1
|
Nishii T, Kobayashi T, Saito T, Kotoku A, Ohta Y, Kitahara S, Umehara K, Ota J, Horinouchi H, Morita Y, Noguchi T, Ishida T, Fukuda T. Deep Learning-based Post Hoc CT Denoising for the Coronary Perivascular Fat Attenuation Index. Acad Radiol 2023; 30:2505-2513. [PMID: 36868878 DOI: 10.1016/j.acra.2023.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 03/05/2023]
Abstract
RATIONALE AND OBJECTIVES Coronary inflammation related to high-risk hemorrhagic plaques can be captured by the perivascular fat attenuation index (FAI) using coronary computed tomography angiography (CCTA). Since the FAI is susceptible to image noise, we believe deep learning (DL)-based post hoc noise reduction can improve diagnostic capability. We aimed to assess the diagnostic performance of the FAI in DL-based denoised high-fidelity CCTA images compared with coronary plaque magnetic resonance imaging (MRI) delivered high-intensity hemorrhagic plaques (HIPs). MATERIALS AND METHODS We retrospectively reviewed 43 patients who underwent CCTA and coronary plaque MRI. We generated high-fidelity CCTA images by denoising the standard CCTA images using a residual dense network that supervised the denoising task by averaging three cardiac phases with nonrigid registration. We measured the FAIs as the mean CT value of all voxels (range of -190 to -30 HU) located within a radial distance from the outer proximal right coronary artery wall. The diagnostic reference standard was defined as HIPs (high-risk hemorrhagic plaques) using MRI. The diagnostic performance of the FAI in the original and denoised images was assessed using receiver operating characteristic curves. RESULTS Of 43 patients, 13 had HIPs. The denoised CCTA improved the area under the curve (0.89 [95% confidence interval (CI) 0.78-0.99]) of the FAI compared with that in the original image (0.77 [95% CI, 0.62-0.91], p = 0.008). The optimal cutoff value for predicting HIPs in denoised CCTA was -69 HU with 0.85 (11/13) sensitivity, 0.79 (25/30) specificity, and 0.80 (36/43) accuracy. CONCLUSION DL-based denoised high-fidelity CCTA improved the AUC and specificity of the FAI for predicting HIPs.
Collapse
Affiliation(s)
- Tatsuya Nishii
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
| | - Takuma Kobayashi
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan; Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tatsuya Saito
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Akiyuki Kotoku
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yasutoshi Ohta
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Satoshi Kitahara
- Department of Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kensuke Umehara
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan; Medical Informatics Section, QST Hospital, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan; Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| | - Junko Ota
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan; Medical Informatics Section, QST Hospital, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan; Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba, Japan
| | - Hiroki Horinouchi
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yoshiaki Morita
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Teruo Noguchi
- Department of Cardiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takayuki Ishida
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tetsuya Fukuda
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
3
|
Nishii T, Kobayashi T, Tanaka H, Kotoku A, Ohta Y, Morita Y, Umehara K, Ota J, Horinouchi H, Ishida T, Fukuda T. Deep Learning-based Post Hoc CT Denoising for Myocardial Delayed Enhancement. Radiology 2022; 305:82-91. [PMID: 35762889 DOI: 10.1148/radiol.220189] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background To improve myocardial delayed enhancement (MDE) CT, a deep learning (DL)-based post hoc denoising method supervised with averaged MDE CT data was developed. Purpose To assess the image quality of denoised MDE CT images and evaluate their diagnostic performance by using late gadolinium enhancement (LGE) MRI as a reference. Materials and methods MDE CT data obtained by averaging three acquisitions with a single breath hold 5 minutes after the contrast material injection in patients from July 2020 to October 2021 were retrospectively reviewed. Preaveraged images obtained in 100 patients as inputs and averaged images as ground truths were used to supervise a residual dense network (RDN). The original single-shot image, standard averaged image, RDN-denoised original (DLoriginal) image, and RDN-denoised averaged (DLave) image of holdout cases were compared. In 40 patients, the CT value and image noise in the left ventricular cavity and myocardium were assessed. The segmental presence of MDE in the remaining 40 patients who underwent reference LGE MRI was evaluated. The sensitivity, specificity, and accuracy of each type of CT image and the improvement in accuracy achieved with the RDN were assessed using odds ratios (ORs) estimated with the generalized estimation equation. Results Overall, 180 patients (median age, 66 years [IQR, 53-74 years]; 107 men) were included. The RDN reduced image noise to 28% of the original level while maintaining equivalence in the CT values (P < .001 for all). The sensitivity, specificity, and accuracy of the original images were 77.9%, 84.4%, and 82.3%, of the averaged images were 89.7%, 87.9%, and 88.5%, of the DLoriginal images were 93.1%, 87.5%, and 89.3%, and of the DLave images were 95.1%, 93.1%, and 93.8%, respectively. DLoriginal images showed improved accuracy compared with the original images (OR, 1.8 [95% CI: 1.2, 2.9]; P = .011) and DLave images showed improved accuracy compared with the averaged images (OR, 2.0 [95% CI: 1.2, 3.5]; P = .009). Conclusion The proposed denoising network supervised with averaged CT images reduced image noise and improved the diagnostic performance for myocardial delayed enhancement CT. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Vannier and Wang in this issue.
Collapse
Affiliation(s)
- Tatsuya Nishii
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takuma Kobayashi
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironori Tanaka
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Akiyuki Kotoku
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasutoshi Ohta
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiaki Morita
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kensuke Umehara
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Junko Ota
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hiroki Horinouchi
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Ishida
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tetsuya Fukuda
- From the Department of Radiology, National Cerebral and Cardiovascular Center, 6-1 Kishibe-shinmachi, Suita 564-8565, Japan (T.N., T.K., H.T., A.K., Y.O., Y.M., H.H., T.F.); Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan (T.K., K.U., J.O., T.I.); Medical Informatics Section, QST Hospital (K.U., J.O.), and Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science (K.U., J.O.), National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
4
|
Ueki W, Nishii T, Umehara K, Ota J, Higuchi S, Ohta Y, Nagai Y, Murakawa K, Ishida T, Fukuda T. Generative adversarial network-based post-processed image super-resolution technology for accelerating brain MRI: comparison with compressed sensing. Acta Radiol 2022; 64:336-345. [PMID: 35118883 DOI: 10.1177/02841851221076330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND It is unclear whether deep-learning-based super-resolution technology (SR) or compressed sensing technology (CS) can accelerate magnetic resonance imaging (MRI) . PURPOSE To compare SR accelerated images with CS images regarding the image similarity to reference 2D- and 3D gradient-echo sequence (GRE) brain MRI. MATERIAL AND METHODS We prospectively acquired 1.3× and 2.0× faster 2D and 3D GRE images of 20 volunteers from the reference time by reducing the matrix size or increasing the CS factor. For SR, we trained the generative adversarial network (GAN), upscaling the low-resolution images to the reference images with twofold cross-validation. We compared the structural similarity (SSIM) index of accelerated images to the reference image. The rate of incorrect answers of a radiologist discriminating faster and reference image was used as a subjective image similarity (ISM) index. RESULTS The SR demonstrated significantly higher SSIM than the CS (SSIM=0.9993-0.999 vs. 0.9947-0.9986; P < 0.001). In 2D GRE, it was challenging to discriminate the SR image from the reference image, compared to the CS (ISM index 40% vs. 17.5% in 1.3×; P = 0.039 and 17.5% vs. 2.5% in 2.0×; P = 0.034). In 3D GRE, the CS revealed a significantly higher ISM index than the SR (22.5% vs. 2.5%; P = 0.011) in 2.0 × faster images. However, the ISM index was identical for the 2.0× CS and 1.3× SR (22.5% vs. 27.5%; P = 0.62) with comparable time costs. CONCLUSION The GAN-based SR outperformed CS in image similarity with 2D GRE for MRI acceleration. In addition, CS was more advantageous in 3D GRE than SR.
Collapse
Affiliation(s)
- Wataru Ueki
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tatsuya Nishii
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kensuke Umehara
- Medical Informatics Section, QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Junko Ota
- Medical Informatics Section, QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Satoshi Higuchi
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yasutoshi Ohta
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yasuhiro Nagai
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Keizo Murakawa
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takayuki Ishida
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tetsuya Fukuda
- Department of Radiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|