandetanib in the tumor specimens up to 32 days after treatment suggests sustained anticancer activity, while the low vandetanib levels in the plasma suggest minimal release into the systemic circulation. Further evaluation of this TACE combination is warranted in dose-finding and efficacy studies.
Collapse
Affiliation(s)
- Laura Beaton
- University College London Cancer Institute, University College London, London, United Kingdom.
| | - Henry F J Tregidgo
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sami A Znati
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Sharon Forsyth
- Cancer Research UK and University College London Cancer Trials Centre, University College London, London, United Kingdom
| | - Nicholas Counsell
- Cancer Research UK and University College London Cancer Trials Centre, University College London, London, United Kingdom
| | - Matthew J Clarkson
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Steven Bandula
- University College London Centre for Medical Imaging, University College London, London, United Kingdom
| | - Manil Chouhan
- University College London Centre for Medical Imaging, University College London, London, United Kingdom
| | - Helen L Lowe
- University College London Experimental Cancer Medicine Centre Good Clinical Laboratory Practice Facility, University College London, London, United Kingdom
| | - May Zaw Thin
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Julian Hague
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Dinesh Sharma
- Division of Transplantation and Immunology, Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| | - Joerg-Matthias Pollok
- Division of Surgery and Interventional Science, University College London, London, United Kingdom; Hepatopancreatobiliary Surgery and Liver Transplantation, Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| | - Brian R Davidson
- Division of Surgery and Interventional Science, University College London, London, United Kingdom; Hepatopancreatobiliary Surgery and Liver Transplantation, Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| | - Jowad Raja
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Graham Munneke
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Zainab A Bascal
- Biocompatibles UK Ltd, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, United Kingdom
| | - Paul E Wilde
- Biocompatibles UK Ltd, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, United Kingdom
| | - Sarah Cooper
- Biocompatibles UK Ltd, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, United Kingdom
| | - Samantha Ryan
- Biocompatibles UK Ltd, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, United Kingdom
| | - Peter Czuczman
- Biocompatibles UK Ltd, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, United Kingdom
| | - Eveline Boucher
- Biocompatibles UK Ltd, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, United Kingdom
| | - John A Hartley
- University College London Cancer Institute, University College London, London, United Kingdom; University College London Experimental Cancer Medicine Centre Good Clinical Laboratory Practice Facility, University College London, London, United Kingdom
| | - David Atkinson
- University College London Centre for Medical Imaging, University College London, London, United Kingdom
| | - Andrew L Lewis
- Biocompatibles UK Ltd, Lakeview, Riverside Way, Watchmoor Park, Camberley, Surrey, United Kingdom
| | - Marnix Jansen
- University College London Cancer Institute, University College London, London, United Kingdom; University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Tim Meyer
- University College London Cancer Institute, University College London, London, United Kingdom; Department of Oncology, Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| | - Ricky A Sharma
- National Institute for Health Research University College London Hospitals Biomedical Centre, University College London Cancer Institute, London, United Kingdom
| |
Collapse
|
2
|
Mao X, Guo Y, Wen F, Liang H, Sun W, Lu Z. Applying arterial enhancement fraction (AEF) texture features to predict the tumor response in hepatocellular carcinoma (HCC) treated with Transarterial chemoembolization (TACE). Cancer Imaging 2021; 21:49. [PMID: 34384496 PMCID: PMC8359085 DOI: 10.1186/s40644-021-00418-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background To evaluate the application of Arterial Enhancement Fraction (AEF) texture features in predicting the tumor response in Hepatocellular Carcinoma (HCC) treated with Transarterial Chemoembolization (TACE) by means of texture analysis. Methods HCC patients treated with TACE in Shengjing Hospital of China Medical University from June 2018 to December 2019 were retrospectively enrolled in this study. Pre-TACE Contrast Enhanced Computed Tomography (CECT) and imaging follow-up within 6 months were both acquired. The tumor responses were categorized according to the modified RECIST (mRECIST) criteria. Based on the CECT images, Region of Interest (ROI) of HCC lesion was drawn, the AEF calculation and texture analysis upon AEF values in the ROI were performed using CT-Kinetics (C.K., GE Healthcare, China). A total of 32 AEF texture features were extracted and compared between different tumor response groups. Multi-variate logistic regression was performed using certain AEF features to build the differential models to predict the tumor response. The Receiver Operator Characteristic (ROC) analysis was implemented to assess the discriminative performance of these models. Results Forty-five patients were finally enrolled in the study. Eight AEF texture features showed significant distinction between Improved and Un-improved patients (p < 0.05). In multi-variate logistic regression, 9 AEF texture features were applied into modeling to predict “Improved” outcome, and 4 AEF texture features were applied into modeling to predict “Un-worsened” outcome. The Area Under Curve (AUC), diagnostic accuracy, sensitivity, and specificity of the two models were 0.941, 0.911, 1.000, 0.826, and 0.824, 0.711, 0.581, 1.000, respectively. Conclusions Certain AEF heterogeneous features of HCC could possibly be utilized to predict the tumor response to TACE treatment.
Collapse
Affiliation(s)
- Xiaonan Mao
- Department of Radiology, ShengJing hospital of China Medical University, 12# floor at 1# building, 39 Huaxiang Road, Shenyang City, 110000, Liaoning Province, China
| | - Yan Guo
- GE Healthcare (China), Shanghai, China
| | - Feng Wen
- Department of Radiology, ShengJing hospital of China Medical University, 12# floor at 1# building, 39 Huaxiang Road, Shenyang City, 110000, Liaoning Province, China
| | - Hongyuan Liang
- Department of Radiology, ShengJing hospital of China Medical University, 12# floor at 1# building, 39 Huaxiang Road, Shenyang City, 110000, Liaoning Province, China
| | - Wei Sun
- Department of Radiology, ShengJing hospital of China Medical University, 12# floor at 1# building, 39 Huaxiang Road, Shenyang City, 110000, Liaoning Province, China
| | - Zaiming Lu
- Department of Radiology, ShengJing hospital of China Medical University, 12# floor at 1# building, 39 Huaxiang Road, Shenyang City, 110000, Liaoning Province, China.
| |
Collapse
|
3
|
Miller JP, Ramaswamy R, Akinwande O. Using principal component analysis for the prediction of tumor response to transarterial chemoembolization. Abdom Radiol (NY) 2019; 44:2594-2601. [PMID: 31004201 DOI: 10.1007/s00261-019-01982-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To quantitate the tumor blush of hepatocellular carcinoma (HCC) at the time of transarterial chemoembolization (TACE) using principal component analysis (PCA), and to correlate the quantitated tumor blush to response to therapy. MATERIALS AND METHODS In this proof-of-concept study, 27 primary HCC tumors in 25 patients (18 men, 7 women; mean age 66 years ± 9) were analyzed. We conducted a retrospective analysis of TACE procedures that were performed during March through July of 2017. Digital subtraction angiography (DSA) was combined with PCA to condense spatial and temporal information into a single image. The tumor and liver contrast enhancements were calculated, and the ratio was used to determine the relative vascular enhancement of the tumor. Tumor response to therapy was determined at 1-month post procedure. RESULTS Using PCA-generated fluoroscopic imaging (PCA-FI), we quantitated the tumor blush and assigned a vascular enhancement value (VEV) to each tumor. Tumors that responded to treatment (N = 12) had statistically higher VEVs compared with the nonresponders (N = 15), with a mean value of 0.96 ± 0.455 vs. 0.57 ± 0.309, (p = 0.013). CONCLUSIONS We developed a method for quantitating tumor blush using routine angiographic images. The VEVs calculated using these images may allow for the prediction of tumor response to therapy. This pilot study suggests that there is a correlation between tumor blush intensity and tumor response.
Collapse
Affiliation(s)
- Jessica P Miller
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| | - Raja Ramaswamy
- Department of Interventional Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA
| | - Olaguoke Akinwande
- Department of Interventional Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO, 63110, USA
| |
Collapse
|
4
|
Navin PJ, Venkatesh SK. Hepatocellular Carcinoma: State of the Art Imaging and Recent Advances. J Clin Transl Hepatol 2019; 7:72-85. [PMID: 30944823 PMCID: PMC6441649 DOI: 10.14218/jcth.2018.00032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing, with this trend expected to continue to the year 2030. Hepatocarcinogenesis follows a predictable course, which makes adequate identification and surveillance of at-risk individuals central to a successful outcome. Moreover, imaging is central to this surveillance, and ultimately to diagnosis and management. Many liver study groups throughout Asia, North America and Europe advocate a surveillance program for at-risk individuals to allow early identification of HCC. Ultrasound is the most commonly utilized imaging modality. Many societies offer guidelines on how to diagnose HCC. The Liver Image Reporting and Data System (LIRADS) was introduced to standardize the acquisition, interpretation, reporting and data collection of HCC cases. The LIRADS advocates diagnosis using multiphase computed tomography or magnetic resonance imaging (MRI) imaging. The 2017 version also introduces contrast-enhanced ultrasound as a novel approach to diagnosis. Indeed, imaging techniques have evolved to improve diagnostic accuracy and characterization of HCC lesions. Newer techniques, such as T1 mapping, intravoxel incoherent motion analysis and textural analysis, assess specific characteristics that may help grade the tumor and guide management, allowing for a more personalized approach to patient care. This review aims to analyze the utility of imaging in the surveillance and diagnosis of HCC and to assess novel techniques which may increase the accuracy of imaging and determine optimal treatment strategies.
Collapse
Affiliation(s)
| | - Sudhakar K. Venkatesh
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- *Correspondence to: Sudhakar K. Venkatesh, Mayo Clinic, Rochester, 200 1 Street, Rochester MN 55905, USA. Tel: +1-507-284-1728, Fax: +1-507-284-2405, E-mail:
| |
Collapse
|
5
|
Bayle M, Clerc-Urmès I, Ayav A, Bronowicki JP, Petit I, Orry X, Laurent V. Computed tomographic perfusion with 160-mm coverage: comparative analysis of hepatocellular carcinoma treated by two transarterial chemoembolization courses relative to magnetic resonance imaging findings. Abdom Radiol (NY) 2019; 44:85-94. [PMID: 30054686 DOI: 10.1007/s00261-018-1714-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The aim of this study was to assess hepatocellular carcinoma (HCC) response with CT perfusion parameters before and after two transarterial chemo embolization (TACE) courses compared with MRI, and to search for predictive factors of response. METHODS 37 lesions (19 patients) were included between October 2015 and September 2017, based on the Barcelona Clinic Liver Cancer guidelines. CT perfusion with 160-mm coverage and MRI were performed before and after the first TACE course, and after the second TACE course. Quantitative perfusion parameters were compared to the response assessed with MRI using mRECIST criteria, defining response groups: complete response (CR), partial response (PR), no response (NR), response (including CR and PR), no complete response (NCR, including PR and NR). RESULTS Pre-TACE blood flow (BF) and hepatic arterial blood flow (HABF) were significantly higher in lesions with post-TACE 1 CR than in those with NCR (BF: 118.8 vs. 76.3 mL/100 g/min, p = 0.0231; HABF: 76 vs. 44.2 mL/100 g/min, p = 0.0112). Pre-TACE time to peak (TTP) and mean transit time (MTT) were significantly lower in lesions with post-TACE 2 response than in those with NR (TTP: 31.5 vs. 46.1 s, p = 0.0313; MTT: 15.8 vs. 22.8 s, p = 0.0204). Post-TACE 1 and post-TACE 2 perfusion parameters did not exhibit any statistically significant differences relative to MRI response. CONCLUSION Our study did not find, after a first TACE course, perfusion parameters associated with a response to a second TACE course. However, baseline perfusion parameters analysis could lead to better therapeutic management of HCC by targeting lesions likely to respond well to TACE courses.
Collapse
Affiliation(s)
- Matthieu Bayle
- Department of Radiology, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France.
| | | | - Ahmet Ayav
- Department of HBP Surgery, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, 54500, Vandoeuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Université de Lorraine, Faculté de Médecine, 54500, Vandoeuvre-lès-Nancy, France
- Department of Hepato-gastroenterology, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France
- INSERM, U954, Vandoeuvre-lès-Nancy, France
| | - Isabelle Petit
- Department of Radiology, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France
| | - Xavier Orry
- Department of Radiology, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France
| | - Valérie Laurent
- Department of Radiology, CHRU Nancy, Brabois Adults Hospital, 54500, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, Faculté de Médecine, 54500, Vandoeuvre-lès-Nancy, France
- INSERM, U947, IADI, 54000, Vandoeuvre-lès-Nancy, France
| |
Collapse
|