1
|
Zhuo Z, Zhang N, Ao F, Hua T, Duan Y, Xu X, Weng J, Cao G, Li K, Zhou F, Li H, Li Y, Han X, Haller S, Barkhof F, Hu G, Shi F, Zhang X, Tian D, Liu Y. Spatial structural abnormality maps associated with cognitive and physical performance in relapsing-remitting multiple sclerosis. Eur Radiol 2024:10.1007/s00330-024-11157-w. [PMID: 39470796 DOI: 10.1007/s00330-024-11157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 11/01/2024]
Abstract
OBJECTIVES We aimed to characterize the brain abnormalities that are associated with the cognitive and physical performance of patients with relapsing-remitting multiple sclerosis (RRMS) using a deep learning algorithm. MATERIALS AND METHODS Three-dimensional (3D) nnU-Net was employed to calculate a novel spatial abnormality map by T1-weighted images and 281 RRMS patients (Dataset-1, male/female = 101/180, median age [range] = 35.0 [17.0, 65.0] years) were categorized into subtypes. Comparison of clinical and MRI features between RRMS subtypes was conducted by Kruskal-Wallis test. Kaplan-Meier analysis was conducted to investigate disability progression in RRMS subtypes. Additional validation using two other RRMS datasets (Dataset-2, n = 33 and Dataset-3, n = 56) was conducted. RESULTS Five RRMS subtypes were identified: (1) a Frontal-I subtype showing preserved cognitive performance and mild physical disability, and low risk of disability worsening; (2) a Frontal-II subtype showing low cognitive scores and severe physical disability with significant brain volume loss, and a high propensity for disability worsening; (3) a temporal-cerebellar subtype demonstrating lowest cognitive scores and severest physical disability among all subtypes but remaining relatively stable during follow-up; (4) an occipital subtype demonstrating similar clinical and imaging characteristics as the Frontal-II subtype, except a large number of relapses at baseline and preserved cognitive performance; and (5) a subcortical subtype showing preserved cognitive performance and low physical disability but a similar prognosis as the occipital and Frontal-II subtypes. Additional validation confirmed the above findings. CONCLUSION Spatial abnormality maps can explain heterogeneity in cognitive and physical performance in RRMS and may contribute to stratified management. KEY POINTS Question Can a deep learning algorithm characterize the brain abnormalities associated with the cognitive and physical performance of patients with RRMS? Findings Five RRMS subtypes were identified by the algorithm that demonstrated variable cognitive and physical performance. Clinical relevance The spatial abnormality maps derived RRMS subtypes had distinct cognitive and physical performances, which have a potential for individually tailored management.
Collapse
Affiliation(s)
- Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Ao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Tiantian Hua
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Xu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyuan Weng
- Department of Medical Imaging Product, Neusoft Group Ltd., Shenyang, People's Republic of China
| | - Guanmei Cao
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Haiqing Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Han
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sven Haller
- Department of Imaging and Medical Informatics, University Hospitals of Geneva and Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London, UK
| | - Geli Hu
- Clinical and Technical Support, Philips Healthcare, Beijing, China
| | - Fudong Shi
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinghu Zhang
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Decai Tian
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Rocca MA, Preziosa P, Barkhof F, Brownlee W, Calabrese M, De Stefano N, Granziera C, Ropele S, Toosy AT, Vidal-Jordana À, Di Filippo M, Filippi M. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:100978. [PMID: 39444702 PMCID: PMC11496980 DOI: 10.1016/j.lanepe.2024.100978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
In the majority of cases, multiple sclerosis (MS) is characterized by reversible episodes of neurological dysfunction, often followed by irreversible clinical disability. Accurate diagnostic criteria and prognostic markers are critical to enable early diagnosis and correctly identify patients with MS at increased risk of disease progression. The 2017 McDonald diagnostic criteria, which include magnetic resonance imaging (MRI) as a fundamental paraclinical tool, show high sensitivity and accuracy for the diagnosis of MS allowing early diagnosis and treatment. However, their inappropriate application, especially in the context of atypical clinical presentations, may increase the risk of misdiagnosis. To further improve the diagnostic process, novel imaging markers are emerging, but rigorous validation and standardization is still needed before they can be incorporated into clinical practice. This Series article discusses the current role of MRI in the diagnosis and prognosis of MS, while examining promising MRI markers, which could serve as reliable predictors of subsequent disease progression, helping to optimize the management of individual patients with MS. We also explore the potential of new technologies, such as artificial intelligence and automated quantification tools, to support clinicians in the management of patients. Yet, to ensure consistency and improvement in the use of MRI in MS diagnosis and patient follow-up, it is essential that standardized brain and spinal cord MRI protocols are applied, and that interpretation of results is performed by qualified (neuro)radiologists in all countries.
Collapse
Affiliation(s)
- Maria A. Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Wallace Brownlee
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Massimiliano Calabrese
- The Multiple Sclerosis Center of University Hospital of Verona, Department of Neurosciences and Biomedicine and Movement, Verona, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Cristina Granziera
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Ahmed T. Toosy
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK
| | - Àngela Vidal-Jordana
- Servicio de Neurología, Centro de Esclerosis Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
3
|
Amin M, Martínez-Heras E, Ontaneda D, Prados Carrasco F. Artificial Intelligence and Multiple Sclerosis. Curr Neurol Neurosci Rep 2024; 24:233-243. [PMID: 38940994 PMCID: PMC11258192 DOI: 10.1007/s11910-024-01354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
In this paper, we analyse the different advances in artificial intelligence (AI) approaches in multiple sclerosis (MS). AI applications in MS range across investigation of disease pathogenesis, diagnosis, treatment, and prognosis. A subset of AI, Machine learning (ML) models analyse various data sources, including magnetic resonance imaging (MRI), genetic, and clinical data, to distinguish MS from other conditions, predict disease progression, and personalize treatment strategies. Additionally, AI models have been extensively applied to lesion segmentation, identification of biomarkers, and prediction of outcomes, disease monitoring, and management. Despite the big promises of AI solutions, model interpretability and transparency remain critical for gaining clinician and patient trust in these methods. The future of AI in MS holds potential for open data initiatives that could feed ML models and increasing generalizability, the implementation of federated learning solutions for training the models addressing data sharing issues, and generative AI approaches to address challenges in model interpretability, and transparency. In conclusion, AI presents an opportunity to advance our understanding and management of MS. AI promises to aid clinicians in MS diagnosis and prognosis improving patient outcomes and quality of life, however ensuring the interpretability and transparency of AI-generated results is going to be key for facilitating the integration of AI into clinical practice.
Collapse
Affiliation(s)
- Moein Amin
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Eloy Martínez-Heras
- Neuroimmunology and Multiple Sclerosis Unit, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| | - Ferran Prados Carrasco
- e-Health Center, Universitat Oberta de Catalunya, Barcelona, Spain.
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK.
- Center for Medical Image Computing, University College London, London, UK.
- National Institute for Health Research Biomedical Research Centre at UCL and UCLH, London, UK.
| |
Collapse
|
4
|
Collorone S, Coll L, Lorenzi M, Lladó X, Sastre-Garriga J, Tintoré M, Montalban X, Rovira À, Pareto D, Tur C. Artificial intelligence applied to MRI data to tackle key challenges in multiple sclerosis. Mult Scler 2024; 30:767-784. [PMID: 38738527 DOI: 10.1177/13524585241249422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Artificial intelligence (AI) is the branch of science aiming at creating algorithms able to carry out tasks that typically require human intelligence. In medicine, there has been a tremendous increase in AI applications thanks to increasingly powerful computers and the emergence of big data repositories. Multiple sclerosis (MS) is a chronic autoimmune condition affecting the central nervous system with a complex pathogenesis, a challenging diagnostic process strongly relying on magnetic resonance imaging (MRI) and a high and largely unexplained variability across patients. Therefore, AI applications in MS have the great potential of helping us better support the diagnosis, find markers for prognosis to eventually design more powerful randomised clinical trials and improve patient management in clinical practice and eventually understand the mechanisms of the disease. This topical review aims to summarise the recent advances in AI applied to MRI data in MS to illustrate its achievements, limitations and future directions.
Collapse
Affiliation(s)
- Sara Collorone
- NMR Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Llucia Coll
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marco Lorenzi
- Epione Research Project, Inria Sophia Antipolis, Université Côte d'Azur, Nice, France
| | - Xavier Lladó
- Research Institute of Computer Vision and Robotics, University of Girona, Girona, Spain
| | - Jaume Sastre-Garriga
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology (IDI), Vall d'Hebron University Hospital, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deborah Pareto
- Section of Neuroradiology, Department of Radiology (IDI), Vall d'Hebron University Hospital, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Tur
- NMR Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Montolío A, Cegoñino J, Garcia-Martin E, Pérez Del Palomar A. The macular retinal ganglion cell layer as a biomarker for diagnosis and prognosis in multiple sclerosis: A deep learning approach. Acta Ophthalmol 2024; 102:e272-e284. [PMID: 37300357 DOI: 10.1111/aos.15722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE The macular ganglion cell layer (mGCL) is a strong potential biomarker of axonal degeneration in multiple sclerosis (MS). For this reason, this study aims to develop a computer-aided method to facilitate diagnosis and prognosis in MS. METHODS This paper combines a cross-sectional study of 72 MS patients and 30 healthy control subjects for diagnosis and a 10-year longitudinal study of the same MS patients for the prediction of disability progression, during which the mGCL was measured using optical coherence tomography (OCT). Deep neural networks were used as an automatic classifier. RESULTS For MS diagnosis, greatest accuracy (90.3%) was achieved using 17 features as inputs. The neural network architecture comprised the input layer, two hidden layers and the output layer with softmax activation. For the prediction of disability progression 8 years later, accuracy of 81.9% was achieved with a neural network comprising two hidden layers and 400 epochs. CONCLUSION We present evidence that by applying deep learning techniques to clinical and mGCL thickness data it is possible to identify MS and predict the course of the disease. This approach potentially constitutes a non-invasive, low-cost, easy-to-implement and effective method.
Collapse
Affiliation(s)
- Alberto Montolío
- Biomaterials Group, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| | - José Cegoñino
- Biomaterials Group, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| | - Elena Garcia-Martin
- Ophthalmology Department, Miguel Servet University Hospital, Zaragoza, Spain
- GIMSO Research and Innovation Group, Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Amaya Pérez Del Palomar
- Biomaterials Group, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Amin M, Nakamura K, Ontaneda D. Differentiating multiple sclerosis from non-specific white matter changes using a convolutional neural network image classification model. Mult Scler Relat Disord 2024; 82:105420. [PMID: 38183693 DOI: 10.1016/j.msard.2023.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The diagnosis of multiple sclerosis (MS) relies heavily on neuroimaging with magnetic resonance imaging (MRI) and exclusion of mimics. This can be a challenging task due to radiological overlap in several disorders and may require ancillary testing or longitudinal follow up. One of the most common radiological MS mimickers is non-specific white matter disease (NSWMD). We aimed to develop and evaluate models leveraging machine learning algorithms to help distinguish MS and NSWMD. METHODS All adult patients who underwent MRI brain using a demyelinating protocol with available electronic medical records between 2015 and 2019 at Cleveland Clinic affiliated facilities were included. Diagnosis of MS and NSWMD were assessed from clinical documentation. Those with a diagnosis of MS and NSWMD were matched using total T2 lesion volume (T2LV) and used to train models with logistic regression and convolutional neural networks (CNN). Performance metrices were reported for each model. RESULTS A total of 250 NSWMD MRI scans were identified, and 250 unique MS MRI scans were matched on T2LV. Cross validated logistic regression model was able to use 20 variables (including spinal cord area, regional volumes, and fractions) to predict MS compared to NSWMD with 68.0% accuracy while the CNN model was able to classify MS compared to NSWMD in two independent validation and testing cohorts with 77% and 78% accuracy on average. CONCLUSION Automated methods can be used to differentiate MS compared to NSWMD. These methods can be used to supplement currently available diagnostic tools for patients being evaluated for MS.
Collapse
Affiliation(s)
- Moein Amin
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kunio Nakamura
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Daniel Ontaneda
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
7
|
Zhou D, Xu L, Wang T, Wei S, Gao F, Lai X, Cao J. M-DDC: MRI based demyelinative diseases classification with U-Net segmentation and convolutional network. Neural Netw 2024; 169:108-119. [PMID: 37890361 DOI: 10.1016/j.neunet.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Childhood demyelinative diseases classification (DDC) with brain magnetic resonance imaging (MRI) is crucial to clinical diagnosis. But few attentions have been paid to DDC in the past. How to accurately differentiate pediatric-onset neuromyelitis optica spectrum disorder (NMOSD) from acute disseminated encephalomyelitis (ADEM) based on MRI is challenging in DDC. In this paper, a novel architecture M-DDC based on joint U-Net segmentation network and deep convolutional network is developed. The U-Net segmentation can provide pixel-level structure information, that helps the lesion areas location and size estimation. The classification branch in DDC can detect the regions of interest inside MRIs, including the white matter regions where lesions appear. The performance of the proposed method is evaluated on MRIs of 201 subjects recorded from the Children's Hospital of Zhejiang University School of Medicine. The comparisons show that the proposed DDC achieves the highest accuracy of 99.19% and dice of 71.1% for ADEM and NMOSD classification and segmentation, respectively.
Collapse
Affiliation(s)
- Deyang Zhou
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China; HDU-ITMO Joint Institute, Hangzhou Dianzi University, Zhejiang, 310018, China.
| | - Lu Xu
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, 310018, China.
| | - Tianlei Wang
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China.
| | - Shaonong Wei
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China; HDU-ITMO Joint Institute, Hangzhou Dianzi University, Zhejiang, 310018, China.
| | - Feng Gao
- Department of Neurology, Children's Hospital, Zhejiang University School of Medicine, 310018, China.
| | - Xiaoping Lai
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China.
| | - Jiuwen Cao
- Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China.
| |
Collapse
|
8
|
Landes-Chateau C, Levraut M, Cohen M, Sicard M, Papeix C, Cotton F, Balcerac A, Themelin A, Mondot L, Lebrun-Frenay C. Identification of demyelinating lesions and application of McDonald criteria when confronted with white matter lesions on brain MRI. Rev Neurol (Paris) 2023; 179:1103-1110. [PMID: 37730469 DOI: 10.1016/j.neurol.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION White matter lesions (WML) on magnetic resonance imaging (MRI) are common in clinical practice. When analyzing WML, radiologists sometimes propose a pathophysiological mechanism to explain the observed MRI abnormalities, which can be a source of anxiety for patients. In some cases, discordance may appear between the patient's clinical symptoms and the identification of the MRI-appearing WML, leading to extensive diagnostic work-up. To avoid misdiagnosis, the analysis of WML should be standardized, and a consensual MRI reading approach is needed. OBJECTIVE To analyze the MRI WML identification process, associated diagnosis approach, and misinterpretations in physicians involved in WML routine practice. METHODS Through a survey distributed online to practitioners involved in WML diagnostic work-up, we described the leading causes of MRI expertise misdiagnosis and associated factors: clinical experience, physicians' subspecialty and location of practice, and type of device used to complete the survey. The survey consisted of sixteen T2-weighted images MRI analysis, from which ten were guided (binary response to lesion location identification), four were not shown (multiple possible answers), and two were associated with dissemination in space (DIS) McDonald criteria application. Two independent, experienced practitioners determined the correct answers before the participants' completion. RESULTS In total, 364 participants from the French Neuro Radiological (SFNR), French Neurological (SFN), and French Multiple Sclerosis (SFSEP) societies completed the survey entirely. According to lesion identification, 34.3% and 16.9% of the participants correctly identified juxtacortical and periventricular lesions, respectively, whereas 56.3% correctly identified non-guided lesions. Application of the 2017 McDonald's DIS criteria was correct for 35.3% of the participants. According to the global survey scoring, factors independently associated with correct answers in multivariate analysis were MS-expert subspecialty (P<0.001), young clinical practitioners (P=0.02), and the use of a computer instead of a smartphone to perform WML analysis (P=0.03). CONCLUSION Our results highlight the difficulties regarding WML analysis in clinical practice and suggest that radiologists and neurologists should rely on each other to ensure the diagnosis of multiple sclerosis and related disorders and limit misdiagnoses.
Collapse
Affiliation(s)
- C Landes-Chateau
- UR2CA-URRIS, CRCSEP neurologie, CHU de Nice, université Côte d'Azur, Nice, France.
| | - M Levraut
- UR2CA-URRIS, CRCSEP neurologie, CHU de Nice, université Côte d'Azur, Nice, France
| | - M Cohen
- UR2CA-URRIS, CRCSEP neurologie, CHU de Nice, université Côte d'Azur, Nice, France
| | - M Sicard
- UR2CA-URRIS, CRCSEP neurologie, CHU de Nice, université Côte d'Azur, Nice, France
| | - C Papeix
- Service de neurologie générale, hôpital Fondation Adolphe-de-Rothschild, Paris, France
| | - F Cotton
- U1044 Inserm, CREATIS, UMR 5220 CNRS, service de radiologie, centre hospitalier Lyon-Sud, hospices civils de Lyon, université Claude-Bernard Lyon, Lyon, France
| | - A Balcerac
- Département de neurologie, université la Sorbonne, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - A Themelin
- Service de radiologie, CHU de Nice, université Côte d'Azur, Nice, France
| | - L Mondot
- UR2CA-URRIS, CRCSEP neurologie, CHU de Nice, université Côte d'Azur, Nice, France
| | - C Lebrun-Frenay
- UR2CA-URRIS, CRCSEP neurologie, CHU de Nice, université Côte d'Azur, Nice, France
| |
Collapse
|
9
|
Damer A, Chaudry E, Eftekhari D, Benseler SM, Safi F, Aviv RI, Tyrrell PN. Neuroimaging Scoring Tools to Differentiate Inflammatory Central Nervous System Small-Vessel Vasculitis: A Need for Artificial Intelligence/Machine Learning?-A Scoping Review. Tomography 2023; 9:1811-1828. [PMID: 37888736 PMCID: PMC10610796 DOI: 10.3390/tomography9050144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Neuroimaging has a key role in identifying small-vessel vasculitis from common diseases it mimics, such as multiple sclerosis. Oftentimes, a multitude of these conditions present similarly, and thus diagnosis is difficult. To date, there is no standardized method to differentiate between these diseases. This review identifies and presents existing scoring tools that could serve as a starting point for integrating artificial intelligence/machine learning (AI/ML) into the clinical decision-making process for these rare diseases. A scoping literature review of EMBASE and MEDLINE included 114 articles to evaluate what criteria exist to diagnose small-vessel vasculitis and common mimics. This paper presents the existing criteria of small-vessel vasculitis conditions and mimics them to guide the future integration of AI/ML algorithms to aid in diagnosing these conditions, which present similarly and non-specifically.
Collapse
Affiliation(s)
- Alameen Damer
- Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Emaan Chaudry
- Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
| | - Daniel Eftekhari
- Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
| | - Susanne M. Benseler
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Frozan Safi
- Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
| | - Richard I. Aviv
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Pascal N. Tyrrell
- Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
- Institute of Medical Science, Department of Statistical Sciences, University of Toronto, Toronto, ON M5G 1X6, Canada
| |
Collapse
|
10
|
Shimron E, Perlman O. AI in MRI: Computational Frameworks for a Faster, Optimized, and Automated Imaging Workflow. Bioengineering (Basel) 2023; 10:492. [PMID: 37106679 PMCID: PMC10135995 DOI: 10.3390/bioengineering10040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Over the last decade, artificial intelligence (AI) has made an enormous impact on a wide range of fields, including science, engineering, informatics, finance, and transportation [...].
Collapse
Affiliation(s)
- Efrat Shimron
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
11
|
Olatunji SO, Alsheikh N, Alnajrani L, Alanazy A, Almusairii M, Alshammasi S, Alansari A, Zaghdoud R, Alahmadi A, Basheer Ahmed MI, Ahmed MS, Alhiyafi J. Comprehensible Machine-Learning-Based Models for the Pre-Emptive Diagnosis of Multiple Sclerosis Using Clinical Data: A Retrospective Study in the Eastern Province of Saudi Arabia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4261. [PMID: 36901273 PMCID: PMC10002108 DOI: 10.3390/ijerph20054261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Multiple Sclerosis (MS) is characterized by chronic deterioration of the nervous system, mainly the brain and the spinal cord. An individual with MS develops the condition when the immune system begins attacking nerve fibers and the myelin sheathing that covers them, affecting the communication between the brain and the rest of the body and eventually causing permanent damage to the nerve. Patients with MS (pwMS) might experience different symptoms depending on which nerve was damaged and how much damage it has sustained. Currently, there is no cure for MS; however, there are clinical guidelines that help control the disease and its accompanying symptoms. Additionally, no specific laboratory biomarker can precisely identify the presence of MS, leaving specialists with a differential diagnosis that relies on ruling out other possible diseases with similar symptoms. Since the emergence of Machine Learning (ML) in the healthcare industry, it has become an effective tool for uncovering hidden patterns that aid in diagnosing several ailments. Several studies have been conducted to diagnose MS using ML and Deep Learning (DL) models trained using MRI images, achieving promising results. However, complex and expensive diagnostic tools are needed to collect and examine imaging data. Thus, the intention of this study is to implement a cost-effective, clinical data-driven model that is capable of diagnosing pwMS. The dataset was obtained from King Fahad Specialty Hospital (KFSH) in Dammam, Saudi Arabia. Several ML algorithms were compared, namely Support Vector Machine (SVM), Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), and Extra Trees (ET). The results indicated that the ET model outpaced the rest with an accuracy of 94.74%, recall of 97.26%, and precision of 94.67%.
Collapse
Affiliation(s)
- Sunday O. Olatunji
- College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nawal Alsheikh
- College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Lujain Alnajrani
- College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Alhatoon Alanazy
- College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Meshael Almusairii
- College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Salam Alshammasi
- College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Aisha Alansari
- College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rim Zaghdoud
- College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Alaa Alahmadi
- College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Imran Basheer Ahmed
- College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Salih Ahmed
- College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Jamal Alhiyafi
- Department of Computer Science, Kettering University, Flint, MI 48504, USA
| |
Collapse
|
12
|
Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis. Neurol Sci 2023; 44:499-517. [PMID: 36303065 DOI: 10.1007/s10072-022-06460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The expansion of the availability of advanced imaging methods needs more time, expertise, and resources which is in contrast to the primary goal of the imaging techniques. To overcome most of these difficulties, artificial intelligence (AI) can be used. A number of studies used AI models for multiple sclerosis (MS) diagnosis and reported diverse results. Therefore, we aim to perform a comprehensive systematic review and meta-analysis study on the role of AI in the diagnosis of MS. METHODS We performed a systematic search using four databases including PubMed, Scopus, Web of Science, and IEEE. Studies that applied deep learning or AI to the diagnosis of MS based on any modalities were considered eligible in our study. The accuracy, sensitivity, specificity, precision, and area under curve (AUC) were pooled with a random-effects model and 95% confidence interval (CI). RESULTS After the screening, 41 articles with 5989 individuals met the inclusion criteria and were included in our qualitative and quantitative synthesis. Our analysis showed that the overall accuracy among studies was 94% (95%CI: 93%, 96%). The pooled sensitivity and specificity were 92% (95%CI: 90%, 95%) and 93% (95%CI: 90%, 96%), respectively. Furthermore, our analysis showed 92% precision in MS diagnosis for AI studies (95%CI: 88%, 97%). Also, the overall pooled AUC was 93% (95%CI: 89%, 96%). CONCLUSION Overall, AI models can further improve our diagnostic practice in MS patients. Our results indicate that the use of AI can aid the clinicians in accurate diagnosis of MS and improve current diagnostic approaches as most of the parameters including accuracy, sensitivity, specificity, precision, and AUC were considerably high, especially when using MRI data.
Collapse
|
13
|
Present and future of the diagnostic work-up of multiple sclerosis: the imaging perspective. J Neurol 2023; 270:1286-1299. [PMID: 36427168 PMCID: PMC9971159 DOI: 10.1007/s00415-022-11488-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
Abstract
In recent years, the use of magnetic resonance imaging (MRI) for the diagnostic work-up of multiple sclerosis (MS) has evolved considerably. The 2017 McDonald criteria show high sensitivity and accuracy in predicting a second clinical attack in patients with a typical clinically isolated syndrome and allow an earlier diagnosis of MS. They have been validated, are evidence-based, simplify the clinical use of MRI criteria and improve MS patients' management. However, to limit the risk of misdiagnosis, they should be applied by expert clinicians only after the careful exclusion of alternative diagnoses. Recently, new MRI markers have been proposed to improve diagnostic specificity for MS and reduce the risk of misdiagnosis. The central vein sign and chronic active lesions (i.e., paramagnetic rim lesions) may increase the specificity of MS diagnostic criteria, but further effort is necessary to validate and standardize their assessment before implementing them in the clinical setting. The feasibility of subpial demyelination assessment and the clinical relevance of leptomeningeal enhancement evaluation in the diagnostic work-up of MS appear more limited. Artificial intelligence tools may capture MRI attributes that are beyond the human perception, and, in the future, artificial intelligence may complement human assessment to further ameliorate the diagnostic work-up and patients' classification. However, guidelines that ensure reliability, interpretability, and validity of findings obtained from artificial intelligence approaches are still needed to implement them in the clinical scenario. This review provides a summary of the most recent updates regarding the application of MRI for the diagnosis of MS.
Collapse
|
14
|
Cacciaguerra L, Flanagan EP. Improving myelopathy diagnosis now and into the future. J Neurol Sci 2022; 442:120424. [PMID: 36201962 DOI: 10.1016/j.jns.2022.120424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Laura Cacciaguerra
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.; Vita-Salute San Raffaele University, Milan, Italy.; Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.; Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA..
| |
Collapse
|
15
|
Taloni A, Farrelly FA, Pontillo G, Petsas N, Giannì C, Ruggieri S, Petracca M, Brunetti A, Pozzilli C, Pantano P, Tommasin S. Evaluation of Disability Progression in Multiple Sclerosis via Magnetic-Resonance-Based Deep Learning Techniques. Int J Mol Sci 2022; 23:ijms231810651. [PMID: 36142563 PMCID: PMC9505100 DOI: 10.3390/ijms231810651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Short-term disability progression was predicted from a baseline evaluation in patients with multiple sclerosis (MS) using their three-dimensional T1-weighted (3DT1) magnetic resonance images (MRI). One-hundred-and-eighty-one subjects diagnosed with MS underwent 3T-MRI and were followed up for two to six years at two sites, with disability progression defined according to the expanded-disability-status-scale (EDSS) increment at the follow-up. The patients’ 3DT1 images were bias-corrected, brain-extracted, registered onto MNI space, and divided into slices along coronal, sagittal, and axial projections. Deep learning image classification models were applied on slices and devised as ResNet50 fine-tuned adaptations at first on a large independent dataset and secondly on the study sample. The final classifiers’ performance was evaluated via the area under the curve (AUC) of the false versus true positive diagram. Each model was also tested against its null model, obtained by reshuffling patients’ labels in the training set. Informative areas were found by intersecting slices corresponding to models fulfilling the disability progression prediction criteria. At follow-up, 34% of patients had disability progression. Five coronal and five sagittal slices had one classifier surviving the AUC evaluation and null test and predicted disability progression (AUC > 0.72 and AUC > 0.81, respectively). Likewise, fifteen combinations of classifiers and axial slices predicted disability progression in patients (AUC > 0.69). Informative areas were the frontal areas, mainly within the grey matter. Briefly, 3DT1 images may give hints on disability progression in MS patients, exploiting the information hidden in the MRI of specific areas of the brain.
Collapse
Affiliation(s)
- Alessandro Taloni
- Institute for Complex Systems, National Research Council (ISC-CNR), 00185 Rome, Italy
| | | | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy
- Department of Electrical Engineering and Information Technology, Federico II University of Naples, 80125 Naples, Italy
| | - Nikolaos Petsas
- Department of Radiology, IRCCS NEUROMED, 86077 Pozzilli, Italy
| | - Costanza Giannì
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Serena Ruggieri
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Maria Petracca
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, Federico II University of Naples, 80131 Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Carlo Pozzilli
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Patrizia Pantano
- Department of Radiology, IRCCS NEUROMED, 86077 Pozzilli, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Tommasin
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
16
|
Huang C, Chen W, Liu B, Yu R, Chen X, Tang F, Liu J, Lu W. Transformer-Based Deep-Learning Algorithm for Discriminating Demyelinating Diseases of the Central Nervous System With Neuroimaging. Front Immunol 2022; 13:897959. [PMID: 35774780 PMCID: PMC9238435 DOI: 10.3389/fimmu.2022.897959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
Background Differential diagnosis of demyelinating diseases of the central nervous system is a challenging task that is prone to errors and inconsistent reading, requiring expertise and additional examination approaches. Advancements in deep-learning-based image interpretations allow for prompt and automated analyses of conventional magnetic resonance imaging (MRI), which can be utilized in classifying multi-sequence MRI, and thus may help in subsequent treatment referral. Methods Imaging and clinical data from 290 patients diagnosed with demyelinating diseases from August 2013 to October 2021 were included for analysis, including 67 patients with multiple sclerosis (MS), 162 patients with aquaporin 4 antibody-positive (AQP4+) neuromyelitis optica spectrum disorder (NMOSD), and 61 patients with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Considering the heterogeneous nature of lesion size and distribution in demyelinating diseases, multi-modal MRI of brain and/or spinal cord were utilized to build the deep-learning model. This novel transformer-based deep-learning model architecture was designed to be versatile in handling with multiple image sequences (coronal T2-weighted and sagittal T2-fluid attenuation inversion recovery) and scanning locations (brain and spinal cord) for differentiating among MS, NMOSD, and MOGAD. Model performances were evaluated using the area under the receiver operating curve (AUC) and the confusion matrices measurements. The classification accuracy between the fusion model and the neuroradiological raters was also compared. Results The fusion model that was trained with combined brain and spinal cord MRI achieved an overall improved performance, with the AUC of 0.933 (95%CI: 0.848, 0.991), 0.942 (95%CI: 0.879, 0.987) and 0.803 (95%CI: 0.629, 0.949) for MS, AQP4+ NMOSD, and MOGAD, respectively. This exceeded the performance using the brain or spinal cord MRI alone for the identification of the AQP4+ NMOSD (AUC of 0.940, brain only and 0.689, spinal cord only) and MOGAD (0.782, brain only and 0.714, spinal cord only). In the multi-category classification, the fusion model had an accuracy of 81.4%, which was significantly higher compared to rater 1 (64.4%, p=0.04<0.05) and comparable to rater 2 (74.6%, p=0.388). Conclusion The proposed novel transformer-based model showed desirable performance in the differentiation of MS, AQP4+ NMOSD, and MOGAD on brain and spinal cord MRI, which is comparable to that of neuroradiologists. Our model is thus applicable for interpretating conventional MRI in the differential diagnosis of demyelinating diseases with overlapping lesions.
Collapse
Affiliation(s)
- Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weidao Chen
- Infervision Medical Technology Co., Ltd., Ocean International Center, Beijing, China
| | - Baiyun Liu
- Infervision Medical Technology Co., Ltd., Ocean International Center, Beijing, China
| | - Ruize Yu
- Infervision Medical Technology Co., Ltd., Ocean International Center, Beijing, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fei Tang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- *Correspondence: Jun Liu, ; Wei Lu,
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jun Liu, ; Wei Lu,
| |
Collapse
|
17
|
Role of artificial intelligence in MS clinical practice. Neuroimage Clin 2022; 35:103065. [PMID: 35661470 PMCID: PMC9163993 DOI: 10.1016/j.nicl.2022.103065] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022]
Abstract
For medical applications, machine learning (including deep learning) are the most commonly used artificial intelligence (AI) approaches. It can improve multiple sclerosis (MS) diagnosis, prognostication and treatment monitoring. Thanks to AI, MRI and cognitive phenotypes of MS patients were identified. AI can shorten MRI protocols for MS, allowing the application of advanced techniques. It can reduce the human effort for MRI analysis, especially for lesion segmentation.
Machine learning (ML) and its subset, deep learning (DL), are branches of artificial intelligence (AI) showing promising findings in the medical field, especially when applied to imaging data. Given the substantial role of MRI in the diagnosis and management of patients with multiple sclerosis (MS), this disease is an ideal candidate for the application of AI techniques. In this narrative review, we are going to discuss the potential applications of AI for MS clinical practice, together with their limitations. Among their several advantages, ML algorithms are able to automate repetitive tasks, to analyze more data in less time and to achieve higher accuracy and reproducibility than the human counterpart. To date, these algorithms have been applied to MS diagnosis, prognosis, disease and treatment monitoring. Other fields of application have been improvement of MRI protocols as well as automated lesion and tissue segmentation. However, several challenges remain, including a better understanding of the information selected by AI algorithms, appropriate multicenter and longitudinal validations of results and practical aspects regarding hardware and software integration. Finally, one cannot overemphasize the paramount importance of human supervision, in order to optimize the use and take full advantage of the potential of AI approaches.
Collapse
|
18
|
Schiavi S, Azzari A, Mensi A, Graziano N, Daducci A, Bicego M, Inglese M, Petracca M. Classification of multiple sclerosis patients based on structural disconnection: A robust feature selection approach. J Neuroimaging 2022; 32:647-655. [PMID: 35297554 PMCID: PMC9546205 DOI: 10.1111/jon.12991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose Although structural disconnection represents the hallmark of multiple sclerosis (MS) pathophysiology, classification attempts based on structural connectivity have achieved low accuracy levels. Here, we set out to fill this gap, exploring the performance of supervised classifiers on features derived from microstructure informed tractography and selected applying a novel robust approach. Methods Using microstructure informed tractography with diffusion MRI data, we created quantitative connectomes of 55 MS patients and 24 healthy controls. We then used a robust approach—based on two classical methods of feature selection— to select relevant features from three network representations (whole connectivity matrices, node strength, and local efficiency). Classification accuracy of the selected features was tested with five different classifiers, while their meaningfulness was tested via correlation with clinical scales. As a comparison, the same classifiers were run on features selected with the standard procedure in network analysis (thresholding). Results Our procedure identified 11 features for the whole net, five for local efficiency, and seven for node strength. For all classifiers, the accuracy was in the range 64.5%‐91.1%, with features extracted from the whole net reaching the maximum, and overcoming results obtained with the standard procedure in all cases. Correlations with clinical scales were identified across functional domains, from motor and cognitive abilities to fatigue and depression. Conclusion Applying a robust feature selection procedure to quantitative structural connectomes, we were able to classify MS patients with excellent accuracy, while providing information on the white matter connections and gray matter regions more affected by MS pathology.
Collapse
Affiliation(s)
- Simona Schiavi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Department of Computer Science, University of Verona, Verona, Italy
| | - Alberto Azzari
- Department of Computer Science, University of Verona, Verona, Italy
| | - Antonella Mensi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Nicole Graziano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Manuele Bicego
- Department of Computer Science, University of Verona, Verona, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Petracca
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Song Z, Krishnan A, Gaetano L, Tustison NJ, Clayton D, de Crespigny A, Bengtsson T, Jia X, Carano RAD. Deformation-based morphometry identifies deep brain structures protected by ocrelizumab. Neuroimage Clin 2022; 34:102959. [PMID: 35189455 PMCID: PMC8861820 DOI: 10.1016/j.nicl.2022.102959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Despite advancements in treatments for multiple sclerosis, insidious disease progression remains an area of unmet medical need, for which atrophy-based biomarkers may help better characterize the progressive biology. METHODS We developed and applied a method of longitudinal deformation-based morphometry to provide voxel-level assessments of brain volume changes and identified brain regions that were significantly impacted by disease-modifying therapy. RESULTS Using brain MRI data from two identically designed pivotal trials of relapsing multiple sclerosis (total N = 1483), we identified multiple deep brain regions, including the thalamus and brainstem, where volume loss over time was reduced by ocrelizumab (p < 0.05), a humanized anti-CD20 + monoclonal antibody approved for the treatment of multiple sclerosis. Additionally, identified brainstem shrinkage, as well as brain ventricle expansion, was associated with a greater risk for confirmed disability progression (p < 0.05). CONCLUSIONS The identification of deep brain structures has a strong implication for developing new biomarkers of brain atrophy reduction to advance drug development for multiple sclerosis, which has an increasing focus on targeting the progressive biology.
Collapse
Affiliation(s)
- Zhuang Song
- Personalized Healthcare Imaging, Genentech, Inc., South San Francisco, CA 94080, USA.
| | - Anithapriya Krishnan
- Personalized Healthcare Imaging, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Laura Gaetano
- Product Development Medical Affair, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22904, USA
| | - David Clayton
- Clinical Imaging Group, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Alex de Crespigny
- Clinical Imaging Group, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Thomas Bengtsson
- Personalized Healthcare Imaging, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Xiaoming Jia
- Biomarker Development, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Richard A D Carano
- Personalized Healthcare Imaging, Genentech, Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
20
|
A Deep Learning Approach to Predicting Disease Progression in Multiple Sclerosis Using Magnetic Resonance Imaging. Invest Radiol 2022; 57:423-432. [DOI: 10.1097/rli.0000000000000854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Moazami F, Lefevre-Utile A, Papaloukas C, Soumelis V. Machine Learning Approaches in Study of Multiple Sclerosis Disease Through Magnetic Resonance Images. Front Immunol 2021; 12:700582. [PMID: 34456913 PMCID: PMC8385534 DOI: 10.3389/fimmu.2021.700582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is one of the most common autoimmune diseases which is commonly diagnosed and monitored using magnetic resonance imaging (MRI) with a combination of clinical manifestations. The purpose of this review is to highlight the main applications of Machine Learning (ML) models and their performance in the MS field using MRI. We reviewed the articles of the last decade and grouped them based on the applications of ML in MS using MRI data into four categories: 1) Automated diagnosis of MS, 2) Prediction of MS disease progression, 3) Differentiation of MS stages, 4) Differentiation of MS from similar disorders.
Collapse
Affiliation(s)
- Faezeh Moazami
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale (INSERM) U976, Hôpital Saint-Louis, Paris, France
| | - Alain Lefevre-Utile
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale (INSERM) U976, Hôpital Saint-Louis, Paris, France.,Université Paris-Saclay, Saint Aubin, France.,Assistance Publique Hopitaux de Paris (APHP), General Pediatric and Pediatric Emergency Department, Jean Verdier Hospital, Bondy, France
| | - Costas Papaloukas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Vassili Soumelis
- Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale (INSERM) U976, Hôpital Saint-Louis, Paris, France.,Assistance Publique Hopitaux de Paris (APHP), Hôpital Saint-Louis, Immunology-Histocompatibility Department, Paris, France
| |
Collapse
|