1
|
Chaika M, Afat S, Wessling D, Afat C, Nickel D, Kannengiesser S, Herrmann J, Almansour H, Männlin S, Othman AE, Gassenmaier S. Deep learning-based super-resolution gradient echo imaging of the pancreas: Improvement of image quality and reduction of acquisition time. Diagn Interv Imaging 2023; 104:53-59. [PMID: 35843839 DOI: 10.1016/j.diii.2022.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose of this study was to evaluate the impact of a deep learning-based super-resolution technique on T1-weighted gradient-echo acquisitions (volumetric interpolated breath-hold examination; VIBE) on the assessment of pancreatic MRI at 1.5 T compared to standard VIBE imaging (VIBESTD). MATERIALS AND METHODS This retrospective single-center study was conducted between April 2021 and October 2021. Fifty patients with a total of 50 detectable pancreatic lesion entities were included in this study. There were 27 men and 23 women, with a mean age of 69 ± 13 (standard deviation [SD]) years (age range: 33-89 years). VIBESTD (precontrast, dynamic, postcontrast) was retrospectively processed with a deep learning-based super-resolution algorithm including a more aggressive partial Fourier setting leading to a simulated acquisition time reduction (VIBESR). Image analysis was performed by two radiologists regarding lesion detectability, noise levels, sharpness and contrast of pancreatic edges, as well as regarding diagnostic confidence using a 5-point Likert-scale with 5 being the best. RESULTS VIBESR was rated better than VIBESTD by both readers regarding lesion detectability (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5], for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5]) for reader 2; both P <0.001), noise levels (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001), sharpness and contrast of pancreatic edges (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001), as well as regarding diagnostic confidence (5 [IQR: 5, 5] vs. 5 [IQR: 4, 5] for reader 1; 5 [IQR: 5, 5] vs. 4 [IQR: 4, 5] for reader 2; both P <0.001). There were no significant differences between lesion sizes as measured by the two readers on VIBESR and VIBESTD images (P > 0.05). The mean acquisition time for VIBESTD (15 ± 1 [SD] s; range: 11-16 s) was longer than that for VIBESR (13 ± 1 [SD] s; range: 11-14 s) (P < 0.001). CONCLUSION Our results indicate that the newly developed deep learning-based super-resolution algorithm adapted to partial Fourier acquisitions has a positive influence not only on shortening the examination time but also on improvement of image quality in pancreatic MRI.
Collapse
Affiliation(s)
- Maryanna Chaika
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Daniel Wessling
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Carmen Afat
- Department of Internal Medicine I, Otfried-Müller-Straße 10, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Dominik Nickel
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Stephan Kannengiesser
- MR Applications Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Judith Herrmann
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Haidara Almansour
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Simon Männlin
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Ahmed E Othman
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany; Department of Neuroradiology, University Medical Center, 55131, Mainz, Germany
| | - Sebastian Gassenmaier
- Department of Diagnostic and Interventional Radiology, Hoppe-Seyler-Strasse 3, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|