1
|
Xu L, Li F, Wu J, He L, Gao Z. The current status of early nursing for emergency pancreatitis and analysis of factors influencing prognosis: A retrospective study. Medicine (Baltimore) 2024; 103:e39662. [PMID: 39331915 PMCID: PMC11441950 DOI: 10.1097/md.0000000000039662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024] Open
Abstract
This study is to investigate the incidence of pain and the influencing factors of prognostic complications in early admission care of pancreatitis in the emergency department patients. This provides a basis for clinical nursing management and prognosis improvement. Hundred patients with acute pancreatitis admitted to the tertiary hospital between January 2021 and December 2023 were selected according to the inclusion and exclusion criteria. It collected basic baseline data and medical data of patients during admission, clarifies whether patients have complications, and analyzed the length of hospital stay. Comparing hospital stays >7 days with <7 days. A questionnaire on patient psychological status was collected, and single factor analysis was conducted on different prognostic factors. Binary logistic regression was used for single factor analysis, and P < .05 was considered statistically significant. The presence or absence of complications during treatment is the main criterion for determining the prognostic impact of pancreatitis in the emergency department patients. Among 100 patients, 26 (26%) had complications during hospitalization, 74 (74%) had no complications during hospitalization, and 64 (64%) had a stay of >7 days. There were statistically significant differences (P < .05) in smoking status and history of hypertension between the complication group and the non-complication group. In the comparison between the group with <7 days of hospitalization and the group with >7 days of hospitalization, age, education level, smoking status, and history of hyperlipidemia showed statistical significance (P < .05). The fasting days, BISAP score, first bowel movement time, C-reactive protein, blood urea nitrogen, albumin, duration of severe pain within 24 hours of admission, and duration of severe pain within 24 to 48 hours of admission were all statistically significant (P < .05). Pancreatitis in the emergency department patients are prone to exacerbation and prolonged pain during early hospitalization. In nursing, timely attention should be paid to the patient's pain issues, timely pain relief measures should be taken, and the occurrence of complications should be reduced, reducing the patient's hospitalization time. Meanwhile, it is necessary to constantly pay attention to changes in the patient's gastrointestinal function and experimental indicators.
Collapse
Affiliation(s)
- Lejuan Xu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fengxin Li
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiehua Wu
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Liang He
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhe Gao
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Nicoletti A, Paratore M, Vitale F, Negri M, Quero G, Esposto G, Mignini I, Alfieri S, Gasbarrini A, Zocco MA, Zileri Dal Verme L. Understanding the Conundrum of Pancreatic Cancer in the Omics Sciences Era. Int J Mol Sci 2024; 25:7623. [PMID: 39062863 PMCID: PMC11276793 DOI: 10.3390/ijms25147623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Pancreatic cancer (PC) is an increasing cause of cancer-related death, with a dismal prognosis caused by its aggressive biology, the lack of clinical symptoms in the early phases of the disease, and the inefficacy of treatments. PC is characterized by a complex tumor microenvironment. The interaction of its cellular components plays a crucial role in tumor development and progression, contributing to the alteration of metabolism and cellular hyperproliferation, as well as to metastatic evolution and abnormal tumor-associated immunity. Furthermore, in response to intrinsic oncogenic alterations and the influence of the tumor microenvironment, cancer cells undergo a complex oncogene-directed metabolic reprogramming that includes changes in glucose utilization, lipid and amino acid metabolism, redox balance, and activation of recycling and scavenging pathways. The advent of omics sciences is revolutionizing the comprehension of the pathogenetic conundrum of pancreatic carcinogenesis. In particular, metabolomics and genomics has led to a more precise classification of PC into subtypes that show different biological behaviors and responses to treatments. The identification of molecular targets through the pharmacogenomic approach may help to personalize treatments. Novel specific biomarkers have been discovered using proteomics and metabolomics analyses. Radiomics allows for an earlier diagnosis through the computational analysis of imaging. However, the complexity, high expertise required, and costs of the omics approach are the main limitations for its use in clinical practice at present. In addition, the studies of extracellular vesicles (EVs), the use of organoids, the understanding of host-microbiota interactions, and more recently the advent of artificial intelligence are helping to make further steps towards precision and personalized medicine. This present review summarizes the main evidence for the application of omics sciences to the study of PC and the identification of future perspectives.
Collapse
Affiliation(s)
- Alberto Nicoletti
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Mattia Paratore
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Federica Vitale
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Marcantonio Negri
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Giuseppe Quero
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (G.Q.); (S.A.)
| | - Giorgio Esposto
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Irene Mignini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Sergio Alfieri
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (G.Q.); (S.A.)
| | - Antonio Gasbarrini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Maria Assunta Zocco
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| | - Lorenzo Zileri Dal Verme
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.N.); (M.P.); (F.V.); (M.N.); (G.E.); (I.M.); (A.G.); (L.Z.D.V.)
| |
Collapse
|
3
|
Bette S, Canalini L, Feitelson LM, Woźnicki P, Risch F, Huber A, Decker JA, Tehlan K, Becker J, Wollny C, Scheurig-Münkler C, Wendler T, Schwarz F, Kroencke T. Radiomics-Based Machine Learning Model for Diagnosis of Acute Pancreatitis Using Computed Tomography. Diagnostics (Basel) 2024; 14:718. [PMID: 38611632 PMCID: PMC11011980 DOI: 10.3390/diagnostics14070718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In the early diagnostic workup of acute pancreatitis (AP), the role of contrast-enhanced CT is to establish the diagnosis in uncertain cases, assess severity, and detect potential complications like necrosis, fluid collections, bleeding or portal vein thrombosis. The value of texture analysis/radiomics of medical images has rapidly increased during the past decade, and the main focus has been on oncological imaging and tumor classification. Previous studies assessed the value of radiomics for differentiating between malignancies and inflammatory diseases of the pancreas as well as for prediction of AP severity. The aim of our study was to evaluate an automatic machine learning model for AP detection using radiomics analysis. Patients with abdominal pain and contrast-enhanced CT of the abdomen in an emergency setting were retrospectively included in this single-center study. The pancreas was automatically segmented using TotalSegmentator and radiomics features were extracted using PyRadiomics. We performed unsupervised hierarchical clustering and applied the random-forest based Boruta model to select the most important radiomics features. Important features and lipase levels were included in a logistic regression model with AP as the dependent variable. The model was established in a training cohort using fivefold cross-validation and applied to the test cohort (80/20 split). From a total of 1012 patients, 137 patients with AP and 138 patients without AP were included in the final study cohort. Feature selection confirmed 28 important features (mainly shape and first-order features) for the differentiation between AP and controls. The logistic regression model showed excellent diagnostic accuracy of radiomics features for the detection of AP, with an area under the curve (AUC) of 0.932. Using lipase levels only, an AUC of 0.946 was observed. Using both radiomics features and lipase levels, we showed an excellent AUC of 0.933 for the detection of AP. Automated segmentation of the pancreas and consecutive radiomics analysis almost achieved the high diagnostic accuracy of lipase levels, a well-established predictor of AP, and might be considered an additional diagnostic tool in unclear cases. This study provides scientific evidence that automated image analysis of the pancreas achieves comparable diagnostic accuracy to lipase levels and might therefore be used in the future in the rapidly growing era of AI-based image analysis.
Collapse
Affiliation(s)
- Stefanie Bette
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Luca Canalini
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Laura-Marie Feitelson
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Piotr Woźnicki
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany;
| | - Franka Risch
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Adrian Huber
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Josua A. Decker
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Kartikay Tehlan
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Judith Becker
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Claudia Wollny
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Christian Scheurig-Münkler
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
| | - Thomas Wendler
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
- Institute of Digital Health, University Hospital Augsburg, Faculty of Medicine, University of Augsburg, 86356 Neusaess, Germany
- Computer-Aided Medical Procedures and Augmented Reality, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching bei Muenchen, Germany
| | - Florian Schwarz
- Centre for Diagnostic Imaging and Interventional Therapy, Donau-Isar-Klinikum, 94469 Deggendorf, Germany;
| | - Thomas Kroencke
- Clinic for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, 86156 Augsburg, Germany; (S.B.); (L.C.); (L.-M.F.); (A.H.); (J.A.D.); (K.T.); (J.B.); (C.W.); (C.S.-M.); (T.W.)
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
4
|
Berbís MÁ, Godino FP, Rodríguez-Comas J, Nava E, García-Figueiras R, Baleato-González S, Luna A. Radiomics in CT and MR imaging of the liver and pancreas: tools with potential for clinical application. Abdom Radiol (NY) 2024; 49:322-340. [PMID: 37889265 DOI: 10.1007/s00261-023-04071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Radiomics allows the extraction of quantitative imaging features from clinical magnetic resonance imaging (MRI) and computerized tomography (CT) studies. The advantages of radiomics have primarily been exploited in oncological applications, including better characterization and staging of oncological lesions and prediction of patient outcomes and treatment response. The potential introduction of radiomics in the clinical setting requires the establishment of a standardized radiomics pipeline and a quality assurance program. Radiomics and texture analysis of the liver have improved the differentiation of hypervascular lesions such as adenomas, focal nodular hyperplasia, and hepatocellular carcinoma (HCC) during the arterial phase, and in the pretreatment determination of HCC prognostic factors (e.g., tumor grade, microvascular invasion, Ki-67 proliferation index). Radiomics of pancreatic CT and MR images has enhanced pancreatic ductal adenocarcinoma detection and its differentiation from pancreatic neuroendocrine tumors, mass-forming chronic pancreatitis, or autoimmune pancreatitis. Radiomics can further help to better characterize incidental pancreatic cystic lesions, accurately discriminating benign from malignant intrapancreatic mucinous neoplasms. Nonetheless, despite their encouraging results and exciting potential, these tools have yet to be implemented in the clinical setting. This non-systematic review will describe the essential steps in the implementation of the radiomics and feature extraction workflow from liver and pancreas CT and MRI studies for their potential clinical application. A succinct overview of reported radiomics applications in the liver and pancreas and the challenges and limitations of their implementation in the clinical setting is also discussed, concluding with a brief exploration of the future perspectives of radiomics in the gastroenterology field.
Collapse
Affiliation(s)
- M Álvaro Berbís
- Department of Radiology, HT Médica, San Juan de Dios Hospital, 14960, Córdoba, Spain.
- Department of Radiology, HT Médica, San Juan de Dios Hospital, Av. del Brillante, 106, 14012, Córdoba, Spain.
| | | | | | - Enrique Nava
- Department of Communications Engineering, University of Málaga, 29016, Málaga, Spain
| | - Roberto García-Figueiras
- Abdominal Imaging Section, University Clinical Hospital of Santiago, 15706, Santiago de Compostela, A Coruña, Spain
| | - Sandra Baleato-González
- Abdominal Imaging Section, University Clinical Hospital of Santiago, 15706, Santiago de Compostela, A Coruña, Spain
| | - Antonio Luna
- Department of Radiology, HT Médica, Clínica las Nieves, 23007, Jaén, Spain
| |
Collapse
|
5
|
Yang J, Huang J, Zhang Y, Zeng K, Liao M, Jiang Z, Bao W, Lu Q. Contrast-enhanced ultrasound and contrast-enhanced computed tomography for differentiating mass-forming pancreatitis from pancreatic ductal adenocarcinoma: a meta-analysis. Chin Med J (Engl) 2023; 136:2028-2036. [PMID: 36728948 PMCID: PMC10476799 DOI: 10.1097/cm9.0000000000002300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Patients with mass-forming pancreatitis (MFP) or pancreatic ductal adenocarcinoma (PDAC) presented similar clinical symptoms, but required different treatment approaches and had different survival outcomes. This meta-analysis aimed to compare the diagnostic performance of contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT) in differentiating MFP from PDAC. METHODS A literature search was performed in the PubMed, EMBASE (Ovid), Cochrane Library (CENTRAL), China National Knowledge Infrastructure (CNKI), Weipu (VIP), and WanFang databases to identify original studies published from inception to August 20, 2021. Studies reporting the diagnostic performances of CEUS and CECT for differentiating MFP from PDAC were included. The meta-analysis was performed with Stata 15.0 software. The outcomes included the pooled sensitivity, specificity, positive likelihood ratio (+LR), negative likelihood ratio (-LR), diagnostic odds ratio (DOR), and summary receiver operating characteristic (SROC) curves of CEUS and CECT. Meta-regression was conducted to investigate heterogeneity. Bayesian network meta-analysis was conducted to indirectly compare the overall diagnostic performance. RESULTS Twenty-six studies with 2115 pancreatic masses were included. The pooled sensitivity and specificity of CEUS for MFP were 82% (95% confidence interval [CI], 73%-88%; I2 = 0.00%) and 95% (95% CI, 90%-97%; I2 = 63.44%), respectively; the overall +LR, -LR, and DOR values were 15.12 (95% CI, 7.61-30.01), 0.19 (95% CI, 0.13-0.29), and 78.91 (95% CI, 30.94-201.27), respectively; and the area under the SROC curve (AUC) was 0.90 (95% CI, 0.87-92). However, the overall sensitivity and specificity of CECT were 81% (95% CI, 75-85%; I2 = 66.37%) and 94% (95% CI, 90-96%; I2 = 74.87%); the overall +LR, -LR, and DOR values were 12.91 (95% CI, 7.86-21.20), 0.21 (95% CI, 0.16-0.27), and 62.53 (95% CI, 34.45-113.51), respectively; and, the SROC AUC was 0.92 (95% CI, 0.90-0.94). The overall diagnostic accuracy of CEUS was comparable to that of CECT for the differential diagnosis of MFP and PDAC (relative DOR 1.26, 95% CI [0.42-3.83], P > 0.05). CONCLUSIONS CEUS and CECT have comparable diagnostic performance for differentiating MFP from PDAC, and should be considered as mutually complementary diagnostic tools for suspected focal pancreatic lesions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiayan Huang
- Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yonggang Zhang
- The Chinese Centre of Evidence-Based Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Keyu Zeng
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Liao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenpeng Jiang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wuyongga Bao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiang Lu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Lu J, Jiang N, Zhang Y, Li D. A CT based radiomics nomogram for differentiation between focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:979437. [PMID: 36937433 PMCID: PMC10014827 DOI: 10.3389/fonc.2023.979437] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives The purpose of this study was to develop and validate an CT-based radiomics nomogram for the preoperative differentiation of focal-type autoimmune pancreatitis from pancreatic ductal adenocarcinoma. Methods 96 patients with focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma have been enrolled in the study (32 and 64 cases respectively). All cases have been confirmed by imaging, clinical follow-up and/or pathology. The imaging data were considered as: 70% training cohort and 30% test cohort. Pancreatic lesions have been manually delineated by two radiologists and image segmentation was performed to extract radiomic features from the CT images. Independent-sample T tests and LASSO regression were used for feature selection. The training cohort was classified using a variety of machine learning-based classifiers, and 5-fold cross-validation has been performed. The classification performance was evaluated using the test cohort. Multivariate logistic regression analysis was then used to develop a radiomics nomogram model, containing the CT findings and Rad-Score. Calibration curves have been plotted showing the agreement between the predicted and actual probabilities of the radiomics nomogram model. Different patients have been selected to test and evaluate the model prediction process. Finally, receiver operating characteristic curves and decision curves were plotted, and the radiomics nomogram model was compared with a single model to visually assess its diagnostic ability. Results A total of 158 radiomics features were extracted from each image. 7 features were selected to construct the radiomics model, then a variety of classifiers were used for classification and multinomial logistic regression (MLR) was selected to be the optimal classifier. Combining CT findings with radiomics model, a prediction model based on CT findings and radiomics was finally obtained. The nomogram model showed a good sensitivity and specificity with AUCs of 0.87 and 0.83 in training and test cohorts, respectively. The areas under the curve and decision curve analysis showed that the radiomics nomogram model may provide better diagnostic performance than the single model and achieve greater clinical net benefits than the CT finding model and radiomics signature model individually. Conclusions The CT image-based radiomics nomogram model can accurately distinguish between focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma patients and provide additional clinical benefits.
Collapse
Affiliation(s)
- Jia Lu
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
| | - Nannan Jiang
- Department of Radiology, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Yuqing Zhang
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
| | - Daowei Li
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
- *Correspondence: Daowei Li,
| |
Collapse
|
7
|
Wei W, Jia G, Wu Z, Wang T, Wang H, Wei K, Cheng C, Liu Z, Zuo C. A multidomain fusion model of radiomics and deep learning to discriminate between PDAC and AIP based on 18F-FDG PET/CT images. Jpn J Radiol 2022; 41:417-427. [PMID: 36409398 PMCID: PMC9676903 DOI: 10.1007/s11604-022-01363-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To explore a multidomain fusion model of radiomics and deep learning features based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images to distinguish pancreatic ductal adenocarcinoma (PDAC) and autoimmune pancreatitis (AIP), which could effectively improve the accuracy of diseases diagnosis. MATERIALS AND METHODS This retrospective study included 48 patients with AIP (mean age, 65 ± 12.0 years; range, 37-90 years) and 64 patients with PDAC patients (mean age, 66 ± 11.3 years; range, 32-88 years). Three different methods were discussed to identify PDAC and AIP based on 18F-FDG PET/CT images, including the radiomics model (RAD_model), the deep learning model (DL_model), and the multidomain fusion model (MF_model). We also compared the classification results of PET/CT, PET, and CT images in these three models. In addition, we explored the attributes of deep learning abstract features by analyzing the correlation between radiomics and deep learning features. Five-fold cross-validation was used to calculate receiver operating characteristic (ROC), area under the roc curve (AUC), accuracy (Acc), sensitivity (Sen), and specificity (Spe) to quantitatively evaluate the performance of different classification models. RESULTS The experimental results showed that the multidomain fusion model had the best comprehensive performance compared with radiomics and deep learning models, and the AUC, accuracy, sensitivity, specificity were 96.4% (95% CI 95.4-97.3%), 90.1% (95% CI 88.7-91.5%), 87.5% (95% CI 84.3-90.6%), and 93.0% (95% CI 90.3-95.6%), respectively. And our study proved that the multimodal features of PET/CT were superior to using either PET or CT features alone. First-order features of radiomics provided valuable complementary information for the deep learning model. CONCLUSION The preliminary results of this paper demonstrated that our proposed multidomain fusion model fully exploits the value of radiomics and deep learning features based on 18F-FDG PET/CT images, which provided competitive accuracy for the discrimination of PDAC and AIP.
Collapse
Affiliation(s)
- Wenting Wei
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China ,Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Guorong Jia
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| | - Zhongyi Wu
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Tao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| | - Heng Wang
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China ,Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Kezhen Wei
- School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, 130022 China ,Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Chao Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| | - Zhaobang Liu
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 88 Keling Road, Suzhou, 215163 China
| | - Changjing Zuo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University (Changhai Hospital), 168 Changhai Road, Shanghai, 200433 China
| |
Collapse
|
8
|
A systematic review of radiomics in pancreatitis: applying the evidence level rating tool for promoting clinical transferability. Insights Imaging 2022; 13:139. [PMID: 35986798 PMCID: PMC9391628 DOI: 10.1186/s13244-022-01279-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Background Multiple tools have been applied to radiomics evaluation, while evidence rating tools for this field are still lacking. This study aims to assess the quality of pancreatitis radiomics research and test the feasibility of the evidence level rating tool. Results Thirty studies were included after a systematic search of pancreatitis radiomics studies until February 28, 2022, via five databases. Twenty-four studies employed radiomics for diagnostic purposes. The mean ± standard deviation of the adherence rate was 38.3 ± 13.3%, 61.3 ± 11.9%, and 37.1 ± 27.2% for the Radiomics Quality Score (RQS), the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist, and the Image Biomarker Standardization Initiative (IBSI) guideline for preprocessing steps, respectively. The median (range) of RQS was 7.0 (− 3.0 to 18.0). The risk of bias and application concerns were mainly related to the index test according to the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The meta-analysis on differential diagnosis of autoimmune pancreatitis versus pancreatic cancer by CT and mass-forming pancreatitis versus pancreatic cancer by MRI showed diagnostic odds ratios (95% confidence intervals) of, respectively, 189.63 (79.65–451.48) and 135.70 (36.17–509.13), both rated as weak evidence mainly due to the insufficient sample size. Conclusions More research on prognosis of acute pancreatitis is encouraged. The current pancreatitis radiomics studies have insufficient quality and share common scientific disadvantages. The evidence level rating is feasible and necessary for bringing the field of radiomics from preclinical research area to clinical stage. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01279-4.
Collapse
|
9
|
Yan G, Yan G, Li H, Liang H, Peng C, Bhetuwal A, McClure MA, Li Y, Yang G, Li Y, Zhao L, Fan X. Radiomics and Its Applications and Progress in Pancreatitis: A Current State of the Art Review. Front Med (Lausanne) 2022; 9:922299. [PMID: 35814756 PMCID: PMC9259974 DOI: 10.3389/fmed.2022.922299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Radiomics involves high-throughput extraction and analysis of quantitative information from medical images. Since it was proposed in 2012, there are some publications on the application of radiomics for (1) predicting recurrent acute pancreatitis (RAP), clinical severity of acute pancreatitis (AP), and extrapancreatic necrosis in AP; (2) differentiating mass-forming chronic pancreatitis (MFCP) from pancreatic ductal adenocarcinoma (PDAC), focal autoimmune pancreatitis (AIP) from PDAC, and functional abdominal pain (functional gastrointestinal diseases) from RAP and chronic pancreatitis (CP); and (3) identifying CP and normal pancreas, and CP risk factors and complications. In this review, we aim to systematically summarize the applications and progress of radiomics in pancreatitis and it associated situations, so as to provide reference for related research.
Collapse
Affiliation(s)
- Gaowu Yan
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Gaowen Yan
- Department of Radiology, The First Hospital of Suining, Suining, China
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang and Sichuan Mental Health Center, Mianyang, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Peng
- Department of Gastroenterology, The First Hospital of Suining, Suining, China
| | - Anup Bhetuwal
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Morgan A. McClure
- Department of Radiology and Imaging, Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongmei Li
| | - Guoqing Yang
- Department of Radiology, Suining Central Hospital, Suining, China
- Guoqing Yang
| | - Yong Li
- Department of Radiology, Suining Central Hospital, Suining, China
- Yong Li
| | - Linwei Zhao
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Xiaoping Fan
- Department of Radiology, Suining Central Hospital, Suining, China
| |
Collapse
|
10
|
Meng Y, Zhang H, Li Q, Liu F, Fang X, Li J, Yu J, Feng X, Lu J, Bian Y, Shao C. Magnetic Resonance Radiomics and Machine-learning Models: An Approach for Evaluating Tumor-stroma Ratio in Patients with Pancreatic Ductal Adenocarcinoma. Acad Radiol 2022; 29:523-535. [PMID: 34563443 DOI: 10.1016/j.acra.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To develop and validate a magnetic resonance imaging (MRI)-based machine learning classifier for evaluating the tumor-stroma ratio (TSR) in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS In this retrospective study, 148 patients with PDAC underwent an MR scan and surgical resection. We used hematoxylin and eosin to quantify the TSR. For each patient, we extracted 1,409 radiomics features and reduced them using the least absolute shrinkage and selection operator logistic regression algorithm. The extreme gradient boosting (XGBoost) classifier was developed using a training set comprising 110 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 38 consecutive patients, admitted between January 2018 and April 2018. We determined the performance of the XGBoost classifier based on its discriminative ability, calibration, and clinical utility. RESULTS A log-rank test revealed significantly longer survival in the TSR-low group. The prediction model displayed good discrimination in the training (area under the curve [AUC], 0.82) and validation set (AUC, 0.78). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 77.14%, 75.00%, 0.76%, 0.84%, and 0.65%, respectively, those for the validation set were 58.33%, 92.86%, 0.71%, 0.93%, and 0.57%, respectively. CONCLUSION We developed an XGBoost classifier based on MRI radiomics features, a non-invasive prediction tool that can evaluate the TSR of patients with PDAC. Moreover, it will provide a basis for interstitial targeted therapy selection and monitoring.
Collapse
|
11
|
Preuss K, Thach N, Liang X, Baine M, Chen J, Zhang C, Du H, Yu H, Lin C, Hollingsworth MA, Zheng D. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers (Basel) 2022; 14:cancers14071654. [PMID: 35406426 PMCID: PMC8997008 DOI: 10.3390/cancers14071654] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary With a five-year survival rate of only 3% for the majority of patients, pancreatic cancer is a global healthcare challenge. Radiomics and deep learning, two novel quantitative imaging methods that treat medical images as minable data instead of just pictures, have shown promise in advancing personalized management of pancreatic cancer through diagnosing precursor diseases, early detection, accurate diagnosis, and treatment personalization. Radiomics and deep learning methods aim to collect hidden information in medical images that is missed by conventional radiology practices through expanding the data search and comparing information across different patients. Both methods have been studied and applied in pancreatic cancer. In this review, we focus on the current progress of these two methods in pancreatic cancer and provide a comprehensive narrative review on the topic. With better regulation, enhanced workflow, and larger prospective patient datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through personalized precision medicine. Abstract As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.
Collapse
Affiliation(s)
- Kiersten Preuss
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Nate Thach
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Justin Chen
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Naperville North High School, Naperville, IL 60563, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14626, USA
- Correspondence: ; Tel.: +1-(585)-276-3255
| |
Collapse
|
12
|
CT Radiomics Features in Differentiation of Focal-Type Autoimmune Pancreatitis from Pancreatic Ductal Adenocarcinoma: A Propensity Score Analysis. Acad Radiol 2022; 29:358-366. [PMID: 34108115 DOI: 10.1016/j.acra.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To evaluate the diagnostic performance of the radiomics score (rad-score) for differentiating focal-type autoimmune pancreatitis (fAIP) from pancreatic ductal adenocarcinoma (PDAC). METHODS This retrospective review included 42 consecutive patients with fAIP diagnosed according to the International Consensus Diagnostic Criteria between January 2011 and December 2018. Furthermore, 334 consecutive patients with PDAC confirmed by pathology were also reviewed during the same period. Patients with PDAC and fAIP were matched via propensity score matching (PSM). All patients underwent multidetector computed tomography (MDCT). For each patient, 1409 radiomics features of the portal phase were extracted and reduced using the least absolute shrinkage and selection operator (LASSO) logistic regression algorithm. The portal rad-score performance was assessed based on its discriminative ability. RESULTS After PSM, we matched 55 patients with PDAC to 42 patients with fAIP, based on clinical and CT characteristics (e.g., patient age, sex, body mass index, location, size, enhanced mode). A rad-score for discriminating fAIP from PDAC, which contained four CT derived radiomic features, was developed (area under the curve = 0.97). The sensitivity, specificity, and accuracy of the radiomics model were 95.24%, 92.73% and 0.94, respectively. CONCLUSION The portal rad-score can accurately and noninvasively differentiate fAIP from PDAC.
Collapse
|
13
|
Qiu YJ, Zhao GC, Shi SN, Zuo D, Zhang Q, Dong Y, Lou WH, Wang WP. Application of dynamic contrast enhanced ultrasound in distinguishing focal-type autoimmune pancreatitis from pancreatic ductal adenocarcinoma. Clin Hemorheol Microcirc 2022; 81:149-161. [PMID: 35253737 DOI: 10.3233/ch-221390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the value of dynamic contrast enhanced ultrasound (DCE-US) in preoperative differential diagnosis of focal-type autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS From May 2016 to March 2020, patients with biopsy and histopathologically confirmed focal-type AIP (n = 9) were retrospectively included. All patients received contrast enhanced ultrasound (CEUS) examinations one week before surgery/biopsy. Dynamic analysis was performed by VueBox® software (Bracco, Italy). Eighteen cases of resection and histopathologically proved PDAC lesions were also included as control group. B mode ultrasound (BMUS) features, CEUS enhancement patterns, time intensity curves (TICs) and CEUS quantitative parameters were obtained and compared between AIP and PDAC lesions. RESULTS After injection of ultrasound contrast agents, most focal-type AIP lesions displayed hyper-enhancement (2/9, 22.2%) or iso-enhancement (6/9, 66.7%) during arterial phase of CEUS, while most of PDAC lesions showed hypo-enhancement (88.9%) (P < 0.01). During late phase, most of AIP lesions showed iso-enhancement (8/9, 88.9%), while most of PDAC lesions showed hypo-enhancement (94.4%) (P < 0.001). Compared with PDAC lesions, TICs of AIP lesions showed delayed and higher enhancement. Among all CEUS perfusion parameters, ratio of PE (peak enhancement), WiAUC (wash-in area under the curve), WiR (wash-in rate), WiPI (wash-in perfusion index, WiPI = WiAUC/ rise time), WoAUC (wash-out area under the curve), WiWoAUC (wash-in and wash-out area under the curve) and WoR (wash-out rate) between pancreatic lesion and surrounding normal pancreatic tissue were significantly higher in AIP lesions than PDAC lesions (P < 0.05). CONCLUSION DCE-US with quantitative analysis has the potential to make preoperative differential diagnosis between focal-type AIP and PDAC non-invasively.
Collapse
Affiliation(s)
- Yi-Jie Qiu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Chao Zhao
- Department of Pancreas Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai-Nan Shi
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Zuo
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Hui Lou
- Department of Pancreas Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Casà C, Piras A, D’Aviero A, Preziosi F, Mariani S, Cusumano D, Romano A, Boskoski I, Lenkowicz J, Dinapoli N, Cellini F, Gambacorta MA, Valentini V, Mattiucci GC, Boldrini L. The impact of radiomics in diagnosis and staging of pancreatic cancer. Ther Adv Gastrointest Endosc 2022; 15:26317745221081596. [PMID: 35342883 PMCID: PMC8943316 DOI: 10.1177/26317745221081596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Pancreatic cancer (PC) is one of the most aggressive tumours, and better risk stratification among patients is required to provide tailored treatment. The meaning of radiomics and texture analysis as predictive techniques are not already systematically assessed. The aim of this study is to assess the role of radiomics in PC. METHODS A PubMed/MEDLINE and Embase systematic review was conducted to assess the role of radiomics in PC. The search strategy was 'radiomics [All Fields] AND ("pancreas" [MeSH Terms] OR "pancreas" [All Fields] OR "pancreatic" [All Fields])' and only original articles referred to PC in humans in the English language were considered. RESULTS A total of 123 studies and 183 studies were obtained using the mentioned search strategy on PubMed and Embase, respectively. After the complete selection process, a total of 56 papers were considered eligible for the analysis of the results. Radiomics methods were applied in PC for assessment technical feasibility and reproducibility aspects analysis, risk stratification, biologic or genomic status prediction and treatment response prediction. DISCUSSION Radiomics seems to be a promising approach to evaluate PC from diagnosis to treatment response prediction. Further and larger studies are required to confirm the role and allowed to include radiomics parameter in a comprehensive decision support system.
Collapse
Affiliation(s)
- Calogero Casà
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | | | - Francesco Preziosi
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Mariani
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Cusumano
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Angela Romano
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ivo Boskoski
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Jacopo Lenkowicz
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Nicola Dinapoli
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Cellini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Antonietta Gambacorta
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Valentini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Carlo Mattiucci
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Boldrini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
15
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
16
|
Akshintala VS, Khashab MA. Artificial intelligence in pancreaticobiliary endoscopy. J Gastroenterol Hepatol 2021; 36:25-30. [PMID: 33448514 DOI: 10.1111/jgh.15343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) applications in health care have exponentially increased in recent years, and a few of these are related to pancreatobiliary disorders. AI-based methods were applied to extract information, in prognostication, to guide clinical treatment decisions and in pancreatobiliary endoscopy to characterize lesions. AI applications in endoscopy are expected to reduce inter-operator variability, improve the accuracy of diagnosis, and assist in therapeutic decision-making in real time. AI-based literature must however be interpreted with caution given the limited external validation. A multidisciplinary approach combining clinical and imaging or endoscopy data will better utilize AI-based technologies to further improve patient care.
Collapse
Affiliation(s)
- Venkata S Akshintala
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mouen A Khashab
- Division of Gastroenterology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Ziegelmayer S, Kaissis G, Harder F, Jungmann F, Müller T, Makowski M, Braren R. Deep Convolutional Neural Network-Assisted Feature Extraction for Diagnostic Discrimination and Feature Visualization in Pancreatic Ductal Adenocarcinoma (PDAC) versus Autoimmune Pancreatitis (AIP). J Clin Med 2020; 9:jcm9124013. [PMID: 33322559 PMCID: PMC7764649 DOI: 10.3390/jcm9124013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
The differentiation of autoimmune pancreatitis (AIP) and pancreatic ductal adenocarcinoma (PDAC) poses a relevant diagnostic challenge and can lead to misdiagnosis and consequently poor patient outcome. Recent studies have shown that radiomics-based models can achieve high sensitivity and specificity in predicting both entities. However, radiomic features can only capture low level representations of the input image. In contrast, convolutional neural networks (CNNs) can learn and extract more complex representations which have been used for image classification to great success. In our retrospective observational study, we performed a deep learning-based feature extraction using CT-scans of both entities and compared the predictive value against traditional radiomic features. In total, 86 patients, 44 with AIP and 42 with PDACs, were analyzed. Whole pancreas segmentation was automatically performed on CT-scans during the portal venous phase. The segmentation masks were manually checked and corrected if necessary. In total, 1411 radiomic features were extracted using PyRadiomics and 256 features (deep features) were extracted using an intermediate layer of a convolutional neural network (CNN). After feature selection and normalization, an extremely randomized trees algorithm was trained and tested using a two-fold shuffle-split cross-validation with a test sample of 20% (n = 18) to discriminate between AIP or PDAC. Feature maps were plotted and visual difference was noted. The machine learning (ML) model achieved a sensitivity, specificity, and ROC-AUC of 0.89 ± 0.11, 0.83 ± 0.06, and 0.90 ± 0.02 for the deep features and 0.72 ± 0.11, 0.78 ± 0.06, and 0.80 ± 0.01 for the radiomic features. Visualization of feature maps indicated different activation patterns for AIP and PDAC. We successfully trained a machine learning model using deep feature extraction from CT-images to differentiate between AIP and PDAC. In comparison to traditional radiomic features, deep features achieved a higher sensitivity, specificity, and ROC-AUC. Visualization of deep features could further improve the diagnostic accuracy of non-invasive differentiation of AIP and PDAC.
Collapse
Affiliation(s)
- Sebastian Ziegelmayer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.Z.); (G.K.); (F.H.); (F.J.); (T.M.); (M.M.)
| | - Georgios Kaissis
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.Z.); (G.K.); (F.H.); (F.J.); (T.M.); (M.M.)
- Department of Computing, Faculty of Engineering, Technology and Medicine, Imperial College of Science, London SW7 2BU, UK
| | - Felix Harder
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.Z.); (G.K.); (F.H.); (F.J.); (T.M.); (M.M.)
| | - Friederike Jungmann
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.Z.); (G.K.); (F.H.); (F.J.); (T.M.); (M.M.)
| | - Tamara Müller
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.Z.); (G.K.); (F.H.); (F.J.); (T.M.); (M.M.)
| | - Marcus Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.Z.); (G.K.); (F.H.); (F.J.); (T.M.); (M.M.)
| | - Rickmer Braren
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (S.Z.); (G.K.); (F.H.); (F.J.); (T.M.); (M.M.)
- German Cancer Consortium, Partner Site Technical University of Munich, D-69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-89-4140-5627
| |
Collapse
|