1
|
Yang P, Wu J, Liu M, Zheng Y, Zhao X, Mao Y. Preoperative CT-based radiomics and deep learning model for predicting risk stratification of gastric gastrointestinal stromal tumors. Med Phys 2024; 51:7257-7268. [PMID: 38935330 DOI: 10.1002/mp.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Gastrointestinal stromal tumors (GISTs) are clinically heterogeneous with various malignant potential in different individuals. It is crucial to explore a reliable method for preoperative risk stratification of gastric GISTs noninvasively. PURPOSE To establish and evaluate a machine learning model using the combination of computed tomography (CT) morphology, radiomics, and deep learning features to predict the risk stratification of primary gastric GISTs preoperatively. METHODS The 193 gastric GISTs lesions were randomly divided into training set, validation set, and test set in a ratio of 6:2:2. The qualitative and quantitative CT morphological features were assessed by two radiologists. The tumors were segmented manually, and then radiomic features were extracted using PyRadiomics and the deep learning features were extracted using pre-trained Resnet50 from arterial phase and venous phase CT images, respectively. Pearson correlation analysis and recursive feature elimination were used for feature selection. Support vector machines were employed to build a classifier for predicting the risk stratification of GISTs. This study compared the performance of models using different pre-trained convolutional neural networks (CNNs) to extract deep features for classification, as well as the performance of modeling features from single-phase and dual-phase images. The arterial phase, venous phase and dual-phase machine learning models were built, respectively, and the morphological features were added to the dual-phase machine learning model to construct a combined model. Receiver operating characteristic (ROC) curves were used to evaluate the efficacy of each model. The clinical application value of the combined model was determined through the decision curve analysis (DCA) and the net reclassification index (NRI) was analyzed. RESULTS The area under the curve (AUC) of the dual-phase machine learning model was 0.876, which was higher than that of the arterial phase model or venous phase model (0.813, 0.838, respectively). The combined model had best predictive performance than the above models with an AUC of 0.941 (95% CI: 0.887-0.974) (p = 0.012, Delong test). DCA demonstrated that the combined model had good clinical application value with an NRI of 0.575 (95% CI: 0.357-0.891). CONCLUSION In this study, we established a combined model that incorporated dual-phase morphology, radiomics, and deep learning characteristics, which can be used to predict the preoperative risk stratification of gastric GISTs.
Collapse
Affiliation(s)
- Ping Yang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiamei Wu
- Department of Radiology, Chongqing Dongnan Hospital, Chongqing, China
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofang Zhao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Mao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Rengo M, Onori A, Caruso D, Bellini D, Carbonetti F, De Santis D, Vicini S, Zerunian M, Iannicelli E, Carbone I, Laghi A. Development and Validation of Artificial-Intelligence-Based Radiomics Model Using Computed Tomography Features for Preoperative Risk Stratification of Gastrointestinal Stromal Tumors. J Pers Med 2023; 13:jpm13050717. [PMID: 37240887 DOI: 10.3390/jpm13050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND preoperative risk assessment of gastrointestinal stromal tumors (GISTS) is required for optimal and personalized treatment planning. Radiomics features are promising tools to predict risk assessment. The purpose of this study is to develop and validate an artificial intelligence classification algorithm, based on CT features, to define GIST's prognosis as determined by the Miettinen classification. METHODS patients with histological diagnosis of GIST and CT studies were retrospectively enrolled. Eight morphologic and 30 texture CT features were extracted from each tumor and combined to obtain three models (morphologic, texture and combined). Data were analyzed using a machine learning classification (WEKA). For each classification process, sensitivity, specificity, accuracy and area under the curve were evaluated. Inter- and intra-reader agreement were also calculated. RESULTS 52 patients were evaluated. In the validation population, highest performances were obtained by the combined model (SE 85.7%, SP 90.9%, ACC 88.8%, and AUC 0.954) followed by the morphologic (SE 66.6%, SP 81.8%, ACC 76.4%, and AUC 0.742) and texture (SE 50%, SP 72.7%, ACC 64.7%, and AUC 0.613) models. Reproducibility was high of all manual evaluations. CONCLUSIONS the AI-based radiomics model using a CT feature demonstrates good predictive performance for preoperative risk stratification of GISTs.
Collapse
Affiliation(s)
- Marco Rengo
- Department of Medical-Surgical Sciences and Biotechnologies, Academic Diagnostic Imaging Division, I.C.O.T. Hospital, University of Rome Sapienza, Via F. Faggiana 1668, 04100 Latina, Italy
| | - Alessandro Onori
- Department of Radiological, Oncological and Pathological Sciences, Academic Diagnostic Imaging Division, I.C.O.T. Hospital, University of Rome Sapienza, Via F. Faggiana 1668, 04100 Latina, Italy
| | - Damiano Caruso
- Department of Surgical and Medical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, University of Rome Sapienza, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Davide Bellini
- Department of Medical-Surgical Sciences and Biotechnologies, Academic Diagnostic Imaging Division, I.C.O.T. Hospital, University of Rome Sapienza, Via F. Faggiana 1668, 04100 Latina, Italy
| | - Francesco Carbonetti
- Radiology Unit, Sant'Eugenio Hospital, Piazzale dell'Umanesimo 10, 00144 Rome, Italy
| | - Domenico De Santis
- Department of Surgical and Medical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, University of Rome Sapienza, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Simone Vicini
- Department of Medical-Surgical Sciences and Biotechnologies, Academic Diagnostic Imaging Division, I.C.O.T. Hospital, University of Rome Sapienza, Via F. Faggiana 1668, 04100 Latina, Italy
| | - Marta Zerunian
- Department of Surgical and Medical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, University of Rome Sapienza, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Elsa Iannicelli
- Department of Surgical and Medical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, University of Rome Sapienza, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Iacopo Carbone
- Department of Radiological, Oncological and Pathological Sciences, Academic Diagnostic Imaging Division, I.C.O.T. Hospital, University of Rome Sapienza, Via F. Faggiana 1668, 04100 Latina, Italy
| | - Andrea Laghi
- Department of Surgical and Medical Sciences and Translational Medicine, Radiology Unit, Sant'Andrea University Hospital, University of Rome Sapienza, Via di Grottarossa 1035, 00189 Rome, Italy
| |
Collapse
|
3
|
Hamed H, Wahab MA, Elmahdy Y, El-Wahab RMA, El-Magd ESA. Gastrointestinal stromal tumors of the small intestine: the challenge of diagnosis and the outcome of management. World J Surg Oncol 2023; 21:85. [PMID: 36894972 PMCID: PMC9996990 DOI: 10.1186/s12957-023-02968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
PURPOSES Gastrointestinal stromal tumor (GIST) is a rare small intestinal tumor. Most patients usually report long-period complaints due to difficult diagnoses. A high grade of suspicion is required for early diagnosis and initiation of the proper management. METHODS A retrospective study of all patients with small intestinal GIST who were operated in the period between January 2008 and May 2021 at Mansoura University Gastrointestinal Surgical Center (GIST). RESULTS Thirty-four patients were included in the study with a mean age of 58.15 years (± 12.65) with a male to female ratio of 1.3:1. The mean duration between onset of symptoms and diagnosis was 4.62 years (± 2.34). Diagnosis of a small intestinal lesion was accomplished through abdominal computed tomography (CT) in 19 patients (55.9%). The mean size of the tumor was 8.76 cm (± 7.76) ranging from 1.5 to 35 cm. The lesion was of ileal origin in 20 cases (58.8%) and jejunal in 14 cases (41.2%). During the scheduled follow-up period, tumor recurrence occurred in one patient (2.9%). No mortality was encountered. CONCLUSION Diagnosis of a small bowel GISTs requires a high grade of suspicion. Implementing new diagnostic techniques like angiography, capsule endoscopy, and enteroscopy should be encouraged when suspecting these lesions. Surgical resection is always associated with an excellent postoperative recovery profile and very low recurrence rates.
Collapse
Affiliation(s)
- Hosam Hamed
- Department of General Surgery, Faculty of Medicine, Gastrointestinal Surgical Center GISC, Mansoura University, Gehan Street, Al Dakahlia Governorate, 35511, Mansoura, Egypt
| | - Mohamed Abdel Wahab
- Department of General Surgery, Faculty of Medicine, Gastrointestinal Surgical Center GISC, Mansoura University, Gehan Street, Al Dakahlia Governorate, 35511, Mansoura, Egypt
| | - Youssif Elmahdy
- Department of General Surgery, Faculty of Medicine, Gastrointestinal Surgical Center GISC, Mansoura University, Gehan Street, Al Dakahlia Governorate, 35511, Mansoura, Egypt
| | - Rihame M Abd El-Wahab
- Department of General Surgery, Faculty of Medicine, Gastrointestinal Surgical Center GISC, Mansoura University, Gehan Street, Al Dakahlia Governorate, 35511, Mansoura, Egypt
| | - El-Sayed Abou El-Magd
- Department of General Surgery, Faculty of Medicine, Gastrointestinal Surgical Center GISC, Mansoura University, Gehan Street, Al Dakahlia Governorate, 35511, Mansoura, Egypt.
| |
Collapse
|
4
|
Tabari A, Chan SM, Omar OMF, Iqbal SI, Gee MS, Daye D. Role of Machine Learning in Precision Oncology: Applications in Gastrointestinal Cancers. Cancers (Basel) 2022; 15:cancers15010063. [PMID: 36612061 PMCID: PMC9817513 DOI: 10.3390/cancers15010063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancers, consisting of a wide spectrum of pathologies, have become a prominent health issue globally. Despite medical imaging playing a crucial role in the clinical workflow of cancers, standard evaluation of different imaging modalities may provide limited information. Accurate tumor detection, characterization, and monitoring remain a challenge. Progress in quantitative imaging analysis techniques resulted in "radiomics", a promising methodical tool that helps to personalize diagnosis and treatment optimization. Radiomics, a sub-field of computer vision analysis, is a bourgeoning area of interest, especially in this era of precision medicine. In the field of oncology, radiomics has been described as a tool to aid in the diagnosis, classification, and categorization of malignancies and to predict outcomes using various endpoints. In addition, machine learning is a technique for analyzing and predicting by learning from sample data, finding patterns in it, and applying it to new data. Machine learning has been increasingly applied in this field, where it is being studied in image diagnosis. This review assesses the current landscape of radiomics and methodological processes in GI cancers (including gastric, colorectal, liver, pancreatic, neuroendocrine, GI stromal, and rectal cancers). We explain in a stepwise fashion the process from data acquisition and curation to segmentation and feature extraction. Furthermore, the applications of radiomics for diagnosis, staging, assessment of tumor prognosis and treatment response according to different GI cancer types are explored. Finally, we discussed the existing challenges and limitations of radiomics in abdominal cancers and investigate future opportunities.
Collapse
Affiliation(s)
- Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| | - Shin Mei Chan
- Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
| | - Omar Mustafa Fathy Omar
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Shams I. Iqbal
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Michael S. Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Wang Y, Wang Y, Ren J, Jia L, Ma L, Yin X, Yang F, Gao BL. Malignancy risk of gastrointestinal stromal tumors evaluated with noninvasive radiomics: A multi-center study. Front Oncol 2022; 12:966743. [PMID: 36052224 PMCID: PMC9425090 DOI: 10.3389/fonc.2022.966743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose This study was to investigate the diagnostic efficacy of radiomics models based on the enhanced CT images in differentiating the malignant risk of gastrointestinal stromal tumors (GIST) in comparison with the clinical indicators model and traditional CT diagnostic criteria. Materials and methods A total of 342 patients with GISTs confirmed histopathologically were enrolled from five medical centers. Data of patients wrom two centers comprised the training group (n=196), and data from the remaining three centers constituted the validation group (n=146). After CT image segmentation and feature extraction and selection, the arterial phase model and venous phase model were established. The maximum diameter of the tumor and internal necrosis were used to establish a clinical indicators model. The traditional CT diagnostic criteria were established for the classification of malignant potential of tumor. The performance of the four models was assessed using the receiver operating characteristics curve. Reuslts In the training group, the area under the curves(AUCs) of the arterial phase model, venous phase model, clinical indicators model, and traditional CT diagnostic criteria were 0.930 [95% confidence interval (CI): 0.895-0.965), 0.933 (95%CI 0.898-0.967), 0.917 (95%CI 0.872-0.961) and 0.782 (95%CI 0.717-0.848), respectively. In the validation group, the AUCs of the models were 0.960 (95%CI 0.930-0.990), 0.961 (95% CI 0.930-0.992), 0.922 (95%CI 0.884-0.960) and 0.768 (95%CI 0.692-0.844), respectively. No significant difference was detected in the AUC between the arterial phase model, venous phase model, and clinical indicators model by the DeLong test, whereas a significant difference was observed between the traditional CT diagnostic criteria and the other three models. Conclusion The radiomics model using the morphological features of GISTs play a significant role in tumor risk stratification and can provide a reference for clinical diagnosis and treatment plan.
Collapse
Affiliation(s)
- Yun Wang
- Affiliated Hospital of Hebei University/Hebei University (Clinical Medical College), Baoding, China
| | - Yurui Wang
- Tangshan Gongren Hospital, Tangshan, China
| | - Jialiang Ren
- General Electric Pharmaceutical Co., Ltd, Shanghai, China
| | - Linyi Jia
- Xingtai People’s Hospital, Xingtai, China
| | - Luyao Ma
- Affiliated Hospital of Hebei University/Hebei University (Clinical Medical College), Baoding, China
| | - Xiaoping Yin
- Affiliated Hospital of Hebei University/Hebei University (Clinical Medical College), Baoding, China
- *Correspondence: Xiaoping Yin, ; Fei Yang,
| | - Fei Yang
- Medical Imaging Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
- *Correspondence: Xiaoping Yin, ; Fei Yang,
| | - Bu-Lang Gao
- Affiliated Hospital of Hebei University/Hebei University (Clinical Medical College), Baoding, China
| |
Collapse
|
6
|
Inoue A, Ota S, Yamasaki M, Batsaikhan B, Furukawa A, Watanabe Y. Gastrointestinal stromal tumors: a comprehensive radiological review. Jpn J Radiol 2022; 40:1105-1120. [PMID: 35809209 DOI: 10.1007/s11604-022-01305-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Gastrointestinal stromal tumors (GISTs) originating from the interstitial cells of Cajal in the muscularis propria are the most common mesenchymal tumor of the gastrointestinal tract. Multiple modalities, including computed tomography (CT), magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography, ultrasonography, digital subtraction angiography, and endoscopy, have been performed to evaluate GISTs. CT is most frequently used for diagnosis, staging, surveillance, and response monitoring during molecularly targeted therapy in clinical practice. The diagnosis of GISTs is sometimes challenging because of the diverse imaging findings, such as anatomical location (esophagus, stomach, duodenum, small bowel, colorectum, appendix, and peritoneum), growth pattern, and enhancement pattern as well as the presence of necrosis, calcification, ulceration, early venous return, and metastasis. Imaging findings of GISTs treated with antineoplastic agents are quite different from those of other neoplasms (e.g. adenocarcinomas) because only subtle changes in size are seen even in responsive lesions. Furthermore, the recurrence pattern of GISTs is different from that of other neoplasms. This review discusses the advantages and disadvantages of each imaging modality, describes imaging findings obtained before and after treatment, presents a few cases of complicated GISTs, and discusses recent investigations performed using CT and MRI to predict histological risk grade, gene mutations, and patient outcomes.
Collapse
Affiliation(s)
- Akitoshi Inoue
- Department of Radiology, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan. .,Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Shinichi Ota
- Department of Radiology, Nagahama Red Cross Hospital, Shiga, Japan
| | - Michio Yamasaki
- Department of Radiology, Kohka Public Hospital, Shiga, Japan
| | - Bolorkhand Batsaikhan
- Graduate School of Human Health Sciences, Department of Radiological Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akira Furukawa
- Graduate School of Human Health Sciences, Department of Radiological Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Seta, Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
7
|
Zhuang H, Bao A, Tan Y, Wang H, Xie Q, Qiu M, Xiong W, Liao F. Application and prospect of artificial intelligence in digestive endoscopy. Expert Rev Gastroenterol Hepatol 2022; 16:21-31. [PMID: 34937459 DOI: 10.1080/17474124.2022.2020646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION With the progress of science and technology, artificial intelligence represented by deep learning has gradually begun to be applied in the medical field. Artificial intelligence has been applied to benign gastrointestinal lesions, tumors, early cancer, inflammatory bowel disease, gallbladder, pancreas, and other diseases. This review summarizes the latest research results on artificial intelligence in digestive endoscopy and discusses the prospect of artificial intelligence in digestive system diseases. AREAS COVERED We retrieved relevant documents on artificial intelligence in digestive tract diseases from PubMed and Medline. This review elaborates on the knowledge of computer-aided diagnosis in digestive endoscopy. EXPERT OPINION Artificial intelligence significantly improves diagnostic accuracy, reduces physicians' workload, and provides a shred of evidence for clinical diagnosis and treatment. Shortly, artificial intelligence will have high application value in the field of medicine.
Collapse
Affiliation(s)
- Huangming Zhuang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Anyu Bao
- Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yulin Tan
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hanyu Wang
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingfang Xie
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Meiqi Qiu
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wanli Xiong
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Kang B, Yuan X, Wang H, Qin S, Song X, Yu X, Zhang S, Sun C, Zhou Q, Wei Y, Shi F, Yang S, Wang X. Preoperative CT-Based Deep Learning Model for Predicting Risk Stratification in Patients With Gastrointestinal Stromal Tumors. Front Oncol 2021; 11:750875. [PMID: 34631589 PMCID: PMC8496403 DOI: 10.3389/fonc.2021.750875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Objective To develop and evaluate a deep learning model (DLM) for predicting the risk stratification of gastrointestinal stromal tumors (GISTs). Methods Preoperative contrast-enhanced CT images of 733 patients with GISTs were retrospectively obtained from two centers between January 2011 and June 2020. The datasets were split into training (n = 241), testing (n = 104), and external validation cohorts (n = 388). A DLM for predicting the risk stratification of GISTs was developed using a convolutional neural network and evaluated in the testing and external validation cohorts. The performance of the DLM was compared with that of radiomics model by using the area under the receiver operating characteristic curves (AUROCs) and the Obuchowski index. The attention area of the DLM was visualized as a heatmap by gradient-weighted class activation mapping. Results In the testing cohort, the DLM had AUROCs of 0.90 (95% confidence interval [CI]: 0.84, 0.96), 0.80 (95% CI: 0.72, 0.88), and 0.89 (95% CI: 0.83, 0.95) for low-malignant, intermediate-malignant, and high-malignant GISTs, respectively. In the external validation cohort, the AUROCs of the DLM were 0.87 (95% CI: 0.83, 0.91), 0.64 (95% CI: 0.60, 0.68), and 0.85 (95% CI: 0.81, 0.89) for low-malignant, intermediate-malignant, and high-malignant GISTs, respectively. The DLM (Obuchowski index: training, 0.84; external validation, 0.79) outperformed the radiomics model (Obuchowski index: training, 0.77; external validation, 0.77) for predicting risk stratification of GISTs. The relevant subregions were successfully highlighted with attention heatmap on the CT images for further clinical review. Conclusion The DLM showed good performance for predicting the risk stratification of GISTs using CT images and achieved better performance than that of radiomics model.
Collapse
Affiliation(s)
- Bing Kang
- Cheeloo College of Medicine, School of Medicine, Shandong University, Jinan, China.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xianshun Yuan
- Cheeloo College of Medicine, School of Medicine, Shandong University, Jinan, China.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hexiang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Songnan Qin
- Cheeloo College of Medicine, School of Medicine, Shandong University, Jinan, China.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xuelin Song
- Department of Radiology, Hospital of Traditional Chinese Medicine of Liaocheng City, Liaocheng, China
| | - Xinxin Yu
- Cheeloo College of Medicine, School of Medicine, Shandong University, Jinan, China.,Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shuai Zhang
- School of Medicine, Shandong First Medical University, Jinan, China
| | - Cong Sun
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qing Zhou
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Ying Wei
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Shifeng Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
9
|
Yang Y, Li YX, Yao RQ, Du XH, Ren C. Artificial intelligence in small intestinal diseases: Application and prospects. World J Gastroenterol 2021; 27:3734-3747. [PMID: 34321840 PMCID: PMC8291013 DOI: 10.3748/wjg.v27.i25.3734] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/09/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
The small intestine is located in the middle of the gastrointestinal tract, so small intestinal diseases are more difficult to diagnose than other gastrointestinal diseases. However, with the extensive application of artificial intelligence in the field of small intestinal diseases, with its efficient learning capacities and computational power, artificial intelligence plays an important role in the auxiliary diagnosis and prognosis prediction based on the capsule endoscopy and other examination methods, which improves the accuracy of diagnosis and prediction and reduces the workload of doctors. In this review, a comprehensive retrieval was performed on articles published up to October 2020 from PubMed and other databases. Thereby the application status of artificial intelligence in small intestinal diseases was systematically introduced, and the challenges and prospects in this field were also analyzed.
Collapse
Affiliation(s)
- Yu Yang
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yu-Xuan Li
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Ren-Qi Yao
- Trauma Research Center, The Fourth Medical Center and Medical Innovation Research Division of the Chinese People‘s Liberation Army General Hospital, Beijing 100048, China
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xiao-Hui Du
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Chao Ren
- Trauma Research Center, The Fourth Medical Center and Medical Innovation Research Division of the Chinese People‘s Liberation Army General Hospital, Beijing 100048, China
| |
Collapse
|
10
|
CT Texture Analysis for Preoperative Identification of Lymphoma from Other Types of Primary Small Bowel Malignancies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5519144. [PMID: 33884262 PMCID: PMC8041543 DOI: 10.1155/2021/5519144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 01/08/2023]
Abstract
Objectives To explore the application of computed tomography (CT) texture analysis in differentiating lymphomas from other malignancies of the small bowel. Methods Arterial and venous CT images of 87 patients with small bowel malignancies were retrospectively analyzed. The subjective radiological features were evaluated by the two radiologists with a consensus agreement. The region of interest (ROI) was manually delineated along the edge of the lesion on the largest slice, and a total of 402 quantified features were extracted automatically from AK software. The inter- and intrareader reproducibility was evaluated to select highly reproductive features. The univariate analysis and minimum redundancy maximum relevance (mRMR) algorithm were applied to select the feature subsets with high correlation and low redundancy. The multivariate logistic regression analysis based on texture features and radiological features was employed to construct predictive models for identification of small bowel lymphoma. The diagnostic performance of multivariate models was evaluated using receiver operating characteristic (ROC) curve analysis. Results The clinical data (age, melena, and abdominal pain) and radiological features (location, shape, margin, dilated lumen, intussusception, enhancement level, adjacent peritoneum, and locoregional lymph node) differed significantly between the nonlymphoma group and lymphoma group (p < 0.05). The areas under the ROC curve of the clinical model, arterial texture model, and venous texture model were 0.93, 0.92, and 0.87, respectively. Conclusion The arterial texture model showed a great diagnostic value and fitted performance in preoperatively discriminating lymphoma from nonlymphoma of the small bowel.
Collapse
|
11
|
Cannella R, La Grutta L, Midiri M, Bartolotta TV. New advances in radiomics of gastrointestinal stromal tumors. World J Gastroenterol 2020; 26:4729-4738. [PMID: 32921953 PMCID: PMC7459199 DOI: 10.3748/wjg.v26.i32.4729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are uncommon neoplasms of the gastrointestinal tract with peculiar clinical, genetic, and imaging characteristics. Preoperative knowledge of risk stratification and mutational status is crucial to guide the appropriate patients’ treatment. Predicting the clinical behavior and biological aggressiveness of GISTs based on conventional computed tomography (CT) and magnetic resonance imaging (MRI) evaluation is challenging, unless the lesions have already metastasized at the time of diagnosis. Radiomics is emerging as a promising tool for the quantification of lesion heterogeneity on radiological images, extracting additional data that cannot be assessed by visual analysis. Radiomics applications have been explored for the differential diagnosis of GISTs from other gastrointestinal neoplasms, risk stratification and prediction of prognosis after surgical resection, and evaluation of mutational status in GISTs. The published researches on GISTs radiomics have obtained excellent performance of derived radiomics models on CT and MRI. However, lack of standardization and differences in study methodology challenge the application of radiomics in clinical practice. The purpose of this review is to describe the new advances of radiomics applied to CT and MRI for the evaluation of gastrointestinal stromal tumors, discuss the potential clinical applications that may impact patients’ management, report limitations of current radiomics studies, and future directions.
Collapse
Affiliation(s)
- Roberto Cannella
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Ludovico La Grutta
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Massimo Midiri
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Tommaso Vincenzo Bartolotta
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
- Department of Radiology, Fondazione Istituto Giuseppe Giglio, Ct.da Pietrapollastra, Cefalù (Palermo) 90015, Italy
| |
Collapse
|
12
|
Peng F, Liu Y. Gastrointestinal Stromal Tumors of the Small Intestine: Progress in Diagnosis and Treatment Research. Cancer Manag Res 2020; 12:3877-3889. [PMID: 32547224 PMCID: PMC7261658 DOI: 10.2147/cmar.s238227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the diagnosis and treatment of gastrointestinal stromal tumors (GISTs) of the small intestine have been a hot topic due to their rarity and non-specific clinical manifestations. With the development of gene and imaging technology, surgery, and molecular targeted drugs, the diagnosis and treatment of GISTs have achieved great success. For a long time, radical resection was prioritized to treat GISTs of the small intestine. At present, preoperative tumor staging is a novel treatment for unresectable malignant tumors. In addition, karyokinesis exponent is the sole independent predictor of progression-free survival of GISTs. The DNA, miRNA, and protein of exosomes have also been found to be biomarkers with prognostic implications. The research on the treatment of GISTs has become a focus in the era of precision medicine, ushering in the use of standardized, normalized, and individualized treatment.
Collapse
Affiliation(s)
- Fangxing Peng
- Gastrointestinal Surgery, No. 2 Affiliated Hospital of North Sichuan Medical College, Mianyang, Sichuan Province 621000, People's Republic of China.,Gastrointestinal Surgery, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan Province 621000, People's Republic of China
| | - Yao Liu
- Gastrointestinal Surgery, No. 2 Affiliated Hospital of North Sichuan Medical College, Mianyang, Sichuan Province 621000, People's Republic of China.,Gastrointestinal Surgery, Sichuan Mianyang 404 Hospital, Mianyang, Sichuan Province 621000, People's Republic of China
| |
Collapse
|
13
|
Yang CW, Liu XJ, Liu SY, Wan S, Ye Z, Song B. Current and Potential Applications of Artificial Intelligence in Gastrointestinal Stromal Tumor Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:6058159. [PMID: 33304203 PMCID: PMC7714601 DOI: 10.1155/2020/6058159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
The most common mesenchymal tumors are gastrointestinal stromal tumors (GISTs), which have malignant potential and can occur anywhere along the gastrointestinal system. Imaging methods are important and indispensable of GISTs in diagnosis, risk staging, therapy, and follow-up. The recommended imaging method for staging and follow-up is computed tomography (CT) according to current guidelines. Artificial intelligence (AI) applies and elaborates theses, procedures, modes, and utilization systems for simulating, enlarging, and stretching the intellectual capacity of humans. Recently, researchers have done a few studies to explore AI applications in GIST imaging. This article reviews the present AI studies in GISTs imaging, including preoperative diagnosis, risk stratification and prediction of prognosis, gene mutation, and targeted therapy response.
Collapse
Affiliation(s)
- Cai-Wei Yang
- 1 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xi-Jiao Liu
- 1 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Yun Liu
- 2GE Healthcare (China), Beijing 100176, China
| | - Shang Wan
- 1 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zheng Ye
- 1 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- 1 Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
14
|
Tu L, Hohenberger P, Allgayer H, Cao H. Standard Approach to Gastrointestinal Stromal Tumors - Differences between China and Europe. Visc Med 2018; 34:353-358. [PMID: 30498702 PMCID: PMC6257205 DOI: 10.1159/000494347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. With the considerable research and application of molecular-targeted therapy for GISTs in the last two decades, GISTs have become a model of multidisciplinary oncological treatment. Although Western clinical guidelines are available for GISTs, such as those by the European Society of Medical Oncology (ESMO), the clinical situations in China are different from those in European countries. There are distinct differences between the clinical practice, diagnostic methods, surgical approach, and availability of new targeted agents in China and those in Europe. This review summarizes the Chinese GIST consensus guidelines compared to the European ones, which may provide an optimal approach to the diagnosis and management of GIST patients.
Collapse
Affiliation(s)
- Lin Tu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peter Hohenberger
- Division of Surgical Oncology, Mannheim University Medical Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hui Cao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|