1
|
Basukala D, Mikheev A, Sevilimedu V, Gilani N, Moy L, Pinker-Domenig K, Thakur SB, Sigmund EE. Multisite MRI Intravoxel Incoherent Motion Repeatability and Reproducibility across 3 T Scanners in a Breast Diffusion Phantom: A BReast Intravoxel Incoherent Motion Multisite (BRIMM) Study. J Magn Reson Imaging 2024; 59:2226-2237. [PMID: 37702382 PMCID: PMC10932866 DOI: 10.1002/jmri.29008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Monoexponential apparent diffusion coefficient (ADC) and biexponential intravoxel incoherent motion (IVIM) analysis of diffusion-weighted imaging is helpful in the characterization of breast tumors. However, repeatability/reproducibility studies across scanners and across sites are scarce. PURPOSE To evaluate the repeatability and reproducibility of ADC and IVIM parameters (tissue diffusivity (Dt), perfusion fraction (Fp) and pseudo-diffusion (Dp)) within and across sites employing MRI scanners from different vendors utilizing 16-channel breast array coils in a breast diffusion phantom. STUDY TYPE Phantom repeatability. PHANTOM A breast phantom containing tubes of different polyvinylpyrrolidone (PVP) concentrations, water, fat, and sponge flow chambers, together with an MR-compatible liquid crystal (LC) thermometer. FIELD STRENGTH/SEQUENCE Bipolar gradient twice-refocused spin echo sequence and monopolar gradient single spin echo sequence at 3 T. ASSESSMENT Studies were performed twice in each of two scanners, located at different sites, on each of 2 days, resulting in four studies per scanner. ADCs of the PVP and water were normalized to the vendor-provided calibrated values at the temperature indicated by the LC thermometer for repeatability/reproducibility comparisons. STATISTICAL TESTS ADC and IVIM repeatability and reproducibility within and across sites were estimated via the within-system coefficient of variation (wCV). Pearson correlation coefficient (r) was also computed between IVIM metrics and flow speed. A P value <0.05 was considered statistically significant. RESULTS ADC and Dt demonstrated excellent repeatability (<2%; <3%, respectively) and reproducibility (both <5%) at the two sites. Fp and Dp exhibited good repeatability (mean of two sites 3.67% and 5.59%, respectively) and moderate reproducibility (mean of two sites 15.96% and 13.3%, respectively). The mean intersite reproducibility (%) of Fp/Dp/Dt was 50.96/13.68/5.59, respectively. Fp and Dt demonstrated high correlations with flow speed while Dp showed lower correlations. Fp correlations with flow speed were significant at both sites. DATA CONCLUSION IVIM reproducibility results were promising and similar to ADC, particularly for Dt. The results were reproducible within both sites, and a progressive trend toward reproducibility across sites except for Fp. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Dibash Basukala
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Artem Mikheev
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Varadan Sevilimedu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nima Gilani
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Linda Moy
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Katja Pinker-Domenig
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sunitha B. Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric E. Sigmund
- Center for Advanced Imaging and Innovation (CAIR), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| |
Collapse
|
2
|
Geng R, Zhang Y, Rice J, Muehler MR, Starekova J, Rutkowski DR, Uboha NV, Pirasteh A, Roldán-Alzate A, Guidon A, Hernando D. Motion-robust, blood-suppressed, reduced-distortion diffusion MRI of the liver. Magn Reson Med 2023; 89:908-921. [PMID: 36404637 PMCID: PMC9792444 DOI: 10.1002/mrm.29531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To evaluate feasibility and reproducibility of liver diffusion-weighted (DW) MRI using cardiac-motion-robust, blood-suppressed, reduced-distortion techniques. METHODS DW-MRI data were acquired at 3T in an anatomically accurate liver phantom including controlled pulsatile motion, in eight healthy volunteers and four patients with known or suspected liver metastases. Standard monopolar and motion-robust (M1-nulled, and M1-optimized) DW gradient waveforms were each acquired with single-shot echo-planar imaging (ssEPI) and multishot EPI (msEPI). In the motion phantom, apparent diffusion coefficient (ADC) was measured in the motion-affected volume. In healthy volunteers, ADC was measured in the left and right liver lobes separately to evaluate ADC reproducibility between the two lobes. Image distortions were quantified using the normalized cross-correlation coefficient, with an undistorted T2-weighted reference. RESULTS In the motion phantom, ADC mean and SD in motion-affected volumes substantially increased with increasing motion for monopolar waveforms. ADC remained stable in the presence of increasing motion when using motion-robust waveforms. M1-optimized waveforms suppressed slow flow signal present with M1-nulled waveforms. In healthy volunteers, monopolar waveforms generated significantly different ADC measurements between left and right liver lobes ( p = 0 . 0078 $$ p=0.0078 $$ , reproducibility coefficients (RPC) = 470 × 1 0 - 6 $$ 470\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for monopolar-msEPI), while M1-optimized waveforms showed more reproducible ADC values ( p = 0 . 29 $$ p=0.29 $$ , RPC = 220 × 1 0 - 6 $$ \mathrm{RPC}=220\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for M1-optimized-msEPI). In phantom and healthy volunteer studies, motion-robust acquisitions with msEPI showed significantly reduced image distortion ( p < 0 . 001 $$ p<0.001 $$ ) compared to ssEPI. Patient scans showed reduction of wormhole artifacts when combining M1-optimized waveforms with msEPI. CONCLUSION Synergistic effects of combined M1-optimized diffusion waveforms and msEPI acquisitions enable reproducible liver DWI with motion robustness, blood signal suppression, and reduced distortion.
Collapse
Affiliation(s)
- Ruiqi Geng
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Medical Physics, University of Wisconsin-Madison, WI, USA
| | - Yuxin Zhang
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Medical Physics, University of Wisconsin-Madison, WI, USA
| | - James Rice
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | | | - Jitka Starekova
- Department of Radiology, University of Wisconsin-Madison, WI, USA
| | - David R. Rutkowski
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | - Nataliya V. Uboha
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, WI, USA,UW Carbone Cancer Center, WI, USA
| | - Ali Pirasteh
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Medical Physics, University of Wisconsin-Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Mechanical Engineering, University of Wisconsin-Madison, WI, USA
| | | | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, WI, USA,Department of Medical Physics, University of Wisconsin-Madison, WI, USA,Department of Electrical and Computer Engineering, University of Wisconsin-Madison, WI, USA,Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
3
|
Gomolka RS, Hablitz LM, Mestre H, Giannetto M, Du T, Hauglund NL, Xie L, Peng W, Martinez PM, Nedergaard M, Mori Y. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. eLife 2023; 12:e82232. [PMID: 36757363 PMCID: PMC9995113 DOI: 10.7554/elife.82232] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here, we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion measures and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to enlargement and stagnation of fluid in the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.
Collapse
Affiliation(s)
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- Department of Neurology, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- School of Pharmacy, China Medical UniversityShenyangChina
| | | | - Lulu Xie
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Yuki Mori
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Panfilova A, Chen P, van Sloun RJG, Wijkstra H, Postema M, Poortinga AT, Mischi M. Experimental acoustic characterization of an endoskeletal antibubble contrast agent: First results. Med Phys 2021; 48:6765-6780. [PMID: 34580883 PMCID: PMC9293338 DOI: 10.1002/mp.15242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022] Open
Abstract
Purpose An antibubble is an encapsulated gas bubble with an incompressible inclusion inside the gas phase. Current‐generation ultrasound contrast agents are bubble‐based: they contain encapsulated gas bubbles with no inclusions. The objective of this work is to determine the linear and nonlinear responses of an antibubble contrast agent in comparison to two bubble‐based ultrasound contrast agents, that is, reference bubbles and SonoVueTM. Methods Side scatter and attenuation of the three contrast agents were measured, using single‐element ultrasound transducers, operating at 1.0, 2.25, and 3.5 MHz. The scatter measurements were performed at acoustic pressures of 200 and 300 kPa for 1.0 MHz, 300 kPa, and 450 kPa for 2.25 MHz, and 370 and 560 kPa for 3.5 MHz. Attenuation measurements were conducted at pressures of 13, 55, and 50 kPa for 1.0, 2.25, and 3.5 MHz, respectively. In addition, a dynamic contrast‐enhanced ultrasound measurement was performed, imaging the contrast agent flow through a vascular phantom with a commercial diagnostic linear array probe. Results Antibubbles generated equivalent or stronger harmonic signal, compared to bubble‐based ultrasound contrast agents. The second harmonic side‐scatter amplitude of the antibubble agent was up to 3 dB greater than that of reference bubble agent and up to 4 dB greater than that of SonoVueTM at the estimated concentration of 8×104 bubbles/mL. For ultrasound with a center transmit frequency of 1.0 MHz, the attenuation coefficient of the antibubble agent was 8.7 dB/cm, whereas the attenuation coefficient of the reference agent was 7.7 and 0.3 dB/cm for SonoVueTM. At 2.25 MHz, the attenuation coefficients were 9.7, 3.0, and 0.6 dB/cm, respectively. For 3.5 MHz, they were 4.4, 1.8, and 1.0 dB/cm, respectively. A dynamic contrast‐enhanced ultrasound recording showed the nonlinear signal of the antibubble agent to be 31% greater than for reference bubbles and 23% lower than SonoVueTM at a high concentration of 2×106 bubbles/mL. Conclusion Endoskeletal antibubbles generate comparable or greater higher harmonics than reference bubbles and SonoVueTM. As a result, antibubbles with liquid therapeutic agents inside the gas phase have high potential to become a traceable therapeutic agent.
Collapse
Affiliation(s)
- Anastasiia Panfilova
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Peiran Chen
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ruud J G van Sloun
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hessel Wijkstra
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Urology, Amsterdam University Medical Centers location AMC, Amsterdam, The Netherlands
| | - Michiel Postema
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, Braamfontein, South Africa.,BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Albert T Poortinga
- Mechanical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Massimo Mischi
- Electrical Engineering Department, Faculty of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Xia N, Li Y, Xue Y, Li W, Zhang Z, Wen C, Li J, Ye Q. Intravoxel incoherent motion diffusion-weighted imaging in the characterization of Alzheimer's disease. Brain Imaging Behav 2021; 16:617-626. [PMID: 34480258 DOI: 10.1007/s11682-021-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) is the most common type of dementia, and characterizing brain changes in AD is important for clinical diagnosis and prognosis. This study was designed to evaluate the classification performance of intravoxel incoherent motion (IVIM) diffusion-weighted imaging in differentiating between AD patients and normal control (NC) subjects and to explore its potential effectiveness as a neuroimaging biomarker. METHODS Thirty-one patients with probable AD and twenty NC subjects were included in the prospective study. IVIM data were subjected to postprocessing, and parameters including the apparent diffusion coefficient (ADC), slow diffusion coefficient (Ds), fast diffusion coefficient (Df), perfusion fraction (fp) and Df*fp were calculated. The classification model was developed and confirmed with cross-validation (group A/B) using Support Vector Machine (SVM). Correlations between IVIM parameters and Mini-Mental State Examination (MMSE) scores in AD patients were investigated using partial correlation analysis. RESULTS Diffusion MRI revealed significant region-specific differences that aided in differentiating AD patients from controls. Among the analyzed regions and parameters, the Df of the right precuneus (PreR) (ρ = 0.515; P = 0.006) and the left cerebellum (CL) (ρ = 0.429; P = 0.026) demonstrated significant associations with the cognitive function of AD patients. An area under the receiver operating characteristics curve (AUC) of 0.84 (95% CI: 0.66, 0.99) was calculated for the validation in dataset B after the prediction model was trained on dataset A. When the datasets were reversed, an AUC of 0.90 (95% CI: 0.75, 1.00) was calculated for the validation in dataset A, after the prediction model trained in dataset B. CONCLUSION IVIM imaging is a promising method for the classification of AD and NC subjects, and IVIM parameters of precuneus and cerebellum might be effective biomarker for the diagnosis of AD.
Collapse
Affiliation(s)
- Nengzhi Xia
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanxuan Li
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yingnan Xue
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weikang Li
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhenhua Zhang
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Caiyun Wen
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jiance Li
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qiong Ye
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China. .,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China.
| |
Collapse
|
6
|
Differentiating atypical hemangiomas and vertebral metastases: a field-of-view (FOV) and FOCUS intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:3187-3193. [PMID: 33078268 DOI: 10.1007/s00586-020-06632-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Some atypical vertebral hemangiomas (VHs) may mimic metastases on routine MRI and can result in misdiagnosis and ultimately to additional imaging, biopsy and unnecessary costs. The purpose of this study is to assess the utility of intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) on account of field-of-view optimized and constrained undistorted single shot (FOCUS) in distinguishing atypical VHs and vertebral metastases. METHODS A total of 25 patients with vertebral metastases and 25 patients with atypical VHs were confirmed by clinical follow-up or pathology. IVIM-DWI imaging was performed at different b values (0, 30, 50, 100, 150, 200, 400, 600, 800, 1000 mm2/s). IVIM parameters [the true diffusion coefficient (D), pseudodiffusion coefficient (D*), standard apparent diffusion coefficient (ADC), and perfusion fraction (f)] were calculated and compared between two groups by using Student's t test. A receiver operating characteristic analysis was performed. RESULTS Quantitative analysis of standard ADC and D parameters showed significantly lower values in vertebral metastases when compared to atypical hemangiomas [ADC value: (0.70 ± 0.12) × 10-3 mm2/s vs (1.14 ± 0.28) × 10-3 mm2/s; D value: (0.47 ± 0.07) × 10-3 mm2/s vs (0.76 ± 0.14) × 10-3 mm2/s, all P < 0.01]. The sensitivity and specificity of D value were 93.8% and 92.3%, respectively. CONCLUSION The standard ADC value and D value may be used as an indicator to distinguish vertebral metastases from atypical VHs. FOCUS IVIM-derived parameters provide potential value in the quantitatively differentiating vertebral metastases from vertebral atypical hemangiomas.
Collapse
|
7
|
Multiparametric MRI for prediction of treatment response to neoadjuvant FOLFIRINOX therapy in borderline resectable or locally advanced pancreatic cancer. Eur Radiol 2020; 31:864-874. [PMID: 32813104 DOI: 10.1007/s00330-020-07134-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/10/2020] [Accepted: 07/31/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To identify multiparametric MRI biomarkers to predict the tumor response to neoadjuvant FOLFIRINOX therapy in patients with borderline resectable (BR) or locally advanced (LA) pancreatic ductal adenocarcinoma (PDAC). METHODS From May 2016 to March 2018, adult patients with BR or LA PDAC were prospectively enrolled in this study. They received eight cycles of FOLFIRINOX therapy and underwent multiparametric MRI twice (at baseline and after the second cycle). MRI evaluations included dynamic contrast-enhanced MRI, intravoxel incoherent motion diffusion-weighted imaging, and assessment of T2* relaxivity (R2*) and the change in T1 relaxivity (ΔR1, equilibrium phase R1 minus non-enhanced R1) of the tumors. Factors to predict the responders determined by the best overall response during FOLFIRINOX therapy and those to predict progression-free survival (PFS) and overall survival (OS) were evaluated using multivariable logistic regression and the Cox proportional hazard model. RESULTS Forty-one patients (mean age, 60.3 years ± 9.3; 24 men) were included. Among the clinical and MRI factors, the baseline ΔR1 (adjusted odds ratio, 31.07; p = 0.008) was the only independent predictor for tumor response. The baseline ΔR1 was also an independent predictor for PFS (adjusted hazard ratio, 0.40; p = 0.033) along with R0 resection. The use of a cutoff ΔR1 value of ≥ 1.31 s-1 enabled prognostic stratification (median PFS, 16.0 months vs.10.0 months; p = 0.029; median OS, 34.9 months vs. 16.6 months; p = 0 .023, respectively). CONCLUSIONS The baseline tumor ΔR1 value may be useful to predict tumor response and survival in patients with BR or LA PDAC receiving FOLFIRINOX neoadjuvant therapy. KEY POINTS • Baseline ΔR1 was an independent predictor for tumor response (adjusted odds ratio, 31.07; p = 0.008) and progression-free survival (adjusted hazard ratio, 0.40; p = 0.033) in patients with borderline resectable or locally advanced pancreatic ductal adenocarcinoma receiving neoadjuvant FOLFIRINOX therapy. • The criterion of baseline ΔR1 value ≥ 1.31 s-1 allowed for the prediction of favorable tumor response and survival outcome after neoadjuvant FOLFIRINOX therapy.
Collapse
|
8
|
Mi HL, Suo ST, Cheng JJ, Yin X, Zhu L, Dong SJ, Huang SS, Lin C, Xu JR, Lu Q. The invasion status of lymphovascular space and lymph nodes in cervical cancer assessed by mono-exponential and bi-exponential DWI-related parameters. Clin Radiol 2020; 75:763-771. [PMID: 32723502 DOI: 10.1016/j.crad.2020.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/06/2020] [Indexed: 12/27/2022]
Abstract
AIM To investigate whether mono-exponential and bi-exponential diffusion-weighted imaging (DWI)-related parameters of the primary tumour can evaluate the status of lymphovascular space invasion (LVSI) and lymph node metastasis (LNM) in patients with cervical carcinoma preoperatively. MATERIALS AND METHODS Eighty patients with cervical carcinoma were enrolled, who underwent preoperative multi b-value DWI and radical hysterectomy. They were classified into LVSI(+) versus LVSI(-) and LNM(+) versus LNM(-) according to postoperative pathology. The apparent diffusion coefficient (ADC), pure molecular diffusion (D), pseudo-diffusion coefficient (D∗), and perfusion fraction (f) were calculated from the whole tumour (_whole) and tumour margin (_margin). All parameters were compared between LVSI(+) and LVSI(-) and between LNM(+) and LNM(-). Logistic regression analysis and receiver operating characteristic (ROC) curve analysis were performed to evaluate the diagnostic performance of these parameters. RESULTS f_margin and D∗_whole showed significant differences in differentiating LVSI(+) from LVSI(-) tumours (p=0.002, 0.008, respectively), while LNM(+) tumours presented with significantly higher ADC_margin than that of LNM(-) tumours (p=0.009). The other parameters were not independent related factors with the status of LVSI or LNM according to logistic regression analysis (p>0.05). The area under the ROC curve of f_margin combined with D∗_whole in discriminating LVSI(+) from LVSI(-) was 0.826 (95% confidence interval [CI]: 0.691-0.961), while ADC_margin in differentiating LNM(+) from LNM(-) was 0.788 (95% CI: 0.648-0.928). CONCLUSIONS The parameters generated from mono-exponential and bi-exponential DWI of the primary cervical carcinoma could help discriminate its status regarding LVSI (f_margin and D∗_whole) and LNM (ADC_margin).
Collapse
Affiliation(s)
- H L Mi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - S T Suo
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - J J Cheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - X Yin
- Department of Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - L Zhu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - S J Dong
- Department of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 20093, China
| | - S S Huang
- Department of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd, Shanghai, 20093, China
| | - C Lin
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - J R Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China
| | - Q Lu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Rd, Shanghai, 200127, China.
| |
Collapse
|
9
|
Harrington KA, Shukla-Dave A, Paudyal R, Do RKG. MRI of the Pancreas. J Magn Reson Imaging 2020; 53:347-359. [PMID: 32302044 DOI: 10.1002/jmri.27148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
MRI has played a critical role in the evaluation of patients with pancreatic pathologies, from screening of patients at high risk for pancreatic cancer to the evaluation of pancreatic cysts and indeterminate pancreatic lesions. The high mortality associated with pancreatic adenocarcinomas has spurred much interest in developing effective screening tools, with MRI using magnetic resonance cholangiopancreatography (MRCP) playing a central role in the hopes of identifying cancers at earlier stages amenable to curative resection. Ongoing efforts to improve the resolution and robustness of imaging of the pancreas using MRI may thus one day reduce the mortality of this deadly disease. However, the increasing use of cross-sectional imaging has also generated a concomitant clinical conundrum: How to manage incidental pancreatic cystic lesions that are found in over a quarter of patients who undergo MRCP. Efforts to improve the specificity of MRCP for patients with pancreatic cysts and with indeterminate pancreatic masses may be achieved with continued technical advances in MRI, including diffusion-weighted and T1 -weighted dynamic contrast-enhanced MRI. However, developments in quantitative MRI of the pancreas remain challenging, due to the small size of the pancreas and its upper abdominal location, adjacent to bowel and below the diaphragm. Further research is needed to improve MRI of the pancreas as a clinical tool, to positively affect the lives of patients with pancreatic abnormalities. This review focuses on various MR techniques such as MRCP, quantitative imaging, and dynamic contrast-enhanced imaging and their clinical applicability in the imaging of the pancreas, with an emphasis on pancreatic malignant and premalignant lesions. Level of Evidence 5 Technical Efficacy Stage 3 J. MAGN. RESON. IMAGING 2021;53:347-359.
Collapse
Affiliation(s)
- Kate A Harrington
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ramesh Paudyal
- Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard K G Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Kamphuis ME, Greuter MJW, Slart RHJA, Slump CH. Quantitative imaging: systematic review of perfusion/flow phantoms. Eur Radiol Exp 2020; 4:15. [PMID: 32128653 PMCID: PMC7054493 DOI: 10.1186/s41747-019-0133-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background We aimed at reviewing design and realisation of perfusion/flow phantoms for validating quantitative perfusion imaging (PI) applications to encourage best practices. Methods A systematic search was performed on the Scopus database for “perfusion”, “flow”, and “phantom”, limited to articles written in English published between January 1999 and December 2018. Information on phantom design, used PI and phantom applications was extracted. Results Of 463 retrieved articles, 397 were rejected after abstract screening and 32 after full-text reading. The 37 accepted articles resulted to address PI simulation in brain (n = 11), myocardial (n = 8), liver (n = 2), tumour (n = 1), finger (n = 1), and non-specific tissue (n = 14), with diverse modalities: ultrasound (n = 11), computed tomography (n = 11), magnetic resonance imaging (n = 17), and positron emission tomography (n = 2). Three phantom designs were described: basic (n = 6), aligned capillary (n = 22), and tissue-filled (n = 12). Microvasculature and tissue perfusion were combined in one compartment (n = 23) or in two separated compartments (n = 17). With the only exception of one study, inter-compartmental fluid exchange could not be controlled. Nine studies compared phantom results with human or animal perfusion data. Only one commercially available perfusion phantom was identified. Conclusion We provided insights into contemporary phantom approaches to PI, which can be used for ground truth evaluation of quantitative PI applications. Investigators are recommended to verify and validate whether assumptions underlying PI phantom modelling are justified for their intended phantom application.
Collapse
Affiliation(s)
- Marije E Kamphuis
- Multimodality Medical Imaging M3i Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, PO Box 217, Enschede, The Netherlands. .,Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| | - Marcel J W Greuter
- Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands.,Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Cornelis H Slump
- Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
11
|
Hu YC, Yan LF, Han Y, Duan SJ, Sun Q, Li GF, Wang W, Wei XC, Zheng DD, Cui GB. Can the low and high b-value distribution influence the pseudodiffusion parameter derived from IVIM DWI in normal brain? BMC Med Imaging 2020; 20:14. [PMID: 32041549 PMCID: PMC7011602 DOI: 10.1186/s12880-020-0419-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/30/2020] [Indexed: 12/28/2022] Open
Abstract
Background Our study aims to reveal whether the low b-values distribution, high b-values upper limit, and the number of excitation (NEX) influence the accuracy of the intravoxel incoherent motion (IVIM) parameter derived from multi-b-value diffusion-weighted imaging (DWI) in the brain. Methods This prospective study was approved by the local Ethics Committee and informed consent was obtained from each participant. The five consecutive multi-b DWI with different b-value protocols (0–3500 s/mm2) were performed in 22 male healthy volunteers on a 3.0-T MRI system. The IVIM parameters from normal white matter (WM) and gray matter (GM) including slow diffusion coefficient (D), fast perfusion coefficient (D*) and perfusion fraction (f) were compared for differences among defined groups with different IVIM protocols by one-way ANOVA. Results The D* and f value of WM or GM in groups with less low b-values distribution (less than or equal to 5 b-values) were significantly lower than ones in any other group with more low b-values distribution (all P < 0.05), but no significant differences among groups with more low b-values distribution (P > 0.05). In addition, no significant differences in the D, D* and f value of WM or GM were found between group with one and more NEX of low b-values distribution (all P > 0.05). IVIM parameters in normal WM and GM strongly depended on the choice of the high b-value upper limit. Conclusions Metrics of IVIM parameters can be affected by low and high b value distribution. Eight low b-values distribution with high b-value upper limit of 800–1000 s/mm2 may be the relatively proper set when performing brain IVIM studies.
Collapse
Affiliation(s)
- Yu-Chuan Hu
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Yu Han
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Shi-Jun Duan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Qian Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Gang-Feng Li
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Wen Wang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China
| | - Xiao-Cheng Wei
- MR Research China, GE Healthcare China, Beijing, 100176, China
| | - Dan-Dan Zheng
- MR Research China, GE Healthcare China, Beijing, 100176, China
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, Shaanxi, People's Republic of China.
| |
Collapse
|
12
|
Schneider MJ, Gaass T, Ricke J, Dinkel J, Dietrich O. Assessment of intravoxel incoherent motion MRI with an artificial capillary network: analysis of biexponential and phase-distribution models. Magn Reson Med 2019; 82:1373-1384. [PMID: 31131482 PMCID: PMC6771596 DOI: 10.1002/mrm.27816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 11/07/2022]
Abstract
Purpose To systematically analyze intravoxel incoherent motion (IVIM) MRI in a perfusable capillary phantom closely matching the geometry of capillary beds in vivo and to compare the validity of the biexponential pseudo‐diffusion and the recently introduced phase‐distribution IVIM model. Methods IVIM‐MRI was performed at 12 different flow rates (0.2⋯2.4mL/min) in a capillary phantom using 4 different DW‐MRI sequences (2 with monopolar and 2 with flow‐compensated diffusion‐gradient schemes, with up to 16b values between 0 and 800s/mm2). Resulting parameters from the assessed IVIM models were compared to results from optical microscopy. Results The acquired data were best described by a static and a flowing compartment modeled by the phase‐distribution approach. The estimated signal fraction f of the flowing compartment stayed approximately constant over the applied flow rates, with an average of f=0.451±0.023 in excellent agreement with optical microscopy (f=0.454±0.002). The estimated average particle flow speeds v=0.25⋯2.7mm/s showed a highly significant linear correlation to the applied flow. The estimated capillary segment length of approximately 189um agreed well with optical microscopy measurements. Using the biexponential model, the signal fraction f was substantially underestimated and displayed a strong dependence on the applied flow rate. Conclusion The constructed phantom facilitated the detailed investigation of IVIM‐MRI methods. The results demonstrate that the phase‐distribution method is capable of accurately characterizing fluid flow inside a capillary network. Parameters estimated using the biexponential model, specifically the perfusion fraction f, showed a substantial bias because the model assumptions were not met by the underlying flow pattern.
Collapse
Affiliation(s)
- Moritz Jörg Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Thomas Gaass
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
13
|
Intravoxel incoherent motion diffusion-weighted MR imaging of solid pancreatic masses: reliability and usefulness for characterization. Abdom Radiol (NY) 2019; 44:131-139. [PMID: 29951899 DOI: 10.1007/s00261-018-1684-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE IVIM-DW imaging has shown potential usefulness in the study of pancreatic lesions. Controversial results are available regarding the reliability of the measurements of IVIM-derived parameters. The aim of this study was to evaluate the reliability and the diagnostic potential of IVIM-derived parameters in differentiation among focal solid pancreatic lesions and normal pancreas (NP). METHODS Fifty-seven patients (34 carcinomas-PDACs, 18 neuroendocrine neoplasms-panNENs, and 5 autoimmune pancreatitis-AIP) and 50 subjects with NP underwent 1.5-T MR imaging including IVIM-DWI. Images were analyzed by two independent readers. Apparent diffusion coefficient (ADC), slow component of diffusion (D), incoherent microcirculation (Dp), and perfusion fraction (f) were calculated. Interobserver reliability was assessed with intraclass correlation coefficient (ICC). A Kruskal-Wallis H test with Steel-Dwass post hoc test was used for comparison. The diagnostic performance of each parameter was evaluated through receiver operating characteristic (ROC) curve analysis. RESULTS Overall interobserver agreement was excellent (ICC = 0.860, 0.937, 0.968, and 0.983 for ADC, D, Dp, and f). D, Dp, and f significantly differed among PDACs and panNENs (p = 0.002, < 0.001, and < 0.001), albeit without significant difference at the pairwise comparison of ROC curves (p = 0.08-0.74). Perfusion fraction was higher in AIP compared with PDACs (p = 0.024; AUC = 0.735). Dp and f were higher in panNENs compared with AIP (p = 0.029 and 0.023), without differences at ROC analysis (p = 0.07). CONCLUSIONS IVIM-derived parameters have excellent reliability and could help in differentiation among solid pancreatic lesions and NP.
Collapse
|
14
|
Fieremans E, Lee HH. Physical and numerical phantoms for the validation of brain microstructural MRI: A cookbook. Neuroimage 2018; 182:39-61. [PMID: 29920376 PMCID: PMC6175674 DOI: 10.1016/j.neuroimage.2018.06.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022] Open
Abstract
Phantoms, both numerical (software) and physical (hardware), can serve as a gold standard for the validation of MRI methods probing the brain microstructure. This review aims to provide guidelines on how to build, implement, or choose the right phantom for a particular application, along with an overview of the current state-of-the-art of phantoms dedicated to study brain microstructure with MRI. For physical phantoms, we discuss the essential requirements and relevant characteristics of both the (NMR visible) liquid and (NMR invisible) phantom materials that induce relevant microstructural features detectable via MRI, based on diffusion, intra-voxel incoherent motion, magnetization transfer or magnetic susceptibility weighted contrast. In particular, for diffusion MRI, many useful phantoms have been proposed, ranging from simple liquids to advanced biomimetic phantoms consisting of hollow or plain microfibers and capillaries. For numerical phantoms, the focus is on Monte Carlo simulations of random walk, for which the basic principles, along with useful criteria to check and potential pitfalls are reviewed, in addition to a literature overview highlighting recent advances. While many phantoms exist already, the current review aims to stimulate further research in the field and to address remaining needs.
Collapse
Affiliation(s)
- Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | - Hong-Hsi Lee
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Peckham ME, Anderson JS, Rassner UA, Shah LM, Hinckley PJ, de Havenon A, Kim SE, McNally JS. Low b-value diffusion weighted imaging is promising in the diagnosis of brain death and hypoxic-ischemic injury secondary to cardiopulmonary arrest. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:165. [PMID: 29925413 PMCID: PMC6011248 DOI: 10.1186/s13054-018-2087-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022]
Abstract
Background Cardiorespiratory arrest can result in a spectrum of hypoxic ischemic brain injury leading to global hypoperfusion and brain death (BD). Because up to 40% of patients with BD are viable organ donors, avoiding delayed diagnosis of this condition is critical. High b-value diffusion weighted imaging (DWI) measures primarily molecular self-diffusion; however, low b-values are sensitive to perfusion. We investigated the feasibility of low b-value DWI in discriminating the global hypoperfusion of BD and hypoxic ischemic encephalopathy (HIE). Methods We retrospectively reviewed cardiorespiratory arrest subjects with a diagnosis of HIE or BD. Inclusion criteria included brain DWI acquired at both low (50 s/mm2) and high (1000–2000 s/mm2) b-values. Automated segmentation was used to determine mean b50 apparent diffusion coefficient (ADC) values in gray and white matter regions. Normal subjects with DWI at both values were used as age- and sex-matched controls. Results We evaluated 64 patients (45 with cardiorespiratory arrest and 19 normal). Cardiorespiratory arrest patients with BD had markedly lower mean b50 ADC in gray matter regions compared with HIE (0.70 ± 0.18 vs. 1.95 ± 0.25 × 10−3 mm2/s, p < 0.001) and normal subjects (vs. 1.79 ± 0.12 × 10−3 mm2/s, p < 0.001). HIE had higher mean b50 ADC compared with normal (1.95 ± 0.25 vs. 1.79 ± 0.12 × 10−3 mm2/s, p = 0.016). There was wide separation of gray matter ADC values in BD subjects compared with age matched normal and HIE subjects. White matter values were also markedly decreased in the BD population, although they were less predictive than gray matter. Conclusion Low b-value DWI is promising for the discrimination of HIE with maintained perfusion and brain death in cardiorespiratory arrest.
Collapse
Affiliation(s)
- Miriam E Peckham
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA. .,Department of Radiology and Imaging Sciences, University of Utah Health Sciences Center, 30 North, 1900 East #1A071, Salt Lake City, UT, 84132-2140, USA.
| | - Jeffrey S Anderson
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ulrich A Rassner
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Lubdha M Shah
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Peter J Hinckley
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Adam de Havenon
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Seong-Eun Kim
- Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - J Scott McNally
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR IN BIOMEDICINE 2017; 30. [PMID: 28885745 DOI: 10.1002/nbm.3780] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/19/2017] [Accepted: 07/07/2017] [Indexed: 05/07/2023]
Abstract
The idea that in vivo intravoxel incoherent motion magnetic resonance signal is influenced by blood motion in the microvasculature is exciting, because it suggests that local and quantitative perfusion information can be obtained in a simple and elegant way from a few diffusion-weighted images, without contrast injection. When the method was proposed in the late 1980s some doubts appeared as to its feasibility, and, probably because the signal to noise and image quality at the time was not sufficient, no obvious experimental evidence could be produced to alleviate them. Helped by the tremendous improvements seen in the last three decades in MR hardware, pulse design, and post-processing capabilities, an increasing number of encouraging reports on the value of intravoxel incoherent motion perfusion imaging have emerged. The aim of this article is to review the current published evidence on the feasibility of in vivo perfusion imaging with intravoxel incoherent motion MRI.
Collapse
Affiliation(s)
- Christian Federau
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, Petersgraben, Basle, Switzerland
| |
Collapse
|
17
|
Suo S, Cheng F, Cao M, Kang J, Wang M, Hua J, Hua X, Li L, Lu Q, Liu J, Xu J. Multiparametric diffusion-weighted imaging in breast lesions: Association with pathologic diagnosis and prognostic factors. J Magn Reson Imaging 2017; 46:740-750. [PMID: 28139036 DOI: 10.1002/jmri.25612] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Shiteng Suo
- Department of Radiology, Renji Hospital, School of Medicine; Shanghai Jiao Tong University; Shanghai PR China
| | - Fang Cheng
- Department of Radiology, Renji Hospital, School of Medicine; Shanghai Jiao Tong University; Shanghai PR China
| | - Mengqiu Cao
- Department of Radiology, Renji Hospital, School of Medicine; Shanghai Jiao Tong University; Shanghai PR China
| | - Jiwen Kang
- Department of Radiology, Renji Hospital, School of Medicine; Shanghai Jiao Tong University; Shanghai PR China
| | - Mingyao Wang
- Department of Radiology, Renji Hospital, School of Medicine; Shanghai Jiao Tong University; Shanghai PR China
| | - Jia Hua
- Department of Radiology, Renji Hospital, School of Medicine; Shanghai Jiao Tong University; Shanghai PR China
| | - Xiaolan Hua
- Department of Radiology, Renji Hospital, School of Medicine; Shanghai Jiao Tong University; Shanghai PR China
| | - Lan Li
- Department of Radiology, Renji Hospital, School of Medicine; Shanghai Jiao Tong University; Shanghai PR China
| | - Qing Lu
- Department of Radiology, Renji Hospital, School of Medicine; Shanghai Jiao Tong University; Shanghai PR China
| | - Jialin Liu
- School of Biomedical Engineering; Shanghai Jiao Tong University; Shanghai PR China
| | - Jianrong Xu
- Department of Radiology, Renji Hospital, School of Medicine; Shanghai Jiao Tong University; Shanghai PR China
| |
Collapse
|
18
|
Wong SM, Zhang CE, van Bussel FC, Staals J, Jeukens CR, Hofman PA, van Oostenbrugge RJ, Backes WH, Jansen JF. Simultaneous investigation of microvasculature and parenchyma in cerebral small vessel disease using intravoxel incoherent motion imaging. NEUROIMAGE-CLINICAL 2017; 14:216-221. [PMID: 28180080 PMCID: PMC5288390 DOI: 10.1016/j.nicl.2017.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Cerebral small vessel disease (cSVD) is associated with microvascular and parenchymal alterations. Intravoxel incoherent motion (IVIM) MRI has been proposed to simultaneously measure both the microvascular perfusion and parenchymal diffusivity. This study aimed to evaluate the application of IVIM in cSVD to assess the microvasculature and parenchymal microstructure. METHODS Seventy-three patients with cSVD (age 70 ± 11 y) and thirty-nine controls (age 69 ± 12 y) underwent IVIM imaging (3T). Group differences of the perfusion volume fraction f and the parenchymal diffusivity D were investigated using multivariable linear regression accounted for age, sex and cardiovascular factors. To examine the relation between the IVIM measures and the disease severity on structural MRI, white matter hyperintensity (WMH) load served as surrogate measure of the disease severity. RESULTS Patients had a larger f (p < 0.024) in the normal appearing white matter (NAWM) than controls. Higher D (p < 0.031) was also observed for patients compared with controls in the NAWM and grey matter. Both f (p < 0.024) and D (p < 0.001) in the NAWM and grey matter increased with WMH load. CONCLUSIONS The increased diffusivity reflects the predicted microstructural tissue impairment in cSVD. Unexpectedly, an increased perfusion volume fraction was observed in patients. Future studies are needed to reveal the precise nature of the increased perfusion volume fraction. IVIM imaging showed that the increases of f and D in cSVD were both related to disease severity, which suggests the potential of IVIM imaging to provide a surrogate marker for the progression of cSVD.
Collapse
Key Words
- BMI, body mass index
- Brain parenchyma
- Cerebral small vessel disease
- DGM, deep grey matter
- DW, diffusion weighted
- Diffusion weighted imaging
- FLAIR, fluid attenuated inversion recovery
- FOV, field of view
- IVIM, intravoxel incoherent motion imaging
- Intravoxel incoherent motion imaging
- LS, lacunar stroke
- Microvasculature
- NAWM, normal appearing white matter
- PVS, perivascular spaces
- Perfusion MR imaging
- ROI, region of interest
- SNR, signal-to-noise ratio
- WMH, white matter hyperintensity
- cSVD, cerebral small vessel disease
- mVCI, mild vascular cognitive impairment
Collapse
Affiliation(s)
- Sau May Wong
- Dept. of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. Eleana Zhang
- Dept. of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Centre, Maastricht, The Netherlands
- Dept. of Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Frank C.G. van Bussel
- Dept. of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Julie Staals
- Dept. of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Dept. of Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Cécile R.L.P.N. Jeukens
- Dept. of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Paul A.M. Hofman
- Dept. of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robert J. van Oostenbrugge
- Dept. of Neurology, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Centre, Maastricht, The Netherlands
- Dept. of Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Walter H. Backes
- Dept. of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jacobus F.A. Jansen
- Dept. of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University Medical Centre, Maastricht, The Netherlands
- Corresponding author at: Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.Department of Radiology & Nuclear MedicineMaastricht University Medical CentrePO Box 5800Maastricht6202 AZThe Netherlands
| |
Collapse
|
19
|
Park HJ, Sung YS, Lee SS, Lee Y, Cheong H, Kim YJ, Lee MG. Intravoxel incoherent motion diffusion-weighted MRI of the abdomen: The effect of fitting algorithms on the accuracy and reliability of the parameters. J Magn Reson Imaging 2016; 45:1637-1647. [PMID: 27865032 DOI: 10.1002/jmri.25535] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/13/2016] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To evaluate the influence of fitting methods on the accuracy and reliability of intravoxel incoherent motion (IVIM) parameters, with a particular emphasis on the constraint function. MATERIALS AND METHODS Diffusion-weighted (DW) imaging data were analyzed using IVIM-based full-fitting (simultaneous fit of all parameters) and segmented-fitting (step-by-step fit of each parameter), each with and without the constraint function, to estimate the molecular diffusion coefficient (Dslow ), perfusion fraction (f), and flow-related diffusion coefficient (Dfast ). Computational simulations were performed at variable signal-to-noise ratios to evaluate the relative error (RE) and coefficient of variation (CV) of the estimated IVIM parameters. DW imaging of the abdomen was performed twice at 1.5 Tesla using nine b-values (0-900 s/mm2 ) in 12 health volunteers (6 men and 6 women; mean age: 30 years). The measurement repeatability of IVIM parameters in the liver and the pancreas was evaluated using the within-subject coefficient of variation (w CV). RESULTS In simulations, full-fitting without the constraint function yielded the largest RE (P < 0.001 for Dslow and f; P ≤ 0.044 for Dfast ) and CV (P ≤ 0.033 for Dslow and f; P ≤ 0.473 for Dfast ) for IVIM parameters among all four algorithms. In volunteer imaging, full-fitting without the constraint function also resulted in the poorest repeatability for Dslow (w CV, 17.12%-65.45%) and f (w CV, 19.35%-42.84%) in the liver and pancreas, while the other algorithms had similar repeatability values (w CV, 4.05%-11.99% for Dslow and 9.65%-18.66% for f). Measurement repeatability of Dfast (w CV, 29.52%-85.01%) was the poorest among the IVIM parameters. CONCLUSION For accurate and reliable measurement of IVIM parameters, segmented fitting or full-fitting with the constraint function should be used for IVIM-based analysis of DW imaging. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;45:1637-1647.
Collapse
Affiliation(s)
- Hyo Jung Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| | - Yu Sub Sung
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| | - Yedaun Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Hyunhee Cheong
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| | - Yeong Jae Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| | - Moon-Gyu Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, 86, Asanbyeongwon-gil, Songpa-gu, Seoul, Korea
| |
Collapse
|
20
|
Choi IY, Lee SS, Sung YS, Cheong H, Lee H, Byun JH, Kim SY, Lee SJ, Shin YM, Lee MG. Intravoxel incoherent motion diffusion-weighted imaging for characterizing focal hepatic lesions: Correlation with lesion enhancement. J Magn Reson Imaging 2016; 45:1589-1598. [PMID: 27664970 DOI: 10.1002/jmri.25492] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/10/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To evaluate the value of intravoxel incoherent motion (IVIM) parameters for characterizing focal hepatic lesions, and to assess the correlation between IVIM parameters and arterial nodule enhancement. MATERIALS AND METHODS We retrospectively evaluated 161 lesions (91 hepatocellular carcinomas [HCCs], 27 intrahepatic cholangiocarcinomas [IHCCs], 20 hemangiomas, 9 combined hepatocellular-cholangiocarcinomas, 9 metastases, and 5 other tumors) in 161 patients (105 men and 56 women; mean age, 56.4 years). Diffusion-weighted imaging was performed using nine b-values (0-900 s/mm2 ) at 1.5T. Apparent diffusion coefficient (ADC), molecular diffusion coefficient (Dslow ), perfusion fraction (f), and perfusion-related diffusion coefficient (Dfast ) were compared among the hepatic lesions using analysis of variance (ANOVA). Receiver-operating-characteristic analysis was performed to assess diagnostic performance. The enhancement fraction (EF) and the relative enhancement (RE) of the hepatic lesions on arterial phase gadoxetic acid-enhanced images were correlated with the IVIM parameters using Spearman's test. RESULTS For the differentiation of hemangiomas from malignant tumors, Dslow showed the largest area under the curve (0.933) among all parameters. Although ADC did not show any difference among malignant lesions (P ≥ 0.28), HCCs showed a significantly lower Dslow than IHCC (P < 0.001) and a higher f than did IHCC (P < 0.001) and metastasis (P = 0.027); f had a significant positive correlation with EF (r = 0.420, P < 0.001) and RE (r = 0.264, P = 0.001). CONCLUSION IVIM parameters are more helpful in characterizing malignant hepatic lesions than ADC; f may reflect the extent and degree of hepatic nodule enhancement in the arterial phase, and may allow for differentiation of HCC from IHCC and metastasis. LEVEL OF EVIDENCE 3 J. MAGN. RESON. IMAGING 2017;45:1589-1598.
Collapse
Affiliation(s)
- In Young Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yu Sub Sung
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hyunhee Cheong
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hoyoung Lee
- University of Ulsan, College of Medicine, Seoul, Korea
| | - Jae Ho Byun
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| | - So Yeon Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| | - So Jung Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yong Moon Shin
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| | - Moon-Gyu Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|