1
|
Zhang H, Xing Y, Wang L, Hu Y, Xu Z, Chen H, Lu J, Yang J, Ding B, Hu W, Zhong J. Ultra-High-Resolution Photon-Counting Detector CT Benefits Visualization of Abdominal Arteries: A Comparison to Standard-Reconstruction. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:1891-1903. [PMID: 39455541 DOI: 10.1007/s10278-024-01232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 10/28/2024]
Abstract
This study aimed to investigate the potential benefit of ultra-high-resolution (UHR) photon-counting detector CT (PCD-CT) angiography in visualization of abdominal arteries in comparison to standard-reconstruction (SR) images of virtual monoenergetic images (VMI) at low kiloelectron volt (keV). We prospectively included 47 and 47 participants to undergo contrast-enhanced abdominal CT scans within UHR mode on a PCD-CT system using full-dose (FD) and low-dose (LD) protocols, respectively. The data were reconstructed into six series of images: FD_UHR_Br48, FD_UHR_Bv56, FD_UHR_Bv60, FD_SR_Bv40, LD_UHR_Bv48, and LD_SR_Bv40. The UHR reconstructions were performed with three kernels (Bv48, Bv56, and Bv60) within 0.2 mm. The SR were virtual monoenergetic imaging reconstruction with Bv40 kernel at 40-keV within 1 mm. Each series of axial images were reconstructed into coronal and volume-rendered images. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of seven arteries were measured. Three radiologists assessed the image quality, and visibility of nine arteries on all the images. SNR and CNR values of SR images were significantly higher than those of UHR images (P < 0.001). The SR images have higher ratings in image noise (P < 0.001), but the FD_UHR_Bv56 and FD_UHR_Bv60 images has higher rating in vessel sharpness (P < 0.001). The overall quality was not significantly different among FD_VMI_40keV, LD_VMI_40keV, FD_UHR_Bv48, and LD_UHR_Bv48 images (P > 0.05) but higher than those of FD_UHR_Bv56 and FD_UHR_Bv60 images (P < 0.001). There is no significant difference of nine abdominal arteries among six series of images of axial, coronal and volume-rendered images (P > 0.05). To conclude, 1-mm SR image of VMI at 40-keV is superior to 0.2-mm UHR regardless of which kernel is used to visualize abdominal arteries, while 0.2-mm UHR image using a relatively smooth kernel may allow similar image quality and artery visibility when thinner slice image is warranted.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhihan Xu
- Siemens Healthineers, Shanghai, 201318, China
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Bei Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiguo Hu
- Department of Geriatrics and Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Medical Center On Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
2
|
Ding H, Wei W, Xu N, Tang R, Zhang Z, Yang C, Xie J, Gong S, Wang Z, Zhao P. Relationship between ultra-high-resolution computed tomography score of oval window region involvement and audiometry in otosclerosis. Am J Otolaryngol 2025; 46:104684. [PMID: 40513469 DOI: 10.1016/j.amjoto.2025.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 05/17/2025] [Accepted: 05/26/2025] [Indexed: 06/16/2025]
Abstract
PURPOSE To assess the relationship between the ultra-high-resolution computed tomography (U-HRCT) score of oval window region (OWR) involvement and audiometry in otosclerosis. METHODS This study enrolled patients with clinically suspected otosclerosis who underwent U-HRCT examination. The analysis included 71 ears from 50 patients (mean age, 38.0 [34.0-49.8] years). The ears were divided into the conductive hearing loss group (group A, 20 ears) and mixed hearing loss group (group B, 51 ears). The CT scores of bone involvement around the oval window (0, none; 1, <25 %; 2, 25 %-50 %; 3, 50 %-75 %; 4, >75 %) and stapes footplate involvement (0, none; 1, <50 %; 2, >50 %) were evaluated and summed to obtain the CT score of OWR involvement. The Mann-Whitney U test was used to compare the difference in the distribution of the CT score of OWR involvement between groups A and B. Spearman's rank correlation analysis was performed to evaluate the association between the CT score of OWR involvement and the mean air conduction (AC), bone conduction (BC) and air-bone gap (ABG). RESULTS The CT score of OWR involvement in group B was significantly higher than that in group A (p = .014). The correlation coefficients between the CT score of OWR involvement and the mean AC, BC, and ABG threshold were 0.74 (p < .001), 0.52 (p < .001), and 0.48 (p < .001). CONCLUSION U-HRCT possesses the ability to clearly depict the OWR in otosclerosis. The U-HRCT-derived OWR involvement score of otosclerosis could reflect the type and degree of hearing loss.
Collapse
Affiliation(s)
- Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, NO.95, Yongan Road, Xicheng District, Beijing 100050, China
| | - Wei Wei
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, NO.95, Yongan Road, Xicheng District, Beijing 100050, China
| | - Ning Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, NO.95, Yongan Road, Xicheng District, Beijing 100050, China
| | - Ruowei Tang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, NO.95, Yongan Road, Xicheng District, Beijing 100050, China
| | - Zhengyu Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, NO.95, Yongan Road, Xicheng District, Beijing 100050, China
| | - Chen Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, NO.95, Yongan Road, Xicheng District, Beijing 100050, China
| | - Jing Xie
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, NO.95, Yongan Road, Xicheng District, Beijing 100050, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, NO.95, Yongan Road, Xicheng District, Beijing 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, NO.95, Yongan Road, Xicheng District, Beijing 100050, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, NO.95, Yongan Road, Xicheng District, Beijing 100050, China.
| |
Collapse
|
3
|
Chang S, Benson JC, Lane JI, Bruesewitz MR, Swicklik JR, Thorne JE, Koons EK, Carlson ML, McCollough CH, Leng S. Ultra-High-Resolution Photon-Counting-Detector CT with a Dedicated Denoising Convolutional Neural Network for Enhanced Temporal Bone Imaging. AJNR Am J Neuroradiol 2025:ajnr.A8572. [PMID: 39528299 DOI: 10.3174/ajnr.a8572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND PURPOSE Ultra-high-resolution (UHR) photon-counting-detector (PCD) CT improves image resolution but increases noise, necessitating the use of smoother reconstruction kernels that reduce resolution below the 0.125-mm maximum spatial resolution. A denoising convolutional neural network (CNN) was developed to reduce noise in images reconstructed with the available sharpest reconstruction kernel while preserving resolution for enhanced temporal bone visualization to address this issue. MATERIALS AND METHODS With institutional review board approval, the CNN was trained on 6 patient cases of clinical temporal bone imaging (1885 images) and tested on 20 independent cases using a dual-source PCD-CT (NAEOTOM Alpha). Images were reconstructed using quantum iterative reconstruction at strength 3 (QIR3) with both a clinical routine kernel (Hr84) and the sharpest available head kernel (Hr96). The CNN was applied to images reconstructed with Hr96 and QIR1 kernel. For each case, three series of images (Hr84-QIR3, Hr96-QIR3, and Hr96-CNN) were randomized for review by 2 neuroradiologists assessing the overall quality and delineating the modiolus, stapes footplate, and incudomallear joint. RESULTS The CNN reduced noise by 80% compared with Hr96-QIR3 and by 50% relative to Hr84-QIR3, while maintaining high resolution. Compared with the conventional method at the same kernel (Hr96-QIR3), Hr96-CNN significantly decreased image noise (from 204.63 to 47.35 HU) and improved its structural similarity index (from 0.72 to 0.99). Hr96-CNN images ranked higher than Hr84-QIR3 and Hr96-QIR3 in overall quality (P < .001). Readers preferred Hr96-CNN for all 3 structures. CONCLUSIONS The proposed CNN significantly reduced image noise in UHR PCD-CT, enabling the use of the sharpest kernel. This combination greatly enhanced diagnostic image quality and anatomic visualization.
Collapse
Affiliation(s)
- Shaojie Chang
- From the Department of Radiology (S.C., J.C.B., J.I.L., M.R.B., J.R.S., J.E.T., E.K.K., M.L.C., C.H.M., S.L.), Mayo Clinic, Rochester, Minnesota
| | - John C Benson
- From the Department of Radiology (S.C., J.C.B., J.I.L., M.R.B., J.R.S., J.E.T., E.K.K., M.L.C., C.H.M., S.L.), Mayo Clinic, Rochester, Minnesota
| | - John I Lane
- From the Department of Radiology (S.C., J.C.B., J.I.L., M.R.B., J.R.S., J.E.T., E.K.K., M.L.C., C.H.M., S.L.), Mayo Clinic, Rochester, Minnesota
| | - Michael R Bruesewitz
- From the Department of Radiology (S.C., J.C.B., J.I.L., M.R.B., J.R.S., J.E.T., E.K.K., M.L.C., C.H.M., S.L.), Mayo Clinic, Rochester, Minnesota
| | - Joseph R Swicklik
- From the Department of Radiology (S.C., J.C.B., J.I.L., M.R.B., J.R.S., J.E.T., E.K.K., M.L.C., C.H.M., S.L.), Mayo Clinic, Rochester, Minnesota
| | - Jamison E Thorne
- From the Department of Radiology (S.C., J.C.B., J.I.L., M.R.B., J.R.S., J.E.T., E.K.K., M.L.C., C.H.M., S.L.), Mayo Clinic, Rochester, Minnesota
| | - Emily K Koons
- From the Department of Radiology (S.C., J.C.B., J.I.L., M.R.B., J.R.S., J.E.T., E.K.K., M.L.C., C.H.M., S.L.), Mayo Clinic, Rochester, Minnesota
| | - Matthew L Carlson
- From the Department of Radiology (S.C., J.C.B., J.I.L., M.R.B., J.R.S., J.E.T., E.K.K., M.L.C., C.H.M., S.L.), Mayo Clinic, Rochester, Minnesota
- Department of Otolaryngology-Head and Neck Surgery (M.L.C.), Mayo Clinic, Rochester, Minnesota
| | - Cynthia H McCollough
- From the Department of Radiology (S.C., J.C.B., J.I.L., M.R.B., J.R.S., J.E.T., E.K.K., M.L.C., C.H.M., S.L.), Mayo Clinic, Rochester, Minnesota
| | - Shuai Leng
- From the Department of Radiology (S.C., J.C.B., J.I.L., M.R.B., J.R.S., J.E.T., E.K.K., M.L.C., C.H.M., S.L.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Lan Y, Liu R, Guo L, Zhang C, Zhang H, Huang J, Yu N, Feng F, Du F, Yun W, Long X. Advancing Preoperative Planning in Perforator Flap Surgery with Photon-Counting Computed Tomography Angiography: Less Challenges with More Precision. Aesthetic Plast Surg 2025:10.1007/s00266-025-04861-5. [PMID: 40328972 DOI: 10.1007/s00266-025-04861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/26/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Perforator flaps are crucial in plastic surgery, providing versatility in complex reconstructions. However, anatomical variations pose challenges in flap dissection and anastomosis. Conventional computed tomography angiography (CTA) is standard for preoperative planning but has limitations in evaluating small arteries. A novel technique, photon-counting computed tomography (PCCT), offers enhanced spatial resolution with lower radiation exposure. METHODS From December 2023 to September 2024, a pilot study was conducted at Peking Union Medical College Hospital in Beijing. Seven patients undergoing perforator flap reconstructions received preoperative PCCT angiography (experimental group). Five patients underwent conventional CTA scans (control group 1), and another five had flap reconstructions guided by traditional imaging methods (control group 2). Three flap types were analyzed: deep inferior epigastric perforator flap, anterolateral thigh perforator flap, and superficial circumflex iliac artery perforator flap. Imaging efficacy, radiation dose, and surgical outcomes were compared. RESULTS PCCT identified significantly more perforators (14.5 ± 2.1 vs. 10.2 ± 1.8, p < 0.05) and smaller branch diameters (0.8 ± 0.1 mm vs. 1.2 ± 0.2 mm, p < 0.05) compared to conventional CTA. The radiation dose was lower with PCCT (6.3 ± 1.1 mSv vs. 8.1 ± 0.9 mSv, p < 0.05). The experimental group experienced shorter operation and flap harvesting times, with fewer complications than control group 2. CONCLUSION PCCT angiography enhances preoperative assessment of perforator vessels by detecting more and smaller perforators while reducing radiation exposure, thereby improving surgical planning and outcomes in perforator flap reconstructions. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yining Lan
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Science Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, China
- Eight-year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Runzhu Liu
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Science Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, China
| | - Luqi Guo
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Science Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, China
| | - Chao Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science Peking Union Medical College Hospital, Beijing, China
| | - Hailin Zhang
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Science Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, China
| | - Jiuzuo Huang
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Science Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Science Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science Peking Union Medical College Hospital, Beijing, China
| | - Fengzhou Du
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Science Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, China.
| | - Wang Yun
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science Peking Union Medical College Hospital, Beijing, China.
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Chinese Academy of Medical Science Peking Union Medical College Hospital, No. 41 Damucang Hutong, Xicheng District, Beijing, China.
| |
Collapse
|
5
|
Winfree T, Treb K, McCollough C, Leng S. Spectral performance for iodine quantification of a dual-source, dual-kV photon counting detector CT. Med Phys 2025; 52:2824-2831. [PMID: 39930273 PMCID: PMC12064377 DOI: 10.1002/mp.17679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Multi-energy CT (MECT) enables quantification of material concentrations by measuring linear attenuation coefficient line integrals with multiple x-ray spectra. Photon counting detector (PCD)-CT utilizes a detector-based approach for MECT that can suffer from substantial spectral overlap, resulting in amplified material quantification noise. Dual-source dual-kV approaches for MECT are currently utilized in some energy-integrating detector (EID)-CT systems and can potentially be utilized with PCD-CT for improved spectral separation. PURPOSE To evaluate the iodine quantification performance of a novel dual-source (DS)-PCD-CT scan mode and compare to single-source (SS)-PCD-CT and DS-EID-CT. MATERIALS AND METHODS A 30 cm × 40 cm solid water phantom with four iodine inserts (2, 5, 10, and 15 mg/mL) was scanned with the three spectral modalities: SS-PCD-CT with two energy thresholds, DS-PCD-CT (90/Sn150 kV), and DS-EID-CT (90/Sn150 kV). For each modality, full-dose (12 mGy) and half-dose scans were acquired, and images were reconstructed with filtered back-projection using a quantitative (Qr40) kernel. When scanning in a DS configuration, the total radiation dose budget is split between two detectors, increasing the strength of a signal-dependent filter compared to a SS acquisition. To account for this effect, the modulation transfer function (MTF) for each modality was measured from a 0.05 mm tungsten wire. A linear spatial filter was applied to the SS images to match their MTF to that of the DS images. The resulting high- and low-energy images were input into an image-domain least squares material decomposition algorithm with iodine and water as the two basis materials. Iodine quantification accuracy and noise measured from the iodine basis images were used as figures of merit, and t-tests used to compare between modalities. RESULTS The 10% MTF cutoffs were 0.56, 0.57, 0.60, and 0.57 lp/mm for DS-EID-CT, DS-PCD-CT, SS-PCD-CT, and SS-PCD-CT after MTF-matching, respectively, with the SS-PCD-CT MTF cutoff dropping to 0.58 lp/mm at half-dose. Without accounting for the signal-dependent filter by matching the MTFs, the noise in iodine material basis images from SS-PCD-CT was 10% higher than that of DS-EID-CT. After matching the MTFs, the noise in the SS-PCD-CT iodine image was 9%-22% lower than that of the DS-EID-CT. The lowest iodine image noise was from the DS-PCD-CT, which was 39%-41% lower than the DS-EID-CT. The DS-PCD-CT noise magnitude was significantly different from the other modalities. Mean iodine quantification accuracy across all measured concentrations was within 5% for all modalities at full dose, but was only below 5% for the DS-PCD-CT at half-dose. CONCLUSIONS SS-PCD-CT with two energy thresholds outperformed DS-EID-CT in terms of image noise in iodine basis images when spatial resolution was matched. DS-PCD-CT gave the lowest noise due to the combination of PCD technology and improved spectral separation from the different x-ray spectra.
Collapse
Affiliation(s)
- Tim Winfree
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Kevin Treb
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | - Shuai Leng
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
6
|
Zhan L, Chen G, Li K. Quantifying photon counting detector (PCD) performance using PCD-CT images. Med Phys 2025; 52:2796-2809. [PMID: 39971720 PMCID: PMC12064383 DOI: 10.1002/mp.17701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Photon counting detector CTs (PCD-CTs) have recently been introduced to clinical imaging. This development creates a new need for end-users to quantify and monitor the physical performance of PCDs. Traditionally, the characterization of PCD performance relied on detector counts, which are typically accessible to the manufacturer but are not usually available to clinical end-users. PURPOSE The goal of this work was to develop a new method for quantifying PCD performance using reconstructed PCD-CT images, without requiring access to the PCD counts. METHODS The proposed method is based on a set of closed-form relationships that connect PCD-CT image noise, the PCD deadtime ( τ $\tau$ ), and the zero-frequency detective quantum efficiency (DQE 0 ${\rm DQE}_0$ ) of PCDs. At a low tube current (mA) level, the mean output counts of the PCD were estimated by fitting the measured PCD-CT noise power spectrum (NPS) to a parametric model.DQE 0 ${\rm DQE}_0$ was then calculated by normalizing the estimated mean detector counts to the expected input x-ray photon number. To estimate τ $\tau$ , the image variance of PCD-CT was measured at different mA levels. A novel quantitative relationship between PCD-CT image variance, τ $\tau$ , and mA was employed to estimate τ $\tau$ through parametric fitting. The method was validated using both simulated and experimental PCD-CT data, covering a range of τ $\tau$ ,DQE 0 ${\rm DQE}_0$ , and system geometries. RESULTS For the simulated curved-detector PCD-CT, the estimation errors forDQE 0 ${\rm DQE}_0$ and deadtime were -3.7% and 0.5%, respectively. For the simulated collinear-detector PCD-CT, the estimation errors forDQE 0 ${\rm DQE}_0$ and deadtime were -3.3% and -1.0%, respectively. For the experimental collinear-detector PCD-CT, the estimation errors forDQE 0 ${\rm DQE}_0$ and deadtime were -2.6% and 1.6%, respectively. CONCLUSIONS By analyzing the variance and NPS of PCD-CT images,DQE 0 ${\rm DQE}_0$ and deadtime of scanner's PCD can be accurately estimated, without access to raw detector counts or projection data.
Collapse
Affiliation(s)
- Linying Zhan
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Guang‐Hong Chen
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Ke Li
- Department of Medical PhysicsUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Imaging PhysicsMD Anderson Cancer Center, University of TexasHoustonTexasUSA
- Department of Interventional RadiologyMD Anderson Cancer Center, University of TexasHoustonTexasUSA
| |
Collapse
|
7
|
Eddy RL, Sin DD. Make it count with photon-counting computed tomography: a revolution in technology for investigating the airways. Eur Respir J 2025; 65:2500297. [PMID: 40180355 DOI: 10.1183/13993003.00297-2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Rachel L Eddy
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Divison of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Tóth A, Chamberlin JH, Puthoff G, Baruah D, O'Doherty J, Maisuria D, McGuire AM, Schoepf UJ, Munden RF, Kabakus IM. Optimizing Quantum Iterative Reconstruction for Ultra-high-resolution Photon-counting Computed Tomography of the Lung. J Thorac Imaging 2025; 40:e0802. [PMID: 39233621 DOI: 10.1097/rti.0000000000000802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
PURPOSE The aim of this study was to find the optimal strength level of QIR for ultra-high-resolution (UHR) PCCT of the lung. MATERIALS AND METHODS This retrospective study included 24 patients who had unenhanced chest CT with the novel UHR scan protocol on the PCCT scanner between March 24, 2023 and May 18, 2023. Two sets of reconstructions were made using different slice thicknesses: standard resolution (SR, 1 mm) and ultra-high-resolution (UHR, 0.2 mm), reconstructed with all strength levels of QIR (0 to 4). Attenuation of the lung parenchyma, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were assessed as objective criteria of image quality. Two fellowship-trained radiologists compared image quality and noise level, sharpness of the images, and the airway details using a 5-point Likert scale. Wilcoxon signed-rank test was used for statistical analysis of reader scores, and one-way repeated measures analysis of variance for comparing the objective image quality scores. RESULTS Objective image quality linearly improved with higher strength levels of QIR, reducing image noise by 66% from QIR-0 to QIR-4 ( P <0.001). Subjective image noise was best for QIR-4 ( P <0.001). Readers rated QIR-1 and QIR-2 best for SR, and QIR-2 and QIR-3 best for UHR in terms of subjective image sharpness and airway detail, without significant differences between them ( P =0.48 and 0.56, respectively). CONCLUSIONS Higher levels of QIR provided excellent objective image quality, but readers' preference was for intermediate levels. Considering all metrics, we recommend QIR-3 for ultra-high-resolution PCCT of the lung.
Collapse
Affiliation(s)
- Adrienn Tóth
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Jordan H Chamberlin
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Gregory Puthoff
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Dhiraj Baruah
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Jim O'Doherty
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
- Siemens Medical Solutions, Malvern, PA
| | - Dhruw Maisuria
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Aaron M McGuire
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Reginald F Munden
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| | - Ismail M Kabakus
- Department of Radiology and Radiological Science, Medical University of South Carolina. Charleston, SC
| |
Collapse
|
9
|
Mohammadzadeh S, Mohebbi A, Kiani I, Mohammadi A. Direct comparison of photon counting-CT and conventional CT in image quality of lung nodules: A systematic review and meta-analysis. Eur J Radiol 2025; 183:111859. [PMID: 39842305 DOI: 10.1016/j.ejrad.2024.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025]
Abstract
PURPOSE To evaluate and compare lung nodules' image quality and radiation dose exposure using photon-counting computed tomography (PC-CT) and conventional energy-integrating detector computed tomography (EID-CT). METHODS Protocol pre-registration was performed a priori at (https://osf.io/krj5y/). We searched PubMed, Web of Science, Embase, and Cochrane Library for studies until April 10, 2024. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and QUADAS-C. The imaging modalities were compared with Likert scores of lung nodules and radiation dose exposure (measured in mGy and mS). Certainty of evidence was evaluated using Grading of Recommendations, Assessment, Development, and Evaluations (GRADE). RESULTS Thirteen studies were included with 718 patients and 362 lung nodules. PC-CT had a significantly higher image quality score of + 0.45 (CI = 0.12 to 0.79) than the EID-CT. Furthermore, 54.0 % (CI = 21.2 % to 86.8 %) of nodules were qualitatively identified as having better image quality in PC-CT than in EID-CT, while 1.9 % (CI = 0 % to 4.9 %) had lower image quality. In terms of radiation dose exposure, PC-CT showed a 30.4 % (CI = 19.1 % to 41.7 %) reduction in radiation dose exposure compared to EID-CT. CONCLUSION The as low as reasonably achievable (ALARA) principle emphasizes minimizing ionizing radiation exposure whenever possible. PC-CT has become an up-and-coming imaging method for chest, providing enhanced spatial resolution and less radiation exposure. Integrating PC-CT into daily medical practice and lung cancer screening may enhance the visibility of lung nodules and improve diagnostic accuracy.
Collapse
Affiliation(s)
- Saeed Mohammadzadeh
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alisa Mohebbi
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Kiani
- Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Mohammadi
- Department of Radiology, Faculty of Medicine, Urmia University of Medical Science, Urmia, Iran.
| |
Collapse
|
10
|
McDonald JP, Farnsworth PJ, Campeau NG, Leng S, Carlson ML, Benson JC, Mark IT, Lane JI. Improved visualization of the inferior tympanic and mastoid canaliculi with photon counting detector CT. Am J Otolaryngol 2025; 46:104585. [PMID: 39742671 DOI: 10.1016/j.amjoto.2024.104585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To compare the performance of the photon-counting detector (PCD)-CT versus a state-of-the-art energy-integrating detector (EID)-CT to identify segments of the inferior tympanic canaliculus (Jacobsons nerve) and the mastoid canaliculus (Arnolds nerve). MATERIALS & METHODS Patients were prospectively recruited to undergo temporal bone CT on both EID-CT (Siemens Somatom Force) and PCD-CT (Siemens NAEOTOM Alpha) scanners under an IRB-approved protocol. Three neuroradiologists reviewed cases by consensus comparing the ability to identify the proximal, mid, and distal segments of the inferior tympanic canaliculus/Jacobsons nerve and mastoid canaliculus/Arnolds nerve on each scanner using 5-point Likert scales (with 1 indicating EID is far superior to PCD, 3 indicating they are equivalent, and 5 indicating PCD is far superior to EID). RESULTS Forty temporal bones were analyzed. Average Likert scores for the ability to evaluate the proximal, mid, and distal aspects of inferior tympanic canaliculus/Jacobsons nerve on the PCD compared to EID scanner were 4.5 (SD = 0.6), 4.2 (0.4), and 4.1 (0.3). The scores for the mastoid canaliculus/Arnolds nerve were 4.0 (0.4), 4.1 (0.4), and 4.0 (0.4). Overall, the PCD scanner performed better than EID for image quality (Median = 4.2, 95 % CI = [4.1, 5.0], p-value < 0.001). CONCLUSION PCD-CT provides superior visualization of the proximal, mid, and distal aspects of the inferior tympanic canaliculus/Jacobsons nerve and mastoid canaliculus/Arnolds nerve compared to EID-CT examinations. The improved visualization of these nerves could be important for characterization of subtle pathology involving these structures, such as tympanic paraganglioma or nodular perineural spread.
Collapse
Affiliation(s)
| | | | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Carlson
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, MN, USA
| | - John C Benson
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Ian T Mark
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - John I Lane
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
11
|
Hartung V, Hendel R, Huflage H, Augustin AM, Grunz JP, Kleefeldt F, Peter D, Lichthardt S, Ergün S, Bley TA, Gruschwitz P. Ultra-high Versus Standard Resolution Photon-Counting Detector CT Angiography for Imaging of Femoral Stents in a Cadaveric Perfusion Model. Acad Radiol 2025; 32:556-564. [PMID: 39112296 DOI: 10.1016/j.acra.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 01/20/2025]
Abstract
BACKGROUND AND AIMS The aim of this study was to investigate the imaging performance and quality differences of PCD-CT in standard resolution mode (SR) versus ultra-high resolution mode (UHR) in the lower extremity runoff of dose-matched CTAs in a human cadaveric model. METHODS Extracorporeal perfusion of the upper leg was established in one fresh-frozen human cadaver via inguinal and popliteal accesses using a peristaltic pump. Seven peripheral stents were deployed in the SFA. Photon-counting CTAs were performed under contrast perfusion in SR and UHR mode with dose-equivalent 120kVp acquisition protocols (low-/ medium-/ high-dose: CTDIVol=3, 5, 10 mGy) and reconstructed with four vascular convolution kernels. Lumen visibility and contrast-to-noise ratio were compared using analyses of variance. Subjective image quality was assessed using a pairwise, forced-choice comparison software. RESULTS Lumen visibility was equal for SR and UHR at the used dose levels. CNR increase by UHR was significant for (ultra-)sharp convolution kernels BV60 (3 mGy; UHR vs. SR, 19.9 ± 1.9 vs. 15.7 ± 1.6, p < 0.046) and BV76 (8.0 ± 0.6 vs. 5.4 ± 0.3, p < 0.001). The relative CNR increase was higher for low-dose than high-dose scans (BV76: 48% vs. 36% at high dose, p < 0.033). The CNR of the low-dose scan in UHR mode was comparable to the high-dose scan in SR mode when the ultra-sharp kernel was used (8.0 ± 0.6 vs. 9.1 ± 1.1, p > 0.760). Among UHR examinations, a significant increase in CNR could only be measured in BV76 (8.0 ± 0.6 (3 mGy) vs. 12.4 ± 0.9 (10 mGy), p < 0.001). Readers preferred subjective image quality of UHR for all kernels with BV76 being ranked highest. CONCLUSION The CNR increase in UHR mode is highest when combining low radiation dose and ultra-sharp reconstructions. Meanwhile, the subjective image quality in UHR mode generally supersedes SR images, suggesting further dose reduction potential.
Collapse
Affiliation(s)
- Viktor Hartung
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.).
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.)
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.)
| | - Anne Marie Augustin
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.); Department of Interventional and Diagnostic Radiology, Klinikum Bayreuth, Bayreuth, Germany (A.M.A.)
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.); Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA (J.P.G.)
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University Würzburg, Würzburg, Germany (F.K., S.E.)
| | - Dominik Peter
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, Center of Operative Medicine, University Hospital Würzburg, Würzburg, Germany (D.P., S.L.)
| | - Sven Lichthardt
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, Center of Operative Medicine, University Hospital Würzburg, Würzburg, Germany (D.P., S.L.)
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University Würzburg, Würzburg, Germany (F.K., S.E.)
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.)
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (V.H., R.H., H.H., A.M.A., J.P.G., T.A.B., P.G.)
| |
Collapse
|
12
|
Bette S, Risch F, Becker J, Popp D, Decker JA, Kaufmann D, Friedrich L, Scheurig-Münkler C, Schwarz F, Kröncke TJ. Photon-counting detector CT - first experiences in the field of musculoskeletal radiology. ROFO-FORTSCHR RONTG 2025; 197:34-43. [PMID: 38788741 DOI: 10.1055/a-2312-6914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The introduction of photon-counting detector CT (PCD-CT) marks a remarkable leap in innovation in CT imaging. The new detector technology allows X-rays to be converted directly into an electrical signal without an intermediate step via a scintillation layer and allows the energy of individual photons to be measured. Initial data show high spatial resolution, complete elimination of electronic noise, and steady availability of spectral image data sets. In particular, the new technology shows promise with respect to the imaging of osseous structures. Recently, PCD-CT was implemented in the clinical routine. The aim of this review was to summarize recent studies and to show our first experiences with photon-counting detector technology in the field of musculoskeletal radiology.We performed a literature search using Medline and included a total of 90 articles and reviews that covered recent experimental and clinical experiences with the new technology.In this review, we focus on (1) spatial resolution and delineation of fine anatomic structures, (2) reduction of radiation dose, (3) electronic noise, (4) techniques for metal artifact reduction, and (5) possibilities of spectral imaging. This article provides insight into our first experiences with photon-counting detector technology and shows results and images from experimental and clinical studies. · This review summarizes recent experimental and clinical studies in the field of photon-counting detector CT and musculoskeletal radiology.. · The potential of photon-counting detector technology in the field of musculoskeletal radiology includes improved spatial resolution, reduction in radiation dose, metal artifact reduction, and spectral imaging.. · PCD-CT enables imaging at lower radiation doses while maintaining or even enhancing spatial resolution, crucial for reducing patient exposure, especially in repeated or prolonged imaging scenarios.. · It offers promising results in reducing metal artifacts commonly encountered in orthopedic or dental implants, enhancing the interpretability of adjacent structures in postoperative and follow-up imaging.. · With its ability to routinely acquire spectral data, PCD-CT scans allow for material classification, such as detecting urate crystals in suspected gout or visualizing bone marrow edema, potentially reducing reliance on MRI in certain cases.. Bette S, Risch F, Becker J et al. Photon-counting detector CT - first experiences in the field of musculoskeletal radiology. Fortschr Röntgenstr 2024; DOI 10.1055/a-2312-6914.
Collapse
Affiliation(s)
- Stefanie Bette
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Franka Risch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Judith Becker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Daniel Popp
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Josua A Decker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - David Kaufmann
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Lena Friedrich
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Christian Scheurig-Münkler
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Florian Schwarz
- Institute of Conventional and Interventional Radiology, Donauisar Hospital Deggendorf, Deggendorf, Germany
| | - Thomas J Kröncke
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany
| |
Collapse
|
13
|
Fan M, Zhou Z, Wellinghoff J, McCollough CH, Yu L. Low-contrast detectability of photon-counting-detector CT at different scan modes and image types in comparison with energy-integrating-detector CT. J Med Imaging (Bellingham) 2024; 11:S12803. [PMID: 38799271 PMCID: PMC11116128 DOI: 10.1117/1.jmi.11.s1.s12803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose We aim to compare the low-contrast detectability of a clinical whole-body photon-counting-detector (PCD)-CT at different scan modes and image types with an energy-integrating-detector (EID)-CT. Approach We used a channelized Hotelling observer (CHO) previously optimized for quality control purposes. An American College of Radiology CT accreditation phantom was scanned on both PCD-CT and EID-CT with 10 phantom positionings. For PCD-CT, images were generated using two scan modes, standard resolution (SR) and ultra-high-resolution (UHR); two image types, virtual monochromatic images at 70 keV and low-energy threshold (T3D); both filtered-back-projection (FBP) and iterative reconstruction (IR) reconstruction methods; and three reconstruction kernels. For each positioning, three repeated scans were acquired for each scan mode, image type, and CTDIvol of 6, 12, and 24 mGy. For EID-CT, images acquired from scans (10 positionings × 3 repeats × 3 doses) were reconstructed using the closest counterpart FBP and IR kernels. CHO was applied to calculate the index of detectability (d ' ) on both scanners. Results With the smooth Br44 kernel, the d ' of UHR was mostly comparable with that of the SR mode (difference: -11.4% to 8.3%, p = 0.020 to 0.956), and the T3D images had a higher d ' (difference: 0.7% to 25.6%) than 70 keV images on PCD-CT. Compared with the EID-CT, UHR-T3D of PCD-CT had non-inferior d ' (difference: -2.7% to 12.9%) with IR and non-superior d ' (difference: 0.8% to 11.2%) with FBP using the Br44 kernel. PCD-CT produced higher d ' than EID-CT by 61.8% to 247.1% with the sharper reconstruction kernels. Conclusions The comparison between PCD-CT and EID-CT was significantly influenced by the reconstruction method and kernel. With a smooth kernel that is typically used in low-contrast detection tasks, the PCD-CT demonstrated low-contrast detectability that was comparable to EID-CT with IR and showed no superiority when using FBP. With the use of sharper kernels, the PCD-CT significantly outperformed EID-CT in low-contrast detectability.
Collapse
Affiliation(s)
- Mingdong Fan
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Zhongxing Zhou
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | - Jarod Wellinghoff
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| | | | - Lifeng Yu
- Mayo Clinic, Department of Radiology, Rochester, Minnesota, United States
| |
Collapse
|
14
|
Dane B, Froemming A, Schwartz FR, Toshav A, Ramirez-Giraldo JC, Ananthakrishnan L. Photon counting CT clinical adoption, integration, and workflow. Abdom Radiol (NY) 2024; 49:4600-4609. [PMID: 39052057 DOI: 10.1007/s00261-024-04503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Photon counting CT was recently introduced into clinical practice [Rajendran K, Petersilka M, Henning A, Shanblatt ER, Schmidt B, Flohr TG, Ferrero A, Baffour F, Diehn FE, Yu L, Rajiah P, Fletcher JG, Leng S, McCollough CH. First Clinical Photon-counting Detector CT System: Technical Evaluation. Radiology 2022;303(1):130-138. doi: https://doi.org/10.1148/radiol.212579 ]. Photon counting detectors (PCD) afford better spatial resolution, radiation dose efficiency, and iodine contrast-to-noise than EID-CT [Leng S, Bruesewitz M, Tao S, Rajendran K, Halaweish AF, Campeau NG, Fletcher JG, McCollough CH. Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology. Radiographics 2019;39(3):729-743. doi: https://doi.org/10.1148/rg.2019180115 ); (Leng S, Rajendran K, Gong H, Zhou W, Halaweish AF, Henning A, Kappler S, Baer M, Fletcher JG, McCollough CH. 150-mum Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images. Invest Radiol 2018;53(11):655-662. doi: https://doi.org/10.1097/RLI.0000000000000488 )(Booij R, van der Werf NR, Dijkshoorn ML, van der Lugt A, van Straten M. Assessment of Iodine Contrast-To-Noise Ratio in Virtual Monoenergetic Images Reconstructed from Dual-Source Energy-Integrating CT and Photon-Counting CT Data. Diagnostics (Basel) 2022;12(6). doi: https://doi.org/10.3390/diagnostics12061467 ); (Sawall S, Klein L, Amato C, Wehrse E, Dorn S, Maier J, Heinze S, Schlemmer HP, Ziener CH, Uhrig M, Kachelriess M. Iodine contrast-to-noise ratio improvement at unit dose and contrast media volume reduction in whole-body photon-counting CT. Eur J Radiol 2020;126:108909. doi: https://doi.org/10.1016/j.ejrad.2020.108909 ] while also maintaining multienergy CT (MECT) capabilities[Flohr T, Petersilka M, Henning A, Ulzheimer S, Ferda J, Schmidt B. Photon-counting CT review. Phys Med 2020;79:126-136. doi: https://doi.org/10.1016/j.ejmp.2020.10.030 ]. This article will review the clinical adoption of PCD-CT including protocol development, clinical applications, clinical integration and workflow considerations. Protocol development is institution specific and involves collaborative decision-making among radiologists, physicists, and technologists. Key PCD clinical applications include radiation exposure reduction, intravenous contrast volume reduction, and improved lesion conspicuity. Patients who would most benefit from these improvements may preferentially be scanned with PCD CT. With numerous available reconstructions, radiologists should be strategic in the series sent to PACS for interpretation and routinely sending spectral series to PACS can facilitate integration with clinical workflow. The Society of Abdominal Radiology PCD Emerging Technology Commission endorsed this article.
Collapse
Affiliation(s)
- Bari Dane
- NYU Langone Health, Department of Radiology, 660 1st Avenue, New York, NY, 10016, USA.
| | - Adam Froemming
- Department of Radiology, Mayo Clinic, 200 First Street SW, 55905, Rochester, MN, USA
| | - Fides R Schwartz
- Brigham and Women's Hospital, Department of Radiology, 75 Francis Street, Boston, MA, 02115, USA
| | - Aran Toshav
- Department of Radiology, LSUHSC School of Medicine, 2021 Perdido Street, 7th Floor, New Orleans, LA, 70112, USA
| | | | - Lakshmi Ananthakrishnan
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| |
Collapse
|
15
|
Klempka A, Neumayer P, Schröder A, Ackermann E, Hetjens S, Clausen S, Groden C. Creating a Foundation for the Visualization of Intracranial Cerebrospinal Fluid Using Photon-Counting Technology in Spectral Imaging for Cranial CT. Diagnostics (Basel) 2024; 14:2551. [PMID: 39594217 PMCID: PMC11593230 DOI: 10.3390/diagnostics14222551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Recent advancements in computed tomography (CT), notably in photon-counting CT (PCCT), are revolutionizing the medical imaging field. PCCT's spectral imaging can better visualize tissues based on their material properties. This research aims to establish a fundamental approach for the in vivo visualization of intracranial cerebrospinal fluid (CSF) using PCCT. METHODS PCCT was integrated to distinguish the CSF within the intracranial space with spectral imaging. In this study, we analyzed monoenergetic +67 keV reconstructions alongside virtual non-contrast and iodine phase images. This approach facilitated the assessment of the spectral characteristics of CSF in patients who did not present with intra-axial pathology or inflamation. RESULTS Our findings illustrate PCCT's effectiveness in providing distinct and clear visualizations of intracranial CSF structures, building a foundation. The signal-to-noise ratio was quantified across all measurements, to check in image quality. CONCLUSIONS PCCT serves as a robust, non-invasive platform for the detailed visualization of intracranial CSF. This technology is promising in enhancing diagnostic accuracy through different conditions.
Collapse
Affiliation(s)
- Anna Klempka
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Philipp Neumayer
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Alexander Schröder
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Eduardo Ackermann
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Svetlana Hetjens
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sven Clausen
- Department of Radiation Oncology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
16
|
Meloni A, Cau R, Saba L, Positano V, De Gori C, Occhipinti M, Celi S, Bossone E, Bertacchi J, Punzo B, Mantini C, Cavaliere C, Maffei E, Cademartiri F. Photon-Counting Computed Tomography Angiography of Carotid Arteries: A Topical Narrative Review with Case Examples. Diagnostics (Basel) 2024; 14:2012. [PMID: 39335691 PMCID: PMC11431079 DOI: 10.3390/diagnostics14182012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Photon counting computed tomography (PCCT) represents a paradigm shift from conventional CT imaging, propelled by a new generation of X-ray detectors capable of counting individual photons and measuring their energy. The first part of this narrative review is focused on the technical aspects of PCCT and describes its key advancements and benefits compared to conventional CT but also its limitations. By synthesizing the existing literature, the second part of the review seeks to elucidate the potential of PCCT as a valuable tool for assessing carotid artery disease. Thanks to the enhanced spatial resolution and image quality, PCCT allows for an accurate evaluation of carotid luminal stenosis. With its ability to finely discriminate between different tissue types, PCCT allows for detailed characterization of plaque morphology and composition, which is crucial for assessing plaque vulnerability and the risk of cerebrovascular events.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Riccardo Cau
- Department of Radiology, University Hospital of Cagliari, 09042 Cagliari, Italy; (R.C.); (L.S.)
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Cagliari, Italy; (R.C.); (L.S.)
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Mariaelena Occhipinti
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Eduardo Bossone
- Department of Cardiology, Antonio Cardarelli Hospital, 80131 Naples, Italy;
| | - Jacopo Bertacchi
- Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK;
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (B.P.); (C.C.); (E.M.)
| | - Cesare Mantini
- Department of Radiology, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (B.P.); (C.C.); (E.M.)
| | - Erica Maffei
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (B.P.); (C.C.); (E.M.)
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| |
Collapse
|
17
|
Lee JS, Kim J, Bapuraj JR, Srinivasan A. Comparison of Image Quality and Radiation Dose in Pediatric Temporal Bone CT Using Photon-Counting Detector CT and Energy-Integrating Detector CT. AJNR Am J Neuroradiol 2024; 45:1322-1326. [PMID: 38589057 PMCID: PMC11392378 DOI: 10.3174/ajnr.a8276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND AND PURPOSE Currently, there is a lack of research directly comparing photon-counting detector CT (PCD-CT) and energy-integrating detector CT (EID-CT) in pediatric temporal bone CT imaging. The purpose of this study was to compare the image quality and radiation dose of temporal bone CT scans in pediatric patients acquired with PCD-CT and EID-CT. MATERIALS AND METHODS The retrospective study included a total of 110 pediatric temporal bone CT scans (PCD-CT, n = 52; EID-CT, n = 58). Two independent readers evaluated the spatial resolution of 4 anatomic structures (tympanic membrane, incudostapedial joint, stapedial crura, and cochlear modiolus) and overall image quality by using a 4-point scale. Interreader agreement was assessed. Dose-length product for each CT was compared, and subgroup analyses were performed based on age (younger than 3 years, 3-5 years, 6-11 years, and 12 years and above). RESULTS PCD-CT demonstrated statistically significantly higher scores than EID-CT for all items (tympanic membrane, 2.9 versus 2.4; incudostapedial joint, 3.6 versus 2.6; stapedial crura, 3.2 versus 2.4; cochlear modiolus, 3.4 versus 2.8; overall image quality, 3.6 versus 2.8; P < .05). Interreader agreement ranged from good to excellent (interclass correlation coefficients, 0.6-0.81). PCD-CT exhibited a 43% dose reduction compared with EID-CT, with a particularly substantial reduction of over 70% in the subgroups of children younger than 6 years. CONCLUSIONS PCD temporal bone CT achieves significantly superior imaging quality at a lower radiation dose compared with EID-CT.
Collapse
Affiliation(s)
- Jeong Sub Lee
- From the Department of Radiology (J.S.L.), Jeju National University Hospital, Jeju National University College of Medicine, Jeju-si, Jeju-do, Republic of Korea
| | - John Kim
- Department of Radiology (J.K., J.R.B., A.S.), University of Michigan, Ann Arbor, Michigan.
| | - Jayapalli R Bapuraj
- Department of Radiology (J.K., J.R.B., A.S.), University of Michigan, Ann Arbor, Michigan
| | - Ashok Srinivasan
- Department of Radiology (J.K., J.R.B., A.S.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
18
|
Toia GV, Mileto A, Borhani AA, Chen GH, Ren L, Uyeda JW, Marin D. Approaches, advantages, and challenges to photon counting detector and multi-energy CT. Abdom Radiol (NY) 2024; 49:3251-3260. [PMID: 38744702 DOI: 10.1007/s00261-024-04357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
Photon counting detector CT (PCD-CT) is the newest major development in CT technology and has been commercially available since 2021. It offers major technological advantages over current standard-of-care energy integrating detector CT (EID-CT) including improved spatial resolution, improved iodine contrast to noise ratio, multi-energy imaging, and reduced noise. This article serves as a foundational basis to the technical approaches and concepts of PCD-CT technology with primary emphasis on detector technology in direct comparison to EID-CT. The article also addresses current technological challenges to PCD-CT with particular attention to cross talk and its causes (e.g., Compton scattering, fluorescence, charge sharing, K-escape) as well as pile-up.
Collapse
Affiliation(s)
- Giuseppe V Toia
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA.
| | - Achille Mileto
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Amir A Borhani
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Guang-Hong Chen
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | - Liqiang Ren
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer W Uyeda
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniele Marin
- Department of Radiology, Duke University Health System, Durham, NC, USA
| |
Collapse
|
19
|
Huflage H, Hendel R, Woznicki P, Conrads N, Feldle P, Patzer TS, Ergün S, Bley TA, Kunz AS, Grunz JP. The Small Pixel Effect in Ultra-High-Resolution Photon-Counting CT of the Lumbar Spine. Invest Radiol 2024; 59:629-634. [PMID: 38329822 DOI: 10.1097/rli.0000000000001069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
OBJECTIVES Image acquisition in ultra-high-resolution (UHR) scan mode does not impose a dose penalty in photon-counting CT (PCCT). This study aims to investigate the dose saving potential of using UHR instead of standard-resolution PCCT for lumbar spine imaging. MATERIALS AND METHODS Eight cadaveric specimens were examined with 7 dose levels (5-35 mGy) each in UHR (120 × 0.2 mm) and standard-resolution acquisition mode (144 × 0.4 mm) on a first-generation PCCT scanner. The UHR images were reconstructed with 3 dedicated bone kernels (Br68 [spatial frequency at 10% of the modulation transfer function 14.5 line pairs/cm], Br76 [21.0], and Br84 [27.9]), standard-resolution images with Br68 and Br76. Using automatic segmentation, contrast-to-noise ratios (CNRs) were established for lumbar vertebrae and psoas muscle tissue. In addition, image quality was assessed subjectively by 19 independent readers (15 radiologists, 4 surgeons) using a browser-based forced choice comparison tool totaling 16,974 performed pairwise tests. Pearson's correlation coefficient ( r ) was used to analyze the relationship between CNR and subjective image quality rankings, and Kendall W was calculated to assess interrater agreement. RESULTS Irrespective of radiation exposure level, CNR was higher in UHR datasets than in standard-resolution images postprocessed with the same reconstruction parameters. The use of sharper convolution kernels entailed lower CNR but higher subjective image quality depending on radiation dose. Subjective assessment revealed high interrater agreement ( W = 0.86; P < 0.001) with UHR images being preferred by readers in the majority of comparisons on each dose level. Substantial correlation was ascertained between CNR and the subjective image quality ranking (all r 's ≥ 0.95; P < 0.001). CONCLUSIONS In PCCT of the lumbar spine, UHR mode's smaller pixel size facilitates a considerable CNR increase over standard-resolution imaging, which can either be used for dose reduction or higher spatial resolution depending on the selected convolution kernel.
Collapse
Affiliation(s)
- Henner Huflage
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (H.H., R.H., P.W., N.C., P.F., T.S., T.A.B., A.S.K., J.-P.G.); and Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (S.E.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Leng S, Toia GV, Hoodeshenas S, Ramirez-Giraldo JC, Yagil Y, Maltz JS, Boedeker K, Li K, Baffour F, Fletcher JG. Standardizing technical parameters and terms for abdominopelvic photon-counting CT: laying the groundwork for innovation and evidence sharing. Abdom Radiol (NY) 2024; 49:3261-3273. [PMID: 38769199 DOI: 10.1007/s00261-024-04342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Photon-counting detector CT (PCD-CT) is a new technology that has multiple diagnostic benefits including increased spatial resolution, iodine signal, and radiation dose efficiency, as well as multi-energy imaging capability, but which also has unique challenges in abdominal imaging. The purpose of this work is to summarize key features, technical parameters, and terms, which are common amongst current abdominopelvic PCD-CT systems and to propose standardized terminology (where none exists). In addition, user-selectable protocol parameters are highlighted to facilitate both scientific evaluation and early clinical adoption. Unique features of PCD-CT systems include photon-counting detectors themselves, energy thresholds and bins, and tube potential considerations for preserved spectral separation. Key parameters for describing different PCD-CT systems are reviewed and explained. While PCD-CT can generate multi-energy images like dual-energy CT, there are new types of images such as threshold images, energy bin images, and special spectral images. The standardized terms and concepts herein build upon prior interdisciplinary consensus and have been endorsed by the newly created Society of Abdominal Radiology Photon-counting CT Emerging Technology Commission.
Collapse
Affiliation(s)
- Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Giuseppe V Toia
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Safa Hoodeshenas
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Yoad Yagil
- PD CT/AMI R&D Advanced Development, Philips Medical Systems, Haifa, Israel
| | - Jonathan S Maltz
- Molecular Imaging and Computed Tomography, GE Healthcare, Waukesha, WI, USA
| | | | - Ke Li
- Departments of Radiology and Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Francis Baffour
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
21
|
Kim J, Mabud T, Huang C, Lloret Del Hoyo J, Petrocelli R, Vij A, Dane B. Inter-reader agreement of pancreatic adenocarcinoma resectability assessment with photon counting versus energy integrating detector CT. Abdom Radiol (NY) 2024; 49:3149-3157. [PMID: 38630314 DOI: 10.1007/s00261-024-04298-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE To compare the inter-reader agreement of pancreatic adenocarcinoma resectability assessment at pancreatic protocol photon-counting CT (PCCT) with conventional energy-integrating detector CT (EID-CT). METHODS A retrospective single institution database search identified all contrast-enhanced pancreatic mass protocol abdominal CT performed at an outpatient facility with both a PCCT and EID-CT from 4/11/2022 to 10/30/2022. Patients without pancreatic adenocarcinoma were excluded. Four fellowship-trained abdominal radiologists, blinded to CT type, independently assessed vascular tumor involvement (uninvolved, abuts ≤ 180°, encases > 180°; celiac, superior mesenteric artery (SMA), common hepatic artery (CHA), superior mesenteric vein (SMV), main portal vein), the presence/absence of metastases, overall tumor resectability (resectable, borderline resectable, locally advanced, metastatic), and diagnostic confidence. Fleiss's kappa was used to calculate inter-reader agreement. CTDIvol was recorded. Radiation dose metrics were compared with a two-sample t-test. A p < .05 indicated statistical significance. RESULTS 145 patients (71 men, mean[SD] age: 66[9] years) were included. There was substantial inter-reader agreement, for celiac artery, SMA, and SMV involvement at PCCT (kappa = 0.61-0.69) versus moderate agreement at EID-CT (kappa = 0.56-0.59). CHA had substantial inter-reader agreement at both PCCT (kappa = 0.67) and EIDCT (kappa = 0.70). For metastasis identification, radiologists had substantial inter-reader agreement at PCCT (kappa = 0.78) versus moderate agreement at EID-CT (kappa = 0.56). CTDIvol for PCCT and EID-CT were 16.9[7.4]mGy and 29.8[26.6]mGy, respectively (p < .001). CONCLUSION There was substantial inter-reader agreement for involvement of 4/5 major peripancreatic vessels (celiac artery, SMA, CHA, and SMV) at PCCT compared with 2/5 for EID-CT. PCCT also afforded substantial inter-reader agreement for metastasis detection versus moderate agreement at EID-CT with statistically significant radiation dose reduction.
Collapse
Affiliation(s)
- Jesi Kim
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA.
| | - Tarub Mabud
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Chenchan Huang
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Juan Lloret Del Hoyo
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Robert Petrocelli
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Abhinav Vij
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Bari Dane
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| |
Collapse
|
22
|
Meloni A, Maffei E, Positano V, Clemente A, De Gori C, Berti S, La Grutta L, Saba L, Bossone E, Mantini C, Cavaliere C, Punzo B, Celi S, Cademartiri F. Technical principles, benefits, challenges, and applications of photon counting computed tomography in coronary imaging: a narrative review. Cardiovasc Diagn Ther 2024; 14:698-724. [PMID: 39263472 PMCID: PMC11384460 DOI: 10.21037/cdt-24-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
Background and Objective The introduction of photon-counting computed tomography (PCCT) represents the most recent groundbreaking advancement in clinical computed tomography (CT). PCCT has the potential to overcome the limitations of traditional CT and to provide new quantitative imaging information. This narrative review aims to summarize the technical principles, benefits, and challenges of PCCT and to provide a concise yet comprehensive summary of the applications of PCCT in the domain of coronary imaging. Methods A review of PubMed, Scopus, and Google Scholar was performed until October 2023 by using relevant keywords. Articles in English were considered. Key Content and Findings The main advantages of PCCT over traditional CT are enhanced spatial resolution, improved signal and contrast characteristics, diminished electronic noise and image artifacts, lower radiation exposure, and multi-energy capability with enhanced material discrimination. These key characteristics have made room for improved assessment of plaque volume and severity of stenosis, more precise assessment of coronary artery calcifications, also preserved in the case of a reduced radiation dose, improved assessment of plaque composition, possibility to provide details regarding the biological processes occurring within the plaque, enhanced quality and accuracy of coronary stent imaging, and improved radiomic analyses. Conclusions PCCT can significantly impact diagnostic and clinical pathways and improve the management of patients with coronary artery diseases (CADs).
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Erica Maffei
- Department of Radiology, IRCCS SYNLAB SDN, Naples, Italy
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Massa, Italy
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties - ProMISE, University of Palermo, Palermo, Italy
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, Monserrato (CA), Italy
| | - Eduardo Bossone
- Department of Cardiology, Antonio Cardarelli Hospital, Naples, Italy
| | - Cesare Mantini
- Department of Radiology, "G. D'Annunzio" University, Chieti, Italy
| | | | - Bruna Punzo
- Department of Radiology, IRCCS SYNLAB SDN, Naples, Italy
| | - Simona Celi
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Massa, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| |
Collapse
|
23
|
Benson JC, Campeau NG, Diehn FE, Lane JI, Leng S, Moonis G. Photon-Counting CT in the Head and Neck: Current Applications and Future Prospects. AJNR Am J Neuroradiol 2024; 45:1000-1005. [PMID: 38964861 PMCID: PMC11383418 DOI: 10.3174/ajnr.a8265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/12/2024] [Indexed: 07/06/2024]
Abstract
Photon-counting detectors (PCDs) represent a major milestone in the evolution of CT imaging. CT scanners using PCD systems have already been shown to generate images with substantially greater spatial resolution, superior iodine contrast-to-noise ratio, and reduced artifact compared with conventional energy-integrating detector-based systems. These benefits can be achieved with considerably decreased radiation dose. Recent studies have focused on the advantages of PCD-CT scanners in numerous anatomic regions, particularly the coronary and cerebral vasculature, pulmonary structures, and musculoskeletal imaging. However, PCD-CT imaging is also anticipated to be a major advantage for head and neck imaging. In this paper, we review current clinical applications of PCD-CT in head and neck imaging, with a focus on the temporal bone, facial bones, and paranasal sinuses; minor arterial vasculature; and the spectral capabilities of PCD systems.
Collapse
Affiliation(s)
- John C Benson
- From the Department of Neuroradiology (J.C.B., N.G.C., F.E.D., J.I.L.), Mayo Clinic, Rochester, MN USA
| | - Norbert G Campeau
- From the Department of Neuroradiology (J.C.B., N.G.C., F.E.D., J.I.L.), Mayo Clinic, Rochester, MN USA
| | - Felix E Diehn
- From the Department of Neuroradiology (J.C.B., N.G.C., F.E.D., J.I.L.), Mayo Clinic, Rochester, MN USA
| | - John I Lane
- From the Department of Neuroradiology (J.C.B., N.G.C., F.E.D., J.I.L.), Mayo Clinic, Rochester, MN USA
| | - Shuai Leng
- Department of Radiology (S.L.), Mayo Clinic, Rochester, MN USA
| | - Gul Moonis
- Department of Radiology (G.M.), Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
24
|
Fix Martinez M, Klein L, Maier J, Rotkopf LT, Schlemmer HP, Schönberg SO, Kachelrieß M, Sawall S. Potential radiation dose reduction in clinical photon-counting CT by the small pixel effect: ultra-high resolution (UHR) acquisitions reconstructed to standard resolution. Eur Radiol 2024; 34:4484-4491. [PMID: 38133673 PMCID: PMC11213748 DOI: 10.1007/s00330-023-10499-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE To assess the potential dose reduction achievable with clinical photon-counting CT (PCCT) in ultra-high resolution (UHR) mode compared to acquisitions using the standard resolution detector mode (Std). MATERIALS AND METHODS With smaller detector pixels, PCCT achieves far higher spatial resolution than energy-integrating (EI) CT systems. The reconstruction of UHR acquisitions to the lower spatial resolution of conventional systems results in an image noise and radiation dose reduction. We quantify this small pixel effect in measurements of semi-anthropomorphic abdominal phantoms of different sizes as well as in a porcine knuckle in the first clinical PCCT system by using the UHR mode (0.2 mm pixel size at isocenter) in comparison to the standard resolution mode (0.4 mm). At different slice thicknesses (0.4 up to 4 mm) and dose levels between 4 and 12 mGy, reconstructions using filtered backprojection were performed to the same target spatial resolution, i.e., same modulation transfer function, using both detector modes. Image noise and the resulting potential dose reduction was quantified as a figure of merit. RESULTS Images acquired using the UHR mode yield lower noise in comparison to acquisitions using standard pixels at the same resolution and noise level. This holds for sharper convolution kernels at the spatial resolution limit of the standard mode, e.g., up to a factor 3.2 in noise reduction and a resulting potential dose reduction of up to almost 90%. CONCLUSION Using sharper convolution kernels, UHR acquisitions allow for a significant dose reduction compared to acquisitions using the standard detector mode. CLINICAL RELEVANCE Acquisitions should always be performed using the ultra-high resolution detector mode, if possible, to benefit from the intrinsic noise and dose reduction. KEY POINTS • Ionizing radiation used in computed tomography examinations is a concern to public health. • The ultra-high resolution of novel photon-counting systems can be invested towards a noise and dose reduction if only a spatial resolution below the resolution limit of the detector is desired. • Acquisitions should always be performed in ultra-high resolution mode, if possible, to benefit from an intrinsic dose reduction.
Collapse
Affiliation(s)
- Markel Fix Martinez
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Laura Klein
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Joscha Maier
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Lukas Thomas Rotkopf
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Oswald Schönberg
- Department of Clinical Radiology and Nuclear Medicine, University Hospital Mannheim, Theodor-Kurz-Ufer 1-3, 68167, Mannheim, Germany
| | - Marc Kachelrieß
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Stefan Sawall
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
| |
Collapse
|
25
|
Cau R, Saba L, Balestrieri A, Meloni A, Mannelli L, La Grutta L, Bossone E, Mantini C, Politi C, Suri JS, Cavaliere C, Punzo B, Maffei E, Cademartiri F. Photon-Counting Computed Tomography in Atherosclerotic Plaque Characterization. Diagnostics (Basel) 2024; 14:1065. [PMID: 38893593 PMCID: PMC11172199 DOI: 10.3390/diagnostics14111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Atherosclerotic plaque buildup in the coronary and carotid arteries is pivotal in the onset of acute myocardial infarctions or cerebrovascular events, leading to heightened levels of illness and death. Atherosclerosis is a complex and multistep disease, beginning with the deposition of low-density lipoproteins in the arterial intima and culminating in plaque rupture. Modern technology favors non-invasive imaging techniques to assess atherosclerotic plaque and offer insights beyond mere artery stenosis. Among these, computed tomography stands out for its widespread clinical adoption and is prized for its speed and accessibility. Nonetheless, some limitations persist. The introduction of photon-counting computed tomography (PCCT), with its multi-energy capabilities, enhanced spatial resolution, and superior soft tissue contrast with minimal electronic noise, brings significant advantages to carotid and coronary artery imaging, enabling a more comprehensive examination of atherosclerotic plaque composition. This narrative review aims to provide a comprehensive overview of the main concepts related to PCCT. Additionally, we aim to explore the existing literature on the clinical application of PCCT in assessing atherosclerotic plaque. Finally, we will examine the advantages and limitations of this recently introduced technology.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Antonella Meloni
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy; (A.M.); (F.C.)
- Department of Bioengineering, Fondazione Monasterio/CNR, 56124 Pisa, Italy
| | - Lorenzo Mannelli
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Eduardo Bossone
- Cardiology Unit, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, “G.d’Annunzio” University, 66100 Chieti, Italy;
| | - Carola Politi
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.) di Cagliari-Polo di Monserrato, S.S. 554, 09045 Monserrato, Italy; (R.C.); (A.B.); (C.P.)
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA;
| | - Carlo Cavaliere
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Bruna Punzo
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Erica Maffei
- Department of Radiology, IRCCS SynLab-SDN, 80131 Naples, Italy; (L.M.); (C.C.); (B.P.); (E.M.)
| | - Filippo Cademartiri
- Department of Radiology, Fondazione Monasterio/CNR, 56124 Pisa, Italy; (A.M.); (F.C.)
| |
Collapse
|
26
|
Feldle P, Grunz JP, Huflage H, Kunz AS, Ergün S, Afat S, Gruschwitz P, Görtz L, Pennig L, Bley TA, Conrads N. Influence of helical pitch and gantry rotation time on image quality and file size in ultrahigh-resolution photon-counting detector CT. Sci Rep 2024; 14:9358. [PMID: 38653758 DOI: 10.1038/s41598-024-59729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
The goal of this experimental study was to quantify the influence of helical pitch and gantry rotation time on image quality and file size in ultrahigh-resolution photon-counting CT (UHR-PCCT). Cervical and lumbar spine, pelvis, and upper legs of two fresh-frozen cadaveric specimens were subjected to nine dose-matched UHR-PCCT scan protocols employing a collimation of 120 × 0.2 mm with varying pitch (0.3/1.0/1.2) and rotation time (0.25/0.5/1.0 s). Image quality was analyzed independently by five radiologists and further substantiated by placing normed regions of interest to record mean signal attenuation and noise. Effective mAs, CT dose index (CTDIvol), size-specific dose estimate (SSDE), scan duration, and raw data file size were compared. Regardless of anatomical region, no significant difference was ascertained for CTDIvol (p ≥ 0.204) and SSDE (p ≥ 0.240) among protocols. While exam duration differed substantially (all p ≤ 0.016), the lowest scan time was recorded for high-pitch protocols (4.3 ± 1.0 s) and the highest for low-pitch protocols (43.6 ± 15.4 s). The combination of high helical pitch and short gantry rotation times produced the lowest perceived image quality (intraclass correlation coefficient 0.866; 95% confidence interval 0.807-0.910; p < 0.001) and highest noise. Raw data size increased with acquisition time (15.4 ± 5.0 to 235.0 ± 83.5 GByte; p ≤ 0.013). Rotation time and pitch factor have considerable influence on image quality in UHR-PCCT and must therefore be chosen deliberately for different musculoskeletal imaging tasks. In examinations with long acquisition times, raw data size increases considerably, consequently limiting clinical applicability for larger scan volumes.
Collapse
Affiliation(s)
- Philipp Feldle
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstraße 6, 97070, Wuerzburg, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Str 3, 72076, Tuebingen, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Lukas Görtz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Nora Conrads
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Oberduerrbacher Straße 6, 97080, Wuerzburg, Germany.
| |
Collapse
|
27
|
Meloni A, Maffei E, Clemente A, De Gori C, Occhipinti M, Positano V, Berti S, La Grutta L, Saba L, Cau R, Bossone E, Mantini C, Cavaliere C, Punzo B, Celi S, Cademartiri F. Spectral Photon-Counting Computed Tomography: Technical Principles and Applications in the Assessment of Cardiovascular Diseases. J Clin Med 2024; 13:2359. [PMID: 38673632 PMCID: PMC11051476 DOI: 10.3390/jcm13082359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Spectral Photon-Counting Computed Tomography (SPCCT) represents a groundbreaking advancement in X-ray imaging technology. The core innovation of SPCCT lies in its photon-counting detectors, which can count the exact number of incoming x-ray photons and individually measure their energy. The first part of this review summarizes the key elements of SPCCT technology, such as energy binning, energy weighting, and material decomposition. Its energy-discriminating ability represents the key to the increase in the contrast between different tissues, the elimination of the electronic noise, and the correction of beam-hardening artifacts. Material decomposition provides valuable insights into specific elements' composition, concentration, and distribution. The capability of SPCCT to operate in three or more energy regimes allows for the differentiation of several contrast agents, facilitating quantitative assessments of elements with specific energy thresholds within the diagnostic energy range. The second part of this review provides a brief overview of the applications of SPCCT in the assessment of various cardiovascular disease processes. SPCCT can support the study of myocardial blood perfusion and enable enhanced tissue characterization and the identification of contrast agents, in a manner that was previously unattainable.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Erica Maffei
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Mariaelena Occhipinti
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Vicenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Riccardo Cau
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy;
| | - Cesare Mantini
- Department of Radiology, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| |
Collapse
|
28
|
Huflage H, Hendel R, Kunz AS, Ergün S, Afat S, Petri N, Hartung V, Gruschwitz P, Bley TA, Grunz JP. Investigating the Small Pixel Effect in Ultra-High Resolution Photon-Counting CT of the Lung. Invest Radiol 2024; 59:293-297. [PMID: 37552040 DOI: 10.1097/rli.0000000000001013] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
OBJECTIVES The aim of this study was to investigate potential benefits of ultra-high resolution (UHR) over standard resolution scan mode in ultra-low dose photon-counting detector CT (PCD-CT) of the lung. MATERIALS AND METHODS Six cadaveric specimens were examined with 5 dose settings using tin prefiltration, each in UHR (120 × 0.2 mm) and standard mode (144 × 0.4 mm), on a first-generation PCD-CT scanner. Image quality was evaluated quantitatively by noise comparisons in the trachea and both main bronchi. In addition, 16 readers (14 radiologists and 2 internal medicine physicians) independently completed a browser-based pairwise forced-choice comparison task for assessment of subjective image quality. The Kendall rank coefficient ( W ) was calculated to assess interrater agreement, and Pearson's correlation coefficient ( r ) was used to analyze the relationship between noise measurements and image quality rankings. RESULTS Across all dose levels, image noise in UHR mode was lower than in standard mode for scan protocols matched by CTDI vol ( P < 0.001). UHR examinations exhibited noise levels comparable to the next higher dose setting in standard mode ( P ≥ 0.275). Subjective ranking of protocols based on 5760 pairwise tests showed high interrater agreement ( W = 0.99; P ≤ 0.001) with UHR images being preferred by readers in the majority of comparisons. Irrespective of scan mode, a substantial indirect correlation was observed between image noise and subjective image quality ranking ( r = -0.97; P ≤ 0.001). CONCLUSIONS In PCD-CT of the lung, UHR scan mode reduces image noise considerably over standard resolution acquisition. Originating from the smaller detector element size in fan direction, the small pixel effect allows for superior image quality in ultra-low dose examinations with considerable potential for radiation dose reduction.
Collapse
Affiliation(s)
- Henner Huflage
- From the Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany (H.H., R.H., A.S., V.H., P.G., T.A., J.-P.G.); Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany (S.E.); Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany (S.A.); and Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany (N.P.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dane B, Kim J, Qian K, Megibow A. Pancreatic cyst prevalence and detection with photon counting CT compared with conventional energy integrating detector CT. Eur J Radiol 2024; 175:111437. [PMID: 38520805 DOI: 10.1016/j.ejrad.2024.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE To calculate the prevalence of pancreatic cysts on photon counting CT (PCCT) and compare with that of 128-slice conventional energy-integrating detector CT (EIDCT). METHOD A retrospective single institution database search identified all contrast-enhanced abdominal CT examinations performed at an outpatient facility that has both a PCCT and EIDCT between 4/11/2022 and 7/26/2022. The presence and size of pancreatic cysts were recorded. In patients with PCCT reported pancreatic cysts, prior CT imaging (EIDCT) was reviewed for reported pancreatic cysts. Fisher's exact test was used to compare the pancreatic cyst detection rate for PCCT and EIDCT. Wilcoxon rank sum test was used to compare cyst size and patient age. A p <.05 indicated statistical significance. RESULTS 2494 patients were included. Our pancreatic cyst detection rate was 4.9 % (49/1009) with PCCT and 3.0 % (44/1485) for EIDCT (p =.017). For CT angiograms, pancreatic cysts were detected in 6.6 % (21/319) with PCCT and 0.0 % (0/141) with EIDCT (p <.001). Pancreatic cyst detection rate was not statistically different for portal venous, enterography, renal mass, pancreas, 3-phase liver, or venogram protocols (all p >.05). Mean[SD] pancreatic cyst size was 13.7[9.7]mm for PCCT and 15.3[14.7] for EIDCT (p =.95). 55.1 % (27/49) of PCCT and 61.4 % (27/44) of EIDCT that described pancreatic cysts had prior contrast-enhanced EIDCTs. Of these, 40.7 % (11/27) of PCCT and 14.8 % (4/27) of EIDCT described pancreatic cysts were not previously reported (p =.027). CONCLUSIONS Photon-counting CT afforded greater pancreatic cyst detection than conventional energy-integrating detector CT, particularly with CT angiograms.
Collapse
Affiliation(s)
- Bari Dane
- Department of Radiology, NYU Langone Health, 660 1(st) Avenue, New York, NY 10016.
| | - Jesi Kim
- Department of Radiology, NYU Langone Health, 660 1(st) Avenue, New York, NY 10016
| | - Kun Qian
- NYU Langone Health Department of Biostatistics, 180 Madison Avenue, New York, NY 10016
| | - Alec Megibow
- Department of Radiology, NYU Langone Health, 660 1(st) Avenue, New York, NY 10016
| |
Collapse
|
30
|
Yalon M, Inoue A, Thorne JE, Lee YS, Johnson MP, Esquivel A, Leng S, McCollough CH, Fletcher JG, Rajiah PS. Infrapopliteal Segments on Lower Extremity CTA: Prospective Intraindividual Comparison of Energy-Integrating Detector CT and Photon-Counting Detector CT. AJR Am J Roentgenol 2024; 222:e2329778. [PMID: 37991334 DOI: 10.2214/ajr.23.29778] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
BACKGROUND. The higher spatial resolution and image contrast for iodine-containing tissues of photon-counting detector (PCD) CT may address challenges in evaluating small calcified vessels when performing lower extremity CTA by energy-integrating detector (EID) CTA. OBJECTIVE. The purpose of the study was to compare the evaluation of infrapopliteal vasculature between lower extremity CTA performed using EID CT and PCD CT. METHODS. This prospective study included 32 patients (mean age, 69.7 ± 11.3 [SD] years; 27 men, five women) who underwent clinically indicated lower extremity EID CTA between April 2021 and March 2022; participants underwent investigational lower extremity PCD CTA later the same day as EID CTA using a reduced IV contrast media dose. Two radiologists independently reviewed examinations in two sessions, each containing a random combination of EID CTA and PCD CTA examinations; the readers assessed the number of visualized fibular perforators, characteristics of stenoses at 11 infrapopliteal segmental levels, and subjective arterial sharpness. RESULTS. Mean IV contrast media dose was 60.0 ± 11.0 (SD) mL for PCD CTA versus 139.6 ± 11.8 mL for EID CTA (p < .001). The number of identified fibular perforators per lower extremity was significantly higher for PCD CTA than for EID CTA for reader 1 (R1) (mean ± SD, 6.4 ± 3.2 vs 4.2 ± 2.4; p < .001) and reader 2 (R2) (8.8 ± 3.4 vs 7.6 ± 3.3; p = .04). Reader confidence for assessing stenosis was significantly higher for PCD CTA than for EID CTA for R1 (mean ± SD, 82.3 ± 20.3 vs 78.0 ± 20.2; p < .001) but not R2 (89.8 ± 16.7 vs 90.6 ± 7.1; p = .24). The number of segments per lower extremity with total occlusion was significantly lower for PCD CTA than for EID CTA for R2 (mean ± SD, 0.5 ± 1.3 vs 0.9 ± 1.7; p = .04) but not R1 (0.6 ± 1.3 vs 1.0 ± 1.5; p = .07). The number of segments per lower extremity with clinically significant nonocclusive stenosis was significantly higher for PCD CTA than for EID CTA for R1 (mean ± SD, 2.2 ± 2.2 vs 1.6 ± 1.7; p = .01) but not R2 (1.1 ± 2.0 vs 1.1 ± 1.4; p = .89). Arterial sharpness was significantly greater for PCD CTA than for EID CTA for R1 (mean ± SD, 3.2 ± 0.5 vs 1.8 ± 0.5; p < .001) and R2 (3.2 ± 0.4 vs 1.7 ± 0.8; p < .001). CONCLUSION. PCD CTA yielded multiple advantages relative to EID CTA for visualizing small infrapopliteal vessels and characterizing associated plaque. CLINICAL IMPACT. The use of PCD CTA may improve vascular evaluation in patients with peripheral arterial disease.
Collapse
Affiliation(s)
- Mariana Yalon
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Akitoshi Inoue
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
- Present affiliation: Department of Radiology, Shiga University of Medical Science, Shiga, Japan
| | - Jamison E Thorne
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Yong S Lee
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Matthew P Johnson
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN
| | - Andrea Esquivel
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | | | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | | |
Collapse
|
31
|
Dane B, Ruff A, O'Donnell T, El-Ali A, Ginocchio L, Prabhu V, Megibow A. Photon-Counting Computed Tomography Versus Energy-Integrating Dual-Energy Computed Tomography: Virtual Noncontrast Image Quality Comparison. J Comput Assist Tomogr 2024; 48:251-256. [PMID: 38013203 DOI: 10.1097/rct.0000000000001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
PURPOSE This study aimed to compare the image quality of portal venous phase-derived virtual noncontrast (VNC) images from photon-counting computed tomography (PCCT) with energy-integrating dual-energy computed tomography (EI-DECT) in the same patient using quantitative and qualitative analyses. METHODS Consecutive patients retrospectively identified with available portal venous phase-derived VNC images from both PCCT and EI-DECT were included. Patients without available VNC in picture archiving and communication system in PCCT or prior EI-DECT and non-portal venous phase acquisitions were excluded. Three fellowship-trained radiologists blinded to VNC source qualitatively assessed VNC images on a 5-point scale for overall image quality, image noise, small structure delineation, noise texture, artifacts, and degree of iodine removal. Quantitative assessment used region-of-interest measurements within the aorta at 4 standard locations, both psoas muscles, both renal cortices, spleen, retroperitoneal fat, and inferior vena cava. Attenuation (Hounsfield unit), quantitative noise (Hounsfield unit SD), contrast-to-noise ratio (CNR) (CNR vascular , CNR kidney , CNR spleen , CNR fat ), signal-to-noise ratio (SNR) (SNR vascular , SNR kidney , SNR spleen , SNR fat ), and radiation dose were compared between PCCT and EI-DECT with the Wilcoxon signed rank test. A P < 0.05 indicated statistical significance. RESULTS A total of 74 patients (27 men; mean ± SD age, 63 ± 13 years) were included. Computed tomography dose index volumes for PCCT and EI-DECT were 9.2 ± 3.5 mGy and 9.4 ± 9.0 mGy, respectively ( P = 0.06). Qualitatively, PCCT VNC images had better overall image quality, image noise, small structure delineation, noise texture, and fewer artifacts (all P < 0.00001). Virtual noncontrast images from PCCT had lower attenuation (all P < 0.05), noise ( P = 0.006), and higher CNR ( P < 0.0001-0.04). Contrast-enhanced structures had lower SNR on PCCT ( P = 0.001, 0.002), reflecting greater contrast removal. The SNRfat (nonenhancing) was higher for PCCT than EI-DECT ( P < 0.00001). CONCLUSIONS Virtual noncontrast images from PCCT had improved image quality, lower noise, improved CNR and SNR compared with those derived from EI-DECT.
Collapse
Affiliation(s)
- Bari Dane
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Andrew Ruff
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | | | - Alexander El-Ali
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Luke Ginocchio
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Vinay Prabhu
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| | - Alec Megibow
- From the Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
32
|
Doyle NS, Benson JC, Carr CM, Diehn FE, Carlson ML, Leng S, Lane JI. Photon Counting Versus Energy-integrated Detector CT in Detection of Superior Semicircular Canal Dehiscence. Clin Neuroradiol 2024; 34:251-255. [PMID: 38055090 DOI: 10.1007/s00062-023-01368-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Superior semicircular canal dehiscence (SSCD), an osseous defect overlying the SSC, is associated with a constellation of audiovestibular symptoms. This study sought to compare conventional energy-integrated detector (EID) computed tomography (CT) to photon-counting detector (PCD)-CT in the detection of SSCD. MATERIAL AND METHODS Included patients were prospectively recruited to undergo a temporal bone CT on both EID-CT and PCD-CT scanners. Two blinded neuroradiologists reviewed both sets of images for 1) the presence or absence of SSCD (graded as present, absent, or indeterminate), and 2) the width of the bone overlying the SSC (if present). Any discrepancies in the presence or absence of SSCD were agreed upon by consensus. RESULTS In the study 31 patients were evaluated, for a total of 60 individual temporal bones (2 were excluded). Regarding SSCD presence or absence, there was substantial agreement between EID-CT and PCD-CT (k = 0.76; 95% confidence interval, CI 0.54-0.97); however, SSCD was present in only 9 (15.0%) temporal bones on PCD-CT, while EID-CT examinations were interpreted as being positive in 14 (23.3%) temporal bones. This yielded a false positive rate of 8.3% on EID-CT. The bone overlying the SSC was thinner on EID-CT images (0.66 mm; SD = 0.64) than on PCD-CT images (0.72 mm; SD = 0.66) (p < 0.001). CONCLUSION The EID-CT examinations tend to overcall the presence of SSCD compared to PCD-CT and also underestimate the thickness of bone overlying the SSC.
Collapse
Affiliation(s)
- Nathan S Doyle
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - John C Benson
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA.
| | - Carrie M Carr
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - Felix E Diehn
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | | | - Shuai Leng
- Division of Medical Physics, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - John I Lane
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
McCollough CH, Winfree TN, Melka EF, Rajendran K, Carter RE, Leng S. Photon-Counting Detector Computed Tomography Versus Energy-Integrating Detector Computed Tomography for Coronary Artery Calcium Quantitation. J Comput Assist Tomogr 2024; 48:212-216. [PMID: 37801651 PMCID: PMC10939985 DOI: 10.1097/rct.0000000000001554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
OBJECTIVES Photon-counting detector (PCD) computed tomography (CT) offers improved spatial and contrast resolution, which can impact quantitative measurements. This work aims to determine in human subjects the effect of dual-source PCD-CT on the quantitation of coronary artery calcification (CAC) compared with dual-source energy-integrating detector (EID) CT in both 1- and 3-mm images. METHODS This prospective study enrolled patients receiving a clinical EID-CT CAC examination to undergo a research PCD-CT CAC examination. Axial images were reconstructed with a 512 × 512 matrix, 200-mm field of view, 3-mm section thickness/1.5-mm interval using a quantitative kernel (Qr36). Sharper kernels (Qr56/QIR strength 4 for PCD and Qr49/ADMIRE strength 5 for EID) were used to reconstruct images with 1-mm section thickness/0.5-mm interval. Pooled analysis was performed for all calcifications with nonzero values, and volume and Agatston scores were compared between EID-CT and PCD-CT. A Wilcoxon signed-rank test was performed with P < 0.05 considered statistically significant. RESULTS In 21 subjects (median age, 58 years; range, 50-75 years; 13 male [62%]) with a total of 42 calcified arteries detected at 3 mm and 46 calcified arteries at 1-mm images, EID-CT CAC volume and Agatston scores were significantly lower than those of PCD-CT ( P ≤ 0.001). At 3-mm thickness, the mean (standard deviation) volume and Agatston score for EID-CT were 55.5 (63.4) mm 3 and 63.8 (76.9), respectively, and 61.5 (69.4) mm 3 and 70.4 (85.3) for PCD-CT ( P = 0.0001 and P = 0.0013). At 1-mm thickness, the mean (standard deviation) volume and score for EID-CT were 50.0 (56.3) mm 3 and 61.1 (69.3), respectively, and 59.5 (63.9) mm 3 and 72.5 (79.9) for PCD-CT ( P < 0.0001 for both). The applied radiation dose (volume CT dose index) for the PCD-CT scan was 2.1 ± 0.6 mGy, which was 13% lower than for the EID-CT scan (2.4 ± 0.7 mGy, P < 0.001). CONCLUSIONS Relative to EID-CT, PCD-CT demonstrated a small but significant increase in coronary artery calcium volume and Agatston score.
Collapse
Affiliation(s)
| | | | | | | | - Rickey E. Carter
- Department of Health Science Research, Mayo Clinic, Jacksonville, FL
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN
| |
Collapse
|
34
|
Fletcher JG, Inoue A, Bratt A, Horst KK, Koo CW, Rajiah PS, Baffour FI, Ko JP, Remy-Jardin M, McCollough CH, Yu L. Photon-counting CT in Thoracic Imaging: Early Clinical Evidence and Incorporation Into Clinical Practice. Radiology 2024; 310:e231986. [PMID: 38501953 DOI: 10.1148/radiol.231986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photon-counting CT (PCCT) is an emerging advanced CT technology that differs from conventional CT in its ability to directly convert incident x-ray photon energies into electrical signals. The detector design also permits substantial improvements in spatial resolution and radiation dose efficiency and allows for concurrent high-pitch and high-temporal-resolution multienergy imaging. This review summarizes (a) key differences in PCCT image acquisition and image reconstruction compared with conventional CT; (b) early evidence for the clinical benefit of PCCT for high-spatial-resolution diagnostic tasks in thoracic imaging, such as assessment of airway and parenchymal diseases, as well as benefits of high-pitch and multienergy scanning; (c) anticipated radiation dose reduction, depending on the diagnostic task, and increased utility for routine low-dose thoracic CT imaging; (d) adaptations for thoracic imaging in children; (e) potential for further quantitation of thoracic diseases; and (f) limitations and trade-offs. Moreover, important points for conducting and interpreting clinical studies examining the benefit of PCCT relative to conventional CT and integration of PCCT systems into multivendor, multispecialty radiology practices are discussed.
Collapse
Affiliation(s)
- Joel G Fletcher
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Akitoshi Inoue
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Alex Bratt
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Kelly K Horst
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Chi Wan Koo
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Prabhakar Shantha Rajiah
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Francis I Baffour
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Jane P Ko
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Martine Remy-Jardin
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Cynthia H McCollough
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Lifeng Yu
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| |
Collapse
|
35
|
Dane B, Freedman D, Qian K, Ginocchio L, Smereka P, Megibow A. Photon-counting CT urogram: optimal acquisition potential (kV) determination for virtual noncontrast creation. Abdom Radiol (NY) 2024; 49:868-874. [PMID: 38006415 DOI: 10.1007/s00261-023-04113-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/27/2023]
Abstract
PURPOSE To quantitatively and qualitatively compare the degree of iodine removal in the collecting system from PCCT urographic phase-derived virtual noncontrast (VNC) images obtained at 140 kV versus 120 kV. METHODS A retrospective PACS search identified adult patients (>18 years) who underwent a PCCT urogram for hematuria from 4/2022 to 4/2023 with available urographic phase-derived VNC images in PACS. Tube voltage (120 kV, 140 kV), body mass index, CTDIvol, dose length product (DLP), and size-specific dose estimate (SSDE) were recorded. Hounsfield Unit (HU) in both renal pelvises and the urinary bladder on urographic-derived VNC were recorded. Three radiologists qualitatively assessed the degree of iodine removal (renal pelvis, urinary bladder) and diagnostic confidence for urinary stone detection. Continuous variables were compared for 140 kV versus 120 kV with the Wilcoxon rank sum test. A p < .05 indicated statistical significance. RESULTS 63 patients (34 male; median (Q1, Q3) age: 30 (26, 34) years; 140 kV/120 kV: 30 patients/33 patients) were included. BMI, CTDIvol, DLP, and SSDE were not different for 140 kV and 120 kV (all p > .05). Median (Q1, Q3) collecting system HU (renal pelvis and bladder) was 0.9 (- 3.6, 4.4) HU at 140 kV and 10.5 (3.6, 26.7) HU at 120 kV (p = .04). Diagnostic confidence for urinary calculi was 4.6 [1.1] at 140 kV and 4.1 [1.4] at 120 kV (p = .005). Diagnostic confidence was 5/5 (all readers) in 82.2% (74/90) at 140 kV and 59.6% (59/99) at 120 kV (p < .001). CONCLUSION PCCT urographic phase-derived VNC images obtained at 140 kV had better collecting system iodine removal than 120 kV with similar patient radiation exposure. With excellent PCCT urographic phase iodine removal at 140 kV, consideration can be made to utilize a single-phase CT urogram in young patients.
Collapse
Affiliation(s)
- Bari Dane
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA.
| | - Daniel Freedman
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Kun Qian
- Department of Biostatistics, NYU Langone Health, 180 Madison Avenue, New York, NY, 10016, USA
| | - Luke Ginocchio
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Paul Smereka
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| | - Alec Megibow
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| |
Collapse
|
36
|
Rippel K, Luitjens J, Habeeballah O, Scheurig-Muenkler C, Bette S, Braun F, Kroencke TJ, Schwarz F, Decker JA. Evaluation of ECG-Gated, High-Pitch Thoracoabdominal Angiographies With Dual-Source Photon-Counting Detector Computed Tomography. J Endovasc Ther 2024:15266028241230943. [PMID: 38380529 DOI: 10.1177/15266028241230943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
PURPOSE The aim of this study was to evaluate the radiation dose, image quality, and the potential of virtual monoenergetic imaging (VMI) reconstructions of high-pitch computed tomography angiography (CTA) of the thoracoabdominal aorta on a dual-source photon-counting detector-CT (PCD-CT) in comparison with an energy-integrating detector-CT (EID-CT), with a special focus on low-contrast attenuation. METHODS Consecutive patients being referred for an electrocardiogram (ECG)-gated, high-pitch CTA of the thoracoabdominal aorta prior to transcatheter aortic valve replacement (TAVR), and examined on the PCD-CT, were included in this prospective single-center study. For comparison, a retrospective patient group with ECG-gated, high-pitch CTA examinations of the thoracoabdominal aorta on EID-CT with a comparable scan protocol was matched for gender, body mass index, height, and age. Virtual monoenergetic imaging reconstructions from 40 to 120 keV were performed. Enhancement and noise were measured in 7 vascular segments and the surrounding air as mean and standard deviation of CT values. The radiation dose was noted and signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Finally, a subgroup analysis was performed, comparing VMI reconstructions from 40 keV to 70 keV in patients with at least a 50% decrease in contrast attenuation between the ascending aorta and femoral arteries. RESULTS Fifty patients (mean age 77.0±14.5 years; 31 women) were included. The radiation dose was significantly lower on the PCD-CT (4.2±1.4 vs. 7.2±2.2 mGy; p<0.001). With increasing keV, vascular noise, SNR, and CNR decreased. Intravascular attenuation was significantly higher on VMI at levels from 40 to 65, compared with levels of 120 keV (p<0.01 and p<0.005, respectively). On the PCD-CT, SNR was significantly higher in keV levels 40 and 70 (all p<0.001), and CNR was higher at keV levels 40 and 45 (each p<0.001), compared with scans on the EID-CT. At VMI ≤60 keV, image noise was also significantly higher than that in the control group. The subgroup analysis showed a drastically improved diagnostic performance of the low-keV images in patients with low-contrast attenuation. CONCLUSION The ECG-gated CTA of the thoracoabdominal aorta in high-pitch mode on PCD-CT have significantly lower radiation dose and higher objective image quality than EID-CT. In addition, low-keV VMI can salvage suboptimal contrast studies, further reducing radiation dose by eliminating the need for repeat scans. CLINICAL IMPACT ECG-gated CT-angiographies of the thoracoabdominal aorta can be acquired with a lower radtiation dose and a better image quality by using a dual-source photon-countinge detector CT. Furthermore, the inherent spectral data offers the possiblity to improve undiagnostic images and thus saves the patient from further radiation and contrast application.
Collapse
Affiliation(s)
- K Rippel
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - J Luitjens
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - O Habeeballah
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - C Scheurig-Muenkler
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Stefanie Bette
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - Franziska Braun
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| | - T J Kroencke
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, Augsburg, Germany
| | - F Schwarz
- DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
| | - J A Decker
- Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital Augsburg, University of Augsburg, Augsburg, Germany
| |
Collapse
|
37
|
Dane B, Qian K, Soni R, Megibow A. Crohn's disease inflammation severity assessment with iodine density from photon counting CT enterography: comparison with endoscopic histopathology. Abdom Radiol (NY) 2024; 49:271-278. [PMID: 37814149 DOI: 10.1007/s00261-023-04060-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE To determine optimal iodine density thresholds for active inflammation in CD patients with PCCT enterography and determine if iodine density can be used to stratify CD activity severity. METHODS A retrospective PACS search identified patients with CD imaged with PCCT enterography from 4/11/2022 to 10/30/2022 and with clinical notes, endoscopic/surgical pathology and available source PCCT data for iodine density analysis. Two abdominal radiologists with expertise in CD each drew two region of interest measurements within the visibly most affected region of terminal or neoterminal ileum wall on commercially available system (SyngoVia). Radiologists were blinded to clinical information and pathologic findings. Disease activity and severity were recorded from the pathology report. Harvey-Bradshaw Index, medications, and laboratory values were recorded. Receiver operating characteristic (ROC) curves were utilized to determine the optimum iodine density threshold for active inflammation and mild versus moderate-to-severe inflammation. Intra- and inter-reader agreement was assessed by intra-class correlation coefficient (ICC). RESULTS 23 CD patients (15 females; mean [SD] age: 52 [17] years) imaged with PCCT enterography were included. 15/23 had active inflammation: 9/15 mild, 4/15 moderate, and 2/15 severe active inflammation. The optimal iodine density threshold for active inflammation was 2.7 mg/mL, with 97% sensitivity, 100% specificity, and 98% accuracy (AUC = 1.00). The optimal iodine density threshold for distinguishing mild from moderate-to-severe inflammation was 3.4 mg/mL, with 83% sensitivity, 89% specificity, and 87% accuracy (AUC = 0.85). Intra-reader reliability (R1/R2) ICC was 0.81/0.86. Inter-reader reliability ICC was 0.94. CONCLUSION Iodine density from PCCT enterography can distinguish mild from moderate-to-severe active inflammation.
Collapse
Affiliation(s)
- Bari Dane
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA.
| | - Kun Qian
- Department of Biostatistics, NYU Langone Health, 180 Madison Avenue, New York, NY, 10016, USA
| | - Ria Soni
- NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Alec Megibow
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY, 10016, USA
| |
Collapse
|
38
|
Koons EK, Rajiah PS, Thorne JE, Weber NM, Kasten HJ, Shanblatt ER, McCollough CH, Leng S. Coronary artery stenosis quantification in patients with dense calcifications using ultra-high-resolution photon-counting-detector computed tomography. J Cardiovasc Comput Tomogr 2024; 18:56-61. [PMID: 37945454 PMCID: PMC10922101 DOI: 10.1016/j.jcct.2023.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND To quantify differences in coronary artery stenosis severity in patients with calcified lesions between conventional energy-integrating detector (EID) CT and ultra-high-resolution (UHR) photon-counting-detector (PCD) CT. METHODS Patients undergoing clinically indicated coronary CT angiography were prospectively recruited and scanned first on an EID-CT (SOMATOM Force, Siemens Healthineers) and then a PCD-CT (NAEOTOM Alpha, Siemens Healthineers) on the same day. EID-CT was performed with standard mode (192 × 0.6 mm detector collimation) following our clinical protocol. PCD-CT scans were performed under UHR mode (120 × 0.2 mm detector collimation). For each patient, left main, left anterior descending, right coronary artery, and circumflex were reviewed and the most severe stenosis from dense calcification for each coronary was quantified using commercial software. Additionally, each measured stenosis was assigned a severity category based on percent diameter stenosis, and changes in severity category across EID-CT and PCD-CT were assessed. RESULTS A total of 23 patients were enrolled, with 34 coronary artery stenoses analyzed. Stenosis was significantly reduced in PCD-CT compared to EID-CT (p < 0.001), resulting in an average of 11% (SD = 11%) reduction in percent diameter stenosis. Among the 34 lesions, 15 changed in stenosis severity category: 3 went from moderate to minimal, 1 from moderate to mild, 9 from mild to minimal, and 2 from minimal to mild with the use of PCD-CT compared to EID-CT. CONCLUSION Use of UHR PCD-CT decreased percent diameter stenosis by an average of 11% relative to EID-CT, resulting in 13 of 34 stenoses being downgraded in stenosis severity category, potentially sparing patients from unnecessary intervention.
Collapse
Affiliation(s)
- Emily K Koons
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA; Department of Biomedical Engineering and Physiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | | | - Jamison E Thorne
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Nikkole M Weber
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Holly J Kasten
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | | | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
39
|
Shen CM, Lin YH, Li DF, Pan LK, Peng BR. Enhanced acrylic gauge with five eccentric circles for optimizing CT angiography spatial resolution via Taguchi's methodology. Technol Health Care 2024; 32:65-78. [PMID: 38669496 PMCID: PMC11191523 DOI: 10.3233/thc-248006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
BACKGROUND Cerebral examination via CTA is always the first choice for patients with unexpected brain injury or different types of brain lesions to detect ruptured hemangiomas, vascular infarcts, or other brain tissue lesions. OBJECTIVE This study innovated the acrylic gauge with five eccentric circles for computed tomography angiography (CTA) analysis to optimize the spatial resolution via Taguchi's methodology. METHODS The customized gauge was revised from the V-shaped slit gauge and transferred into five eccentric circles' slit gauge. The gauge was assembled with another six acrylic layers to simulate the human head. Taguchi's L18 orthogonal array was adopted to optimize the spatial resolution of CTA imaging quality. In doing so, six essential factors of CTA are kVp, mAs, spiral rotation pitch, FOV, rotation time of the CT and reconstruction filter, and each factor has either two or three levels to organize into eighteen combinations to simulate the full factor combination of 486 (21 × 35 = 486) times according to Taguchi's recommendation. Three well-trained radiologists ranked the gauge's 18 CTA scanned imaging qualities according to contrast, sharpness, and spatial resolution and derived the unique fish-bone-plot of six factors for further analysis. The optimal factor combination of CTA was proven by follow-up verification and ANOVA to obtain this study's dominant or minor factor. RESULTS The optimal factor combination of CTA was A2 (120 kVp), B3 (200 mAs), C1 (Pitch 0.6), D2 (FOV 220 mm2), E1 (rotation time 0.33 s), and F3 (Brain sharp, UC). Furthermore, deriving a quantified MDD (minimum detectable difference) to imply the spatial resolution of CTA, a semiauto profile analysis program run in MATLAB and OriginPro was recommended to evaluate the MDD and to suppress the manual error in calculation. Eventually, the derived MDDs of the conventional and optimal factor combinations of CTA were 2.35 and 2.26 mm, respectively, in this study. CONCLUSION Taguchi's methodology was found applicable for quantifying the CTA imaging quality in practical applications.
Collapse
Affiliation(s)
- Cheng-Mao Shen
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
- Department of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Hui Lin
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
- Department of Clinical Pharmacy Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Dian-Fong Li
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
- Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Lung-Kwang Pan
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Bing-Ru Peng
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
40
|
Gruschwitz P, Hartung V, Ergün S, Peter D, Lichthardt S, Huflage H, Hendel R, Pannenbecker P, Augustin AM, Kunz AS, Feldle P, Bley TA, Grunz JP. Comparison of ultrahigh and standard resolution photon-counting CT angiography of the femoral arteries in a continuously perfused in vitro model. Eur Radiol Exp 2023; 7:83. [PMID: 38110729 PMCID: PMC10728414 DOI: 10.1186/s41747-023-00398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/17/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND With the emergence of photon-counting CT, ultrahigh-resolution (UHR) imaging can be performed without dose penalty. This study aims to directly compare the image quality of UHR and standard resolution (SR) scan mode in femoral artery angiographies. METHODS After establishing continuous extracorporeal perfusion in four fresh-frozen cadaveric specimens, photon-counting CT angiographies were performed with a radiation dose of 5 mGy and tube voltage of 120 kV in both SR and UHR mode. Images were reconstructed with dedicated convolution kernels (soft: Body-vascular (Bv)48; sharp: Bv60; ultrasharp: Bv76). Six radiologists evaluated the image quality by means of a pairwise forced-choice comparison tool. Kendall's concordance coefficient (W) was calculated to quantify interrater agreement. Image quality was further assessed by measuring intraluminal attenuation and image noise as well as by calculating signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR). RESULTS UHR yielded lower noise than SR for identical reconstructions with kernels ≥ Bv60 (p < 0.001). UHR scans exhibited lower intraluminal attenuation compared to SR (Bv60: 406.4 ± 25.1 versus 418.1 ± 30.1 HU; p < 0.001). Irrespective of scan mode, SNR and CNR decreased while noise increased with sharper kernels but UHR scans were objectively superior to SR nonetheless (Bv60: SNR 25.9 ± 6.4 versus 20.9 ± 5.3; CNR 22.7 ± 5.8 versus 18.4 ± 4.8; p < 0.001). Notably, UHR scans were preferred in subjective assessment when images were reconstructed with the ultrasharp Bv76 kernel, whereas SR was rated superior for Bv60. Interrater agreement was high (W = 0.935). CONCLUSIONS Combinations of UHR scan mode and ultrasharp convolution kernel are able to exploit the full image quality potential in photon-counting CT angiography of the femoral arteries. RELEVANCE STATEMENT The UHR scan mode offers improved image quality and may increase diagnostic accuracy in CT angiography of the peripheral arterial runoff when optimized reconstruction parameters are chosen. KEY POINTS • UHR photon-counting CT improves image quality in combination with ultrasharp convolution kernels. • UHR datasets display lower image noise compared with identically reconstructed standard resolution scans. • Scans in UHR mode show decreased intraluminal attenuation compared with standard resolution imaging.
Collapse
Affiliation(s)
- Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany.
| | - Viktor Hartung
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Dominik Peter
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Sven Lichthardt
- Department of General, Visceral, Transplant, Vascular, and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Robin Hendel
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Anne Marie Augustin
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Philipp Feldle
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Horst KK, Yu L, McCollough CH, Esquivel A, Thorne JE, Rajiah PS, Baffour F, Hull NC, Weber NM, Thacker PG, Thomas KB, Binkovitz LA, Guerin JB, Fletcher JG. Potential benefits of photon counting detector computed tomography in pediatric imaging. Br J Radiol 2023; 96:20230189. [PMID: 37750939 PMCID: PMC10646626 DOI: 10.1259/bjr.20230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Photon counting detector (PCD) CT represents the newest advance in CT technology, with improved radiation dose efficiency, increased spatial resolution, inherent spectral imaging capabilities, and the ability to eliminate electronic noise. Its design fundamentally differs from conventional energy integrating detector CT because photons are directly converted to electrical signal in a single step. Rather than converting X-rays to visible light and having an output signal that is a summation of energies, PCD directly counts each photon and records its individual energy information. The current commercially available PCD-CT utilizes a dual-source CT geometry, which allows 66 ms cardiac temporal resolution and high-pitch (up to 3.2) scanning. This can greatly benefit pediatric patients by facilitating high quality fast scanning to allow sedation-free imaging. The energy-resolving nature of the utilized PCDs allows "always-on" dual-energy imaging capabilities, such as the creation of virtual monoenergetic, virtual non-contrast, virtual non-calcium, and other material-specific images. These features may be combined with high-resolution imaging, made possible by the decreased size of individual detector elements and the absence of interelement septa. This work reviews the foundational concepts associated with PCD-CT and presents examples to highlight the benefits of PCD-CT in the pediatric population.
Collapse
Affiliation(s)
- Kelly K. Horst
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Andrea Esquivel
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | | | - Francis Baffour
- Department of Radiology, Mayo Clinic, Rochester, United States
| | - Nathan C. Hull
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Paul G. Thacker
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Kristen B. Thomas
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Larry A. Binkovitz
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Julie B. Guerin
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | |
Collapse
|
42
|
McCollough CH, Rajiah P, Bois JP, Winfree TN, Carter RE, Rajendran K, Williamson EE, Thorne JE, Leng S. Comparison of Photon-counting Detector and Energy-integrating Detector CT for Visual Estimation of Coronary Percent Luminal Stenosis. Radiology 2023; 309:e230853. [PMID: 38051190 PMCID: PMC10741385 DOI: 10.1148/radiol.230853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 12/07/2023]
Abstract
Background Compared with energy-integrating detector (EID) CT, the improved resolution of photon-counting detector (PCD) CT coupled with high-energy virtual monoenergetic images (VMIs) has been shown to decrease calcium blooming on images in phantoms and cadaveric specimens. Purpose To determine the impact of dual-source PCD CT on visual and quantitative estimation of percent diameter luminal stenosis compared with dual-source EID CT in patients. Materials and Methods This prospective study recruited consecutive adult patients from an outpatient facility between January and March 2022. Study participants underwent clinical dual-source EID coronary CT angiography followed by a research dual-source PCD CT examination. For PCD CT, multienergy data were used to create VMIs at 50 and 100 keV. Two readers independently reviewed EID CT images followed by PCD CT images after a washout period. Readers visually graded the most severe stenosis in terms of percent diameter luminal stenosis for the left main, left anterior descending, right, and circumflex coronary arteries, unblinded to scanner type. Quantitative measures of percent stenosis were made using commercial software. Visual and quantitative estimates of percent stenosis were compared between EID CT and PCD CT using the Wilcoxon signed-rank test. Results A total of 25 participants (median age, 59 years [range, 18-78 years]; 16 male participants) were enrolled. On EID CT images, readers 1 and 2 identified 39 and 32 luminal stenoses, respectively, with a percent diameter luminal stenosis greater than 0%. Visual estimates of percent stenosis were lower on PCD CT images than EID CT images (reader 1: median 20.6% [IQR, 8.8%-61.2%] vs 31.8% [IQR, 12.9%-69.7%], P < .001; reader 2: 6.5% [IQR, 0.4%-54.1%] vs 22.9% [IQR, 1.8%-67.4%], P = .002). No difference was observed between EID CT and PCD CT for quantitative measures of percent stenosis (median difference, -1.5% [95% CI: -3.0%, 2.5%]; P = .51). Conclusion Relative to using EID CT, using PCD CT led to decreases in visual estimates of percent stenosis. © RSNA, 2023 See also the editorial by Murphy and Donnelly in this issue.
Collapse
Affiliation(s)
- Cynthia H. McCollough
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (C.H.M., P.R., J.P.B., T.N.W., K.R., E.E.W., J.E.T., S.L.); and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Prabhakar Rajiah
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (C.H.M., P.R., J.P.B., T.N.W., K.R., E.E.W., J.E.T., S.L.); and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - John P. Bois
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (C.H.M., P.R., J.P.B., T.N.W., K.R., E.E.W., J.E.T., S.L.); and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Tim N. Winfree
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (C.H.M., P.R., J.P.B., T.N.W., K.R., E.E.W., J.E.T., S.L.); and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Rickey E. Carter
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (C.H.M., P.R., J.P.B., T.N.W., K.R., E.E.W., J.E.T., S.L.); and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Kishore Rajendran
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (C.H.M., P.R., J.P.B., T.N.W., K.R., E.E.W., J.E.T., S.L.); and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Eric E. Williamson
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (C.H.M., P.R., J.P.B., T.N.W., K.R., E.E.W., J.E.T., S.L.); and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Jamison E. Thorne
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (C.H.M., P.R., J.P.B., T.N.W., K.R., E.E.W., J.E.T., S.L.); and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| | - Shuai Leng
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (C.H.M., P.R., J.P.B., T.N.W., K.R., E.E.W., J.E.T., S.L.); and Department of Health Science Research, Mayo Clinic, Jacksonville, Fla (R.E.C.)
| |
Collapse
|
43
|
Hu N, Yan G, Tang M, Wu Y, Song F, Xia X, Chan LWC, Lei P. CT-based methods for assessment of metabolic dysfunction associated with fatty liver disease. Eur Radiol Exp 2023; 7:72. [PMID: 37985560 PMCID: PMC10661153 DOI: 10.1186/s41747-023-00387-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 11/22/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), previously called metabolic nonalcoholic fatty liver disease, is the most prevalent chronic liver disease worldwide. The multi-factorial nature of MAFLD severity is delineated through an intricate composite analysis of the grade of activity in concert with the stage of fibrosis. Despite the preeminence of liver biopsy as the diagnostic and staging reference standard, its invasive nature, pronounced interobserver variability, and potential for deleterious effects (encompassing pain, infection, and even fatality) underscore the need for viable alternatives. We reviewed computed tomography (CT)-based methods for hepatic steatosis quantification (liver-to-spleen ratio; single-energy "quantitative" CT; dual-energy CT; deep learning-based methods; photon-counting CT) and hepatic fibrosis staging (morphology-based CT methods; contrast-enhanced CT biomarkers; dedicated postprocessing methods including liver surface nodularity, liver segmental volume ratio, texture analysis, deep learning methods, and radiomics). For dual-energy and photon-counting CT, the role of virtual non-contrast images and material decomposition is illustrated. For contrast-enhanced CT, normalized iodine concentration and extracellular volume fraction are explained. The applicability and salience of these approaches for clinical diagnosis and quantification of MAFLD are discussed.Relevance statementCT offers a variety of methods for the assessment of metabolic dysfunction-associated fatty liver disease by quantifying steatosis and staging fibrosis.Key points• MAFLD is the most prevalent chronic liver disease worldwide and is rapidly increasing.• Both hardware and software CT advances with high potential for MAFLD assessment have been observed in the last two decades.• Effective estimate of liver steatosis and staging of liver fibrosis can be possible through CT.
Collapse
Affiliation(s)
- Na Hu
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Gang Yan
- Department of Nuclear Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Maowen Tang
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yuhui Wu
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fasong Song
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xing Xia
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lawrence Wing-Chi Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Pinggui Lei
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
44
|
Nehra AK, Dane B, Yeh BM, Fletcher JG, Leng S, Mileto A. Dual-Energy, Spectral and Photon Counting Computed Tomography for Evaluation of the Gastrointestinal Tract. Radiol Clin North Am 2023; 61:1031-1049. [PMID: 37758355 DOI: 10.1016/j.rcl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The use of dual-energy computed tomography (CT) allows for reconstruction of energy- and material-specific image series. The combination of low-energy monochromatic images, iodine maps, and virtual unenhanced images can improve lesion detection and disease characterization in the gastrointestinal tract in comparison with single-energy CT.
Collapse
Affiliation(s)
- Avinash K Nehra
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| | - Bari Dane
- Department of Radiology, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Benjamin M Yeh
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Achille Mileto
- Department of Radiology, Virginia Mason Medical Center, 1100 9th Avenue, Seattle, WA 98101, USA
| |
Collapse
|
45
|
Srinivas-Rao S, Cao J, Marin D, Kambadakone A. Dual-Energy Computed Tomography to Photon Counting Computed Tomography: Emerging Technological Innovations. Radiol Clin North Am 2023; 61:933-944. [PMID: 37758361 DOI: 10.1016/j.rcl.2023.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Computed tomography (CT) has seen remarkable developments in the past several decades, radically transforming the role of imaging in day-to-day clinical practice. Dual-energy CT (DECT), an exciting innovation introduced in the early part of this century, has widened the scope of CT, opening new opportunities due to its ability to provide superior tissue characterization. The introduction of photon-counting CT (PCCT) heralds a paradigm shift in CT scanner technology representing another significant milestone in CT innovation. PCCT offers several advantages over DECT, such as improved spectral resolution, enhanced tissue characterization, reduced image artifacts, and improved image quality.
Collapse
Affiliation(s)
- Shravya Srinivas-Rao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA.
| |
Collapse
|
46
|
Patzer TS, Kunz AS, Huflage H, Gruschwitz P, Pannenbecker P, Afat S, Herrmann J, Petritsch B, Bley TA, Grunz JP. Combining virtual monoenergetic imaging and iterative metal artifact reduction in first-generation photon-counting computed tomography of patients with dental implants. Eur Radiol 2023; 33:7818-7829. [PMID: 37284870 PMCID: PMC10598126 DOI: 10.1007/s00330-023-09790-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVES While established for energy-integrating detector computed tomography (CT), the effect of virtual monoenergetic imaging (VMI) and iterative metal artifact reduction (iMAR) in photon-counting detector (PCD) CT lacks thorough investigation. This study evaluates VMI, iMAR, and combinations thereof in PCD-CT of patients with dental implants. MATERIAL AND METHODS In 50 patients (25 women; mean age 62.0 ± 9.9 years), polychromatic 120 kVp imaging (T3D), VMI, T3DiMAR, and VMIiMAR were compared. VMIs were reconstructed at 40, 70, 110, 150, and 190 keV. Artifact reduction was assessed by attenuation and noise measurements in the most hyper- and hypodense artifacts, as well as in artifact-impaired soft tissue of the mouth floor. Three readers subjectively evaluated artifact extent and soft tissue interpretability. Furthermore, new artifacts through overcorrection were assessed. RESULTS iMAR reduced hyper-/hypodense artifacts (T3D 1305.0/-1418.4 versus T3DiMAR 103.2/-46.9 HU), soft tissue impairment (106.7 versus 39.7 HU), and image noise (16.9 versus 5.2 HU) compared to non-iMAR datasets (p ≤ 0.001). VMIiMAR ≥ 110 keV subjectively enhanced artifact reduction over T3DiMAR (p ≤ 0.023). Without iMAR, VMI displayed no measurable artifact reduction (p ≥ 0.186) and facilitated no significant denoising over T3D (p ≥ 0.366). However, VMI ≥ 110 keV reduced soft tissue impairment (p ≤ 0.009). VMIiMAR ≥ 110 keV resulted in less overcorrection than T3DiMAR (p ≤ 0.001). Inter-reader reliability was moderate/good for hyperdense (0.707), hypodense (0.802), and soft tissue artifacts (0.804). CONCLUSION While VMI alone holds minimal metal artifact reduction potential, iMAR post-processing enabled substantial reduction of hyperdense and hypodense artifacts. The combination of VMI ≥ 110 keV and iMAR resulted in the least extensive metal artifacts. CLINICAL RELEVANCE Combining iMAR with VMI represents a potent tool for maxillofacial PCD-CT with dental implants achieving substantial artifact reduction and high image quality. KEY POINTS • Post-processing of photon-counting CT scans with an iterative metal artifact reduction algorithm substantially reduces hyperdense and hypodense artifacts arising from dental implants. • Virtual monoenergetic images presented only minimal metal artifact reduction potential. • The combination of both provided a considerable benefit in subjective analysis compared to iterative metal artifact reduction alone.
Collapse
Affiliation(s)
- Theresa Sophie Patzer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany.
| | - Andreas Steven Kunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Pauline Pannenbecker
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Saif Afat
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str 3, 72076, Tübingen, Germany
| | - Judith Herrmann
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str 3, 72076, Tübingen, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacherstraße 6, 97080, Würzburg, Germany
| |
Collapse
|
47
|
Chang S, Ren L, Tang S, Marsh JF, Hsieh S, McCollough CH, Leng S. Technical note: Exploring the detectability of coronary calcification using ultra-high-resolution photon-counting-detector CT. Med Phys 2023; 50:6836-6843. [PMID: 37650788 PMCID: PMC10841095 DOI: 10.1002/mp.16712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Coronary calcification is a strong indicator of coronary artery disease, and patients with a "zero" coronary calcification score have a much lower risk of future cardiac events than those with even small amounts of calcium. However, false-negative (incorrect zero scores) may occur if small calcifications are missed at CT due to limited spatial resolution. PURPOSE To demonstrate lower limits of detection for coronary calcification using an ultra-high-resolution (UHR) mode on a clinical photon-counting-detector CT (PCD-CT), compared to a conventional energy-integrating-detector CT (EID-CT). METHODS Chicken eggshell fragments (0.4-0.8 mm) mimicking coronary calcifications were scanned on a clinical PCD-CT (NAEOTOM Alpha) in UHR mode and a conventional EID-CT (SOMATOM Force) with matched tube potential and radiation dose levels to the PCD-CT. PCD-CT images were reconstructed with a sharp kernel (Qr68) and a quantum iterative algorithm (QIR-3). Two sets of EID-CT images were reconstructed: routine clinical kernel (Qr36, ADMIRE-3) and a sharper kernel (Qr54) with similar noise to PCD-CT images. With institutional review board approval, in vivo exams performed with the PCD-CT in UHR mode were compared against patients' clinical EID-CT exams. The visibility of calcifications on PCD-CT and EID-CT images was assessed and compared qualitatively. RESULTS PCD-CT images visualized all calcified fragments, while EID-CT failed to detect those below 0.6 mm using a routine protocol. EID-CT with Qr54 improved visibility but distorted boundaries. Calcifications were less visible on EID-CT than PCD-CT as phantom sizes increased. 0.6- and 0.7-mm calcified fragments were barely visible on 35- and 40-cm phantom EID-CT images. Patient cases showed small calcifications missed on EID-CT but detected on PCD-CT. CONCLUSION At matched radiation dose, PCD-CT in UHR mode provided higher spatial resolution and improved the detectability of small calcified fragments for different phantom/patient sizes in comparison to EID-CT.
Collapse
Affiliation(s)
- Shaojie Chang
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | - Liqiang Ren
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | - Shanshan Tang
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | | | - Scott Hsieh
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| | | | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, US
| |
Collapse
|
48
|
Wu Y, Ye Z, Chen J, Deng L, Song B. Photon Counting CT: Technical Principles, Clinical Applications, and Future Prospects. Acad Radiol 2023; 30:2362-2382. [PMID: 37369618 DOI: 10.1016/j.acra.2023.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023]
Abstract
Photon-counting computed tomography (PCCT) is a new technique that utilizes photon-counting detectors to convert individual X-ray photons directly into an electrical signal, which can achieve higher spatial resolution, improved iodine signal, radiation dose reduction, artifact reduction, and multienergy imaging. This review introduces the technical principles of PCCT, and summarizes its first-in-human experience and current applications in clinical settings, and discusses the future prospects of PCCT.
Collapse
Affiliation(s)
- Yingyi Wu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Jie Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Liping Deng
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.)
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu 610041, China (Y.Y.W., Z.Y., J.C., L.P.D., B.S.); Department of Radiology, Sanya People' s Hospital, Sanya, Hainan, China (B.S.).
| |
Collapse
|
49
|
Rajagopal JR, Farhadi F, Nikpanah M, Sahbaee P, Saboury B, Pritchard WF, Jones EC, Chen MY, Samei E. Impact of the confluence of cardiac motion and high spatial resolution on performance of ECG-gated imaging with an investigational photon-counting CT system: A phantom study. Phys Med 2023; 114:102683. [PMID: 37738807 PMCID: PMC10798551 DOI: 10.1016/j.ejmp.2023.102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE Photon-counting CT (PCCT) has higher spatial resolution that conventional EID CT which improves imaging of stationary coronary plaques and stents.. In this work, we evaluated the relationship between higher spatial resolution and motion acquisition on an investigational PCCT system. METHODS An investigational photon-counting CT scanner (Siemens CounT) with ECG gating was used to image a coronary tree phantom with models of healthy, stenotic, and stented arteries using a motion simulator. Images were acquired with matched clinical parameters at rest and 60 beats per minute. An additional set of high dose stationary images were averaged to generate a motion-free, reduced noise reference. Scans were completed at standard (0.5 mm2) and high-resolution (0.25 mm2). Motion images were reconstructed at multiple phases. Regions of interest were drawn around vessels and segmented. Percentage difference from the reference standard was evaluated for vessel diameter and circularity. Mutual information between the reference and stationary and motion datasets was used as a measure of volumetric similarity. RESULTS The stenotic vessel showed the most variation from the reference when compared to healthy or stented vessels. Compared to standard resolution, high-resolution images had lower bias for diameter (-0.012 ± 0.19% vs -0.052 ± 0.14%) and lower variability for circularity (-0.13 ± 0.138% vs -0.12 ± 0.144%). Both differences were found to be statistically significant. High-resolution images had a slightly lower mutual information (1.28) than standard resolution (1.31). CONCLUSION The higher spatial resolution enabled by photon-counting CT can be harnessed for cardiac imaging as the benefits of high spatial resolution acquisitions remain relevant in the presence of motion.
Collapse
Affiliation(s)
- Jayasai R Rajagopal
- Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Department of Radiology, Duke University Medical Center, Durham, NC, 27705, USA; Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Faraz Farhadi
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moozhan Nikpanah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Babak Saboury
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - William F Pritchard
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth C Jones
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcus Y Chen
- Cardiovascular Branch, National Institute of Heart, Lung, and Blood, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ehsan Samei
- Carl E. Ravin Advanced Imaging Laboratories, Medical Physics Graduate Program, Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
50
|
Schwartz FR, Ria F, McCabe C, Zarei M, Rajagopal J, Molvin L, Marin D, O'Sullivan-Murphy B, Kalisz KR, Tailor TD, Washington L, Henry T, Samei E. Image quality of photon counting and energy integrating chest CT - Prospective head-to-head comparison on same patients. Eur J Radiol 2023; 166:111014. [PMID: 37542816 DOI: 10.1016/j.ejrad.2023.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
PURPOSE To prospectively compare the image quality of high-resolution, low-dose photon-counting detector CT (PCD-CT) with standard energy-integrating-detector CT (EID) on the same patients. METHOD IRB-approved, prospective study; patients received same-day non-contrast CT on EID and PCD-CT (NAEOTOM Alpha, blinded) with clinical protocols. Four blinded radiologists evaluated subsegmental bronchial wall definition, noise, and overall image quality in randomized order (0 = worst; 100 = best). Cases were quantitatively compared using the average Global-Noise-Index (GNI), Noise-Power-Spectrum average frequency (fav), NPS frequency-peak (fpeak), Task-Transfer-Function-10%-frequency (f10) an adjusted detectability index (d'adj), and applied output radiation doses (CTDIvol). RESULTS Sixty patients were prospectively imaged (27 men, mean age 67 ± 10 years, mean BMI 27.9 ± 6.5, 15.9-49.4 kg/m2). Subsegmental wall definition was rated significantly better for PCD-CT than EID (mean 71 [56-87] vs 60 [45-76]; P < 0.001), noise was rated higher for PCD-CT (48 [26-69] vs 34 [13-56]; P < 0.001). Overall image quality was rated significantly higher for PCD-CT than EID (66 [48-85] vs 61 [42-79], P = 0.008). Automated image quality measures showed similar differences for PCD-CT vs EID (mean GNI 70 ± 19 HU vs 26 ± 8 HU, fav 0.35 ± 0.02 vs 0.25 ± 0.02 mm-1, fpeak 0.07 ± 0.01 vs 0.09 ± 0.03 mm-1, f10 0.7 ± 0.08 vs 0.6 ± 0.1 mm-1, all p-values < 0.001). PCD-CT showed a 10% average d'adj increase (-49% min, 233% max). PCD-CT studies were acquired at significantly lower radiation doses than EID (mean CTDIvol 4.5 ± 2.1 vs 7.7 ± 3.2 mGy, P < 0.01). CONCLUSION Though PCD-CT had higher measured and perceived noise, it offered equivalent or better diagnostic quality compared to EID at lower radiation doses, due to its improved resolution.
Collapse
Affiliation(s)
- Fides R Schwartz
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Francesco Ria
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Cindy McCabe
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Mojtaba Zarei
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Jayasai Rajagopal
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Lior Molvin
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Daniele Marin
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Bryan O'Sullivan-Murphy
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Kevin R Kalisz
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Tina D Tailor
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Lacey Washington
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Travis Henry
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| | - Ehsan Samei
- Duke University Health System, Department of Radiology, 2301 Erwin Road Box 3808, Durham, NC 27110, United States.
| |
Collapse
|