1
|
LaRock CN, Todd J, LaRock DL, Olson J, O’Donoghue AJ, Robertson AAB, Cooper MA, Hoffman HM, Nizet V. IL-1β is an innate immune sensor of microbial proteolysis. Sci Immunol 2016; 1:eaah3539. [PMID: 28331908 PMCID: PMC5358671 DOI: 10.1126/sciimmunol.aah3539] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interleukin-1β (IL-1β) is a key proinflammatory cytokine that drives antimicrobial immune responses. IL-1β is aberrantly activated in autoimmune diseases, and IL-1β inhibitors are used as therapeutic agents to treat patients with certain autoimmune disorders. Review of postmarketing surveillance of patients receiving IL-1β inhibitors found a disproportionate reporting of invasive infections by group A Streptococcus (GAS). IL-1β inhibition increased mouse susceptibility to GAS infection, but IL-1β was produced independent of canonical inflammasomes. Newly synthesized IL-1β has an amino-terminal prodomain that blocks signaling activity, which is usually proteolytically removed by caspase-1, a protease activated within the inflammasome structure. In place of host caspases, the secreted GAS cysteine protease SpeB generated mature IL-1β. During invasive infection, GAS isolates may acquire pathoadaptive mutations eliminating SpeB expression to evade detection by IL-1β. Pharmacological IL-1β inhibition alleviates this selective pressure, allowing invasive infection by nonpathoadapted GAS. Thus, IL-1β is a sensor that directly detects pathogen-associated proteolysis through an independent pathway operating in parallel with host inflammasomes. Because IL-1β function is maintained across species, yet cleavage by caspases does not appear to be, detection of microbial proteases may represent an ancestral system of innate immune regulation.
Collapse
Affiliation(s)
- Christopher N. LaRock
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
| | - Jordan Todd
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
| | - Doris L. LaRock
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
| | - Joshua Olson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| | - Avril A. B. Robertson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hal M. Hoffman
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California (UC), San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|