1
|
Sharma P, Cheng J, Coulthard A. Where does the gadolinium go? A review into the excretion and retention of intravenous gadolinium. J Med Imaging Radiat Oncol 2023; 67:742-752. [PMID: 37665796 DOI: 10.1111/1754-9485.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are commonly used in medical imaging. Most intravenously (IV) administered gadolinium is excreted via the kidneys, and pathological retention in renal failure leading to nephrogenic systemic fibrosis (NSF) is well described. More recently, retention of gadolinium in the body in the absence of renal disease has been identified, with unknown clinical consequences. Many patients are aware of this, either through the media or via comprehensive consent documentation. Some internet sites, without hard evidence, have suggested a constellation of possible symptoms associated with GBCA retention. Recent experience with patients ascribing symptoms to a contrast-enhanced MRI examination prompted this review of the fate of injected GBCA after MRI study, and of information available to patients online regarding gadolinium retention.
Collapse
Affiliation(s)
- Pranav Sharma
- Department of Medical Imaging, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Jeffrey Cheng
- Department of Medical Imaging, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Alan Coulthard
- Department of Medical Imaging, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Shahid I, Joseph A, Lancelot E. Use of Real-Life Safety Data From International Pharmacovigilance Databases to Assess the Importance of Symptoms Associated With Gadolinium Exposure. Invest Radiol 2022; 57:664-673. [PMID: 35471204 PMCID: PMC9444285 DOI: 10.1097/rli.0000000000000880] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Recent scientific publications have reported cases of patients who complained from a variety of symptoms after they received a gadolinium-based contrast agent (GBCA). The aim of this study was to appreciate the importance of these clinical manifestations in the overall population by assessing the weight of "symptoms associated with gadolinium exposure" (SAGE) among the bulk of safety experiences reported to major health authorities. MATERIALS AND METHODS Symptoms associated with gadolinium exposure were identified from a review of the scientific literature, and the corresponding preferred terms were searched in each system organ class (SOC) category recorded in the European and North American pharmacovigilance databases EudraVigilance (EV) and FDA Adverse Event Reporting System (FAERS), respectively. The numbers of SAGE per preferred term, and cumulatively per SOC, were recorded and their weights in the overall spectrum of adverse events (AEs) were determined for each GBCA. RESULTS The analysis of the selected AEs revealed a significantly higher SAGE weight for gadobenate dimeglumine (EV: 25.83%, FAERS: 32.24%) than for gadoteridol (EV: 15.51%; FAERS: 21.13%) and significantly lower SAGE weights for gadobutrol (EV: 7.75%; FAERS: 13.31%) and gadoterate meglumine (EV: 8.66%; FAERS: 12.99%). A similar ranking was found for most of the SOCs except for "nervous system disorders," probably owing to a limitation in the methods of data selection. Furthermore, this analysis showed a greater percentage of reports mentioning a decrease in the quality of life of the patients when they were exposed to gadobenate dimeglumine or gadoteridol than to gadobutrol or gadoterate meglumine. CONCLUSION This study showed that SAGE represent a significant percentage of the bulk of AEs reported to the health authorities for each GBCA. It provided real-life arguments suggesting that SAGE may be more prevalent with linear than macrocyclic GBCAs and that gadoteridol may present a higher SAGE risk than the other macrocyclic contrast agents.
Collapse
|
3
|
Davies J, Siebenhandl-Wolff P, Tranquart F, Jones P, Evans P. Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration. Arch Toxicol 2022; 96:403-429. [PMID: 34997254 PMCID: PMC8837552 DOI: 10.1007/s00204-021-03189-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Gadolinium-based contrast agents (GBCAs) have transformed magnetic resonance imaging (MRI) by facilitating the use of contrast-enhanced MRI to allow vital clinical diagnosis in a plethora of disease that would otherwise remain undetected. Although over 500 million doses have been administered worldwide, scientific research has documented the retention of gadolinium in tissues, long after exposure, and the discovery of a GBCA-associated disease termed nephrogenic systemic fibrosis, found in patients with impaired renal function. An understanding of the pharmacokinetics in humans and animals alike are pivotal to the understanding of the distribution and excretion of gadolinium and GBCAs, and ultimately their potential retention. This has been well studied in humans and more so in animals, and recently there has been a particular focus on potential toxicities associated with multiple GBCA administration. The purpose of this review is to highlight what is currently known in the literature regarding the pharmacokinetics of gadolinium in humans and animals, and any toxicity associated with GBCA use.
Collapse
Affiliation(s)
- Julie Davies
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK.
| | | | | | - Paul Jones
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK
| | - Paul Evans
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK
| |
Collapse
|
4
|
MR Imaging Safety Considerations of Gadolinium-Based Contrast Agents: Gadolinium Retention and Nephrogenic Systemic Fibrosis. Magn Reson Imaging Clin N Am 2021; 28:497-507. [PMID: 33040991 DOI: 10.1016/j.mric.2020.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gadolinium (Gd)-based contrast agents (GBCAs) have revolutionized of MR imaging, enabling physicians to obtain life-saving medical information that often cannot be obtained with unenhanced MR imaging or other imaging modalities. Since regulatory approval in 1988, more than 450 million intravenous GBCA doses have been administered worldwide, with an extremely favorable pharmacologic safety profile. Recent evidence has demonstrated, however, that a small fraction of Gd is retained in human tissues. No direct correlation between Gd retention and clinical effects has been confirmed; however, a subset of patients have attributed various symptoms to GBCA exposure. This review details current knowledge regarding GBCA safety.
Collapse
|
5
|
Ranga A, Agarwal Y, Garg KJ. Gadolinium based contrast agents in current practice: Risks of accumulation and toxicity in patients with normal renal function. Indian J Radiol Imaging 2021; 27:141-147. [PMID: 28744073 PMCID: PMC5510310 DOI: 10.4103/0971-3026.209212] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite being decked as the most prized compounds in the nugget box of contrast agents for clinical radiologists, and carrying an indisputable tag of safety of the US Food and Drug Administration for close to three decades, all may not be seemingly well with the family of gadolinium compounds. If the first signs of violations of primum non nocere in relation to gadolinium-based contrast agents (GBCAs) appeared in the millennium year with the first published report of skin fibrosis in patients with compromised renal function, the causal relationship between the development of nephrogenic systemic fibrosis (NSF) and GBCAs, first proposed by two European groups in 2006, further precluded their use in renocompromised patients. The toxicity, pharmacokinetics, and pharmacodynamics of GBCAs, however, has come under hawk-eyed scrutiny with recent reports that gadolinium tends to deposit cumulatively in the brain of patients with normal hepatobiliary function and intact blood–brain barrier. While the jury on the long-term hazard significance of this critical scientific finding is still out, the use of GBCAs must be guided by due clinical diligence, avoidance of repeated doses, and preferring GBCAs with the best safety profiles.
Collapse
Affiliation(s)
- Anju Ranga
- Department of Radio-diagnosis, VMMC and Safdarjung Hospital, New Delhi, India
| | - Yatish Agarwal
- Department of Radio-diagnosis, VMMC and Safdarjung Hospital, New Delhi, India
| | - Kanika J Garg
- Department of Radio-diagnosis, VMMC and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
6
|
Ponrartana S, Moore MM, Chan SS, Victoria T, Dillman JR, Chavhan GB. Safety issues related to intravenous contrast agent use in magnetic resonance imaging. Pediatr Radiol 2021; 51:736-747. [PMID: 33871726 DOI: 10.1007/s00247-020-04896-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) have been used to improve image quality of MRI examinations for decades and have an excellent overall safety record. However, there are well-documented risks associated with GBCAs and our understanding and management of these risks continue to evolve. The purpose of this review is to discuss the safety of GBCAs used in MRI in adult and pediatric populations. We focus particular attention on acute adverse reactions, nephrogenic systemic fibrosis and gadolinium deposition. We also discuss the non-GBCA MRI contrast agent ferumoxytol, which is increasing in use and has its own risk profile. Finally, we identify special populations at higher risk of harm from GBCA administration.
Collapse
Affiliation(s)
- Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, 4650 Sunset Blvd., MS# 81, Los Angeles, CA, 90064, USA. .,Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Michael M Moore
- Department of Radiology, Penn State Children's Hospital, Penn State Health, Hershey, PA, USA
| | - Sherwin S Chan
- Department of Radiology, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA.,Department of Radiology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Teresa Victoria
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan R Dillman
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Govind B Chavhan
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Meng X, Wu Y, Bu W. Functional CT Contrast Nanoagents for the Tumor Microenvironment. Adv Healthc Mater 2021; 10:e2000912. [PMID: 32691929 DOI: 10.1002/adhm.202000912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Understanding the detailed tumor microenvironment (TME) is essential to achieve effective treatment of tumor, because TME has an extremely profound influence on the occurrence, development, invasion, and metastasis of tumor. It is of great significance to realize accurate diagnosis of the TME by using functional computed tomography (CT) contrast nanoagents (FCTNAs). Here, an overview of FCTNAs that respond to the overexpressed receptors, acidic microenvironment, overexpressed glutathione and enzymes, and hypoxia in tumor is provided, and also prospects the advance of novel spectral CT technique to detect the TME precisely. Utilizing FCTNAs is expected to achieve accurate monitoring of the TME and further provide guidance for the effective personalized tumor treatment in clinic.
Collapse
Affiliation(s)
- Xianfu Meng
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| | - Yelin Wu
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Wenbo Bu
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
8
|
Wallnöfer EA, Thurner GC, Kremser C, Talasz H, Stollenwerk MM, Helbok A, Klammsteiner N, Albrecht-Schgoer K, Dietrich H, Jaschke W, Debbage P. Albumin-based nanoparticles as contrast medium for MRI: vascular imaging, tissue and cell interactions, and pharmacokinetics of second-generation nanoparticles. Histochem Cell Biol 2020; 155:19-73. [PMID: 33040183 DOI: 10.1007/s00418-020-01919-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
This multidisciplinary study examined the pharmacokinetics of nanoparticles based on albumin-DTPA-gadolinium chelates, testing the hypothesis that these nanoparticles create a stronger vessel signal than conventional gadolinium-based contrast agents and exploring if they are safe for clinical use. Nanoparticles based on human serum albumin, bearing gadolinium and designed for use in magnetic resonance imaging, were used to generate magnet resonance images (MRI) of the vascular system in rats ("blood pool imaging"). At the low nanoparticle doses used for radionuclide imaging, nanoparticle-associated metals were cleared from the blood into the liver during the first 4 h after nanoparticle application. At the higher doses required for MRI, the liver became saturated and kidney and spleen acted as additional sinks for the metals, and accounted for most processing of the nanoparticles. The multiple components of the nanoparticles were cleared independently of one another. Albumin was detected in liver, spleen, and kidneys for up to 2 days after intravenous injection. Gadolinium was retained in the liver, kidneys, and spleen in significant concentrations for much longer. Gadolinium was present as significant fractions of initial dose for longer than 2 weeks after application, and gadolinium clearance was only complete after 6 weeks. Our analysis could not account quantitatively for the full dose of gadolinium that was applied, but numerous organs were found to contain gadolinium in the collagen of their connective tissues. Multiple lines of evidence indicated intracellular processing opening the DTPA chelates and leading to gadolinium long-term storage, in particular inside lysosomes. Turnover of the stored gadolinium was found to occur in soluble form in the kidneys, the liver, and the colon for up to 3 weeks after application. Gadolinium overload poses a significant hazard due to the high toxicity of free gadolinium ions. We discuss the relevance of our findings to gadolinium-deposition diseases.
Collapse
Affiliation(s)
- E A Wallnöfer
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - G C Thurner
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - C Kremser
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - H Talasz
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - M M Stollenwerk
- Faculty of Health and Society, Biomedical Laboratory Science, University Hospital MAS, Malmö University, 205 06, Malmö, Sweden
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - A Helbok
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - N Klammsteiner
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - K Albrecht-Schgoer
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80-82/IV, 6020, Innsbruck, Austria
- Institute of Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria
| | - H Dietrich
- Central Laboratory Animal Facilities, Innsbruck Medical University, Peter-Mayr-Strasse 4a, 6020, Innsbruck, Austria
| | - W Jaschke
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - P Debbage
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Increased Retention of Gadolinium in the Inflamed Brain After Repeated Administration of Gadopentetate Dimeglumine. Invest Radiol 2019; 54:617-626. [DOI: 10.1097/rli.0000000000000571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Weng Q, Hu X, Zheng J, Xia F, Wang N, Liao H, Liu Y, Kim D, Liu J, Li F, He Q, Yang B, Chen C, Hyeon T, Ling D. Toxicological Risk Assessments of Iron Oxide Nanocluster- and Gadolinium-Based T1MRI Contrast Agents in Renal Failure Rats. ACS NANO 2019; 13:6801-6812. [PMID: 31141658 DOI: 10.1021/acsnano.9b01511] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are widely used for T1-weighted magnetic resonance imaging (MRI) in clinic diagnosis. However, a major drawback of GBCAs is that they can increase the toxicological risk of nephrogenic systemic fibrosis (NSF) in patients with advanced renal dysfunction. Hence, safer alternatives to GBCAs are currently in demand, especially for patients with renal diseases. Here we investigated the potential of polyethylene glycol (PEG)-stabilized iron oxide nanoclusters (IONCs) as biocompatible T1MRI contrast agents and systematically evaluated their NSF-related risk in rats with renal failure. We profiled the distribution, excretion, histopathological alterations, and fibrotic gene expressions after administration of IONCs and GBCAs. Our results showed that, compared with GBCAs, IONCs exhibited dramatically improved biosafety and a much lower risk of causing NSF, suggesting the feasibility of substituting GBCAs with IONCs in clinical MRI diagnosis of patients with renal diseases.
Collapse
Affiliation(s)
- Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
- Center for Drug Safety Evaluation and Research , Zhejiang University , Hangzhou 310058 , China
| | | | - Jiahuan Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | | | | | | | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Dokyoon Kim
- Department of Bionano Engineering , Hanyang University , Ansan 15588 , Korea
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
| | - Jianan Liu
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Korea
| | | | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences , Beijing 100190 , China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Korea
- School of Chemical and Biological Engineering , Seoul National University , Seoul 08826 , Korea
| | - Daishun Ling
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
11
|
Advocating the Development of Next-Generation High-Relaxivity Gadolinium Chelates for Clinical Magnetic Resonance. Invest Radiol 2019; 53:381-389. [PMID: 29462023 DOI: 10.1097/rli.0000000000000454] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The question of improved relaxivity, and potential efficacy therein, for a next-generation of magnetic resonance gadolinium chelates with extracellular distribution and renal excretion, which could also be viewed from the perspective of dose, is addressed on the basis of historical development, animal experimentation, and human trials. There was no systematic evaluation that preceded the choice of 0.1 mmol/kg as the standard dose for human imaging with the gadolinium chelates. In part, this dose was chosen owing to bloodwork abnormalities seen in phase I and phase II studies. Animal investigations and early clinical trials demonstrated improved lesion detectability at higher doses in the brain, liver, and heart. By designing an agent with substantially improved relaxivity, higher enhancement equivalent to that provided with the conventional gadolinium agents at high dose could be achieved, translating to improved diagnosis and, thus, clinical care. Implicit in the development of such high-relaxivity agents would be stability equivalent to or exceeding that of the currently approved macrocyclic agents, given current concern regarding dechelation and gadolinium deposition in the brain, skin, and bone with the linear agents that were initially approved. Development of such next-generation agents with a substantial improvement in relaxivity, in comparison with the current group of approved agents, with a 2-fold increase likely achievable, could lead to improved lesion enhancement, characterization, diagnosis, and, thus, clinical efficacy.
Collapse
|
12
|
Intravenous Calcium-/Zinc-Diethylene Triamine Penta-Acetic Acid in Patients With Presumed Gadolinium Deposition Disease: A Preliminary Report on 25 Patients. Invest Radiol 2019; 53:373-379. [PMID: 29419708 DOI: 10.1097/rli.0000000000000453] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The aim of this study was to report the use of intravenous calcium (Ca)-/zinc (Zn)-diethylene triamine penta-acetic acid (DTPA) for the treatment of 25 symptomatic patients diagnosed with gadolinium deposition disease (GDD). MATERIALS AND METHODS Written informed consent was obtained. Twenty-five patients (18 women; mean age, 46.8 ± 15.3 years) with a diagnosis of GDD were included. All patients had received at least 1 administration of a gadolinium (Gd)-based contrast agent. Patients received 3 treatment sessions with Ca-/Zn-DTPA, 15 with treatments spaced 1 month apart, and 10 with treatments spaced 1 week apart. In all cases, every treatment consisted of an application of Ca-DTPA and Zn-DTPA separated by 24 hours. Measurements of 24-hour urine Gd content before dosing and on the first and second days of therapy were performed. Symptomatic improvement of patients was determined by use of a 10-point scale of patient symptoms. Serum electrolytes were quantified. RESULTS Gadolinium content increased in the urine, with an overall mean of 30.3-fold increase in the monthly regimen (P < 0.001) and 12.9-fold in the weekly regimen (P < 0.001). Eleven patients experienced transient worsening of at least some of their symptoms, termed a "flare-up" phenomenon, in most of whom symptoms improved or receded. Overall, symptoms improved in 13 patients, unchanged in 10, and worse in 2. Significant clinical improvement was present for headache, brain fog, and bone pain for the monthly regimen and arm pain and leg pain for the weekly regimen. There were no significant changes in major serum electrolytes. CONCLUSIONS Three courses of intravenous Ca-/Zn-DTPA therapy results in significantly increased urine content of Gd after treatment and moderate symptomatic improvement.
Collapse
|
13
|
Delfino R, Biasotto M, Candido R, Altissimo M, Stebel M, Salomè M, van Elteren JT, Vogel Mikuš K, Zennaro C, Šala M, Addobbati R, Tromba G, Pascolo L. Gadolinium tissue deposition in the periodontal ligament of mice with reduced renal function exposed to Gd-based contrast agents. Toxicol Lett 2019; 301:157-167. [DOI: 10.1016/j.toxlet.2018.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
14
|
McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, Jacobs PM, Lenkinski RE, Maravilla KR, Prince MR, Rowley HA, Tweedle MF, Kressel HY. Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates. Radiology 2018; 289:517-534. [PMID: 30204075 DOI: 10.1148/radiol.2018181151] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) have revolutionized MRI, enabling physicians to obtain crucial life-saving medical information that often cannot be obtained with other imaging modalities. Since initial approval in 1988, over 450 million intravenous GBCA doses have been administered worldwide, with an extremely favorable pharmacologic safety profile; however, recent information has raised new concerns over the safety of GBCAs. Mounting evidence has shown there is long-term retention of gadolinium in human tissues. Further, a small subset of patients have attributed a constellation of symptoms to GBCA exposure, although the association of these symptoms with GBCA administration or gadolinium retention has not been proven by scientific investigation. Despite evidence that macrocyclic GBCAs show less gadolinium retention than linear GBCAs, the safety implications of gadolinium retention are unknown. The mechanism and chemical forms of gadolinium retention, as well as the biologic activity and clinical importance of these retained gadolinium species, remain poorly understood and underscore the need for additional research. In February 2018, an international meeting was held in Bethesda, Md, at the National Institutes of Health to discuss the current literature and knowledge gaps about gadolinium retention, to prioritize future research initiatives to better understand this phenomenon, and to foster collaborative standardized studies. The greatest priorities are to determine (a) if gadolinium retention adversely affects the function of human tissues, (b) if retention is causally associated with short- or long-term clinical manifestations of disease, and (c) if vulnerable populations, such as children, are at greater risk for experiencing clinical disease. The purpose of the research roadmap is to highlight important information that is not known and to identify and prioritize needed research. ©RSNA, 2018 Online supplemental material is available for this article .
Collapse
Affiliation(s)
- Robert J McDonald
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Deborah Levine
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Jeffrey Weinreb
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Emanuel Kanal
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Matthew S Davenport
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - James H Ellis
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Paula M Jacobs
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Robert E Lenkinski
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Kenneth R Maravilla
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Martin R Prince
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Howard A Rowley
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Michael F Tweedle
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| | - Herbert Y Kressel
- From the Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 (D.L., H.Y.K.); Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Conn (J.W.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (E.K.); Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (M.S.D., J.H.E.); Cancer Imaging Program, National Institutes of Health, National Cancer Institute, Bethesda, Md (P.M.J.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (R.E.L.); Department of Radiology, University of Washington, Seattle, Wash (K.R.M.); Department of Radiology, Cornell and Columbia Universities, New York, NY (M.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (H.A.R.); and Department of Radiology, The Ohio State University, Columbus, Ohio (M.F.T.)
| |
Collapse
|
15
|
Elbeshlawi I, AbdelBaki MS. Safety of Gadolinium Administration in Children. Pediatr Neurol 2018; 86:27-32. [PMID: 30390954 DOI: 10.1016/j.pediatrneurol.2018.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 07/22/2018] [Indexed: 01/08/2023]
Abstract
The introduction of paramagnetic contrast in the late 1980s constituted a paradigm shift boosting the efficacy of magnetic resonance imaging. Due to its high magnetic moment, gadolinium-based contrast agent made its way smoothly as the flagship paramagnetic contrast. With the widespread application, reports of untoward effects started to surface. Allergic reactions, nephrogenic systemic sclerosis, and deposition in brain tissue dented the safety profile of gadolinium-based contrast agent. Better understanding of these adverse effects prompted preventive measures. This article elucidates the gadolinium-based contrast agent toxicity in the pediatric population based on the current available evidence.
Collapse
Affiliation(s)
- Ismail Elbeshlawi
- Division of Paediatric Hematology, Oncology and Bone Marrow Transplant, Great Ormond Street Hospital, London, United Kingdom.
| | - Mohamed S AbdelBaki
- Division of Hematology, Oncology and Bone Marrow Transplant, Nationwide Children's Hospital and The Ohio State University, Columbus, Ohio
| |
Collapse
|
16
|
|
17
|
Gadodiamide and Dentate Nucleus T1 Hyperintensity in Patients With Meningioma Evaluated by Multiple Follow-Up Contrast-Enhanced Magnetic Resonance Examinations With No Systemic Interval Therapy. Invest Radiol 2016; 50:470-2. [PMID: 25756685 DOI: 10.1097/rli.0000000000000154] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The dentate nucleus of the cerebellum may appear as hyperintense on unenhanced T1 magnetic resonance images (MRIs) of the brain. Recently, T1 signal hyperintensity has received attention owing to data on the association of this finding with the history of multiple injections of gadolinium-based contrast agents, specifically gadodiamide, in patients with multiple sclerosis and brain metastases. We conducted a retrospective study on patients with a meningioma who had routinely undergone follow-up enhanced MRI scans with gadodiamide. Across a time interval of 18 months (from January 2013 to July 2014), we identified 102 consecutive patients eligible for this study. A significant increase in T1 hyperintensity of the dentate nuclei of the cerebellum on nonenhanced scans was observed between the first and the last MRI in the group of patients with a history of at least 6 enhanced MRI scans (P < 0.01), whereas no differences were observed in the group with 1 to 5 enhanced MRI scans (P = 0.74). Further research is necessary to shed light on the mechanism of the T1 hyperintensity as well as on the histological and microstructural appearance of the dentate nucleus after multiple intravenous injections of gadodiamide. The finding raises the question of substantial dechelation of this agent in patients with normal renal function.
Collapse
|
18
|
Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, Lee JM, Leiner T, Li KC, Nikolaou K, Prince MR, Schild HH, Weinreb JC, Yoshikawa K, Pietsch H. 25 Years of Contrast-Enhanced MRI: Developments, Current Challenges and Future Perspectives. Adv Ther 2016; 33:1-28. [PMID: 26809251 PMCID: PMC4735235 DOI: 10.1007/s12325-015-0275-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED In 1988, the first contrast agent specifically designed for magnetic resonance imaging (MRI), gadopentetate dimeglumine (Magnevist(®)), became available for clinical use. Since then, a plethora of studies have investigated the potential of MRI contrast agents for diagnostic imaging across the body, including the central nervous system, heart and circulation, breast, lungs, the gastrointestinal, genitourinary, musculoskeletal and lymphatic systems, and even the skin. Today, after 25 years of contrast-enhanced (CE-) MRI in clinical practice, the utility of this diagnostic imaging modality has expanded beyond initial expectations to become an essential tool for disease diagnosis and management worldwide. CE-MRI continues to evolve, with new techniques, advanced technologies, and novel contrast agents bringing exciting opportunities for more sensitive, targeted imaging and improved patient management, along with associated clinical challenges. This review aims to provide an overview on the history of MRI and contrast media development, to highlight certain key advances in the clinical development of CE-MRI, to outline current technical trends and clinical challenges, and to suggest some important future perspectives. FUNDING Bayer HealthCare.
Collapse
Affiliation(s)
- Jessica Lohrke
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany
| | - Thomas Frenzel
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany
| | - Jan Endrikat
- Global Medical Affairs Radiology, Bayer HealthCare, Berlin, Germany
- Saarland University Hospital, Homburg, Germany
| | | | - Thomas M Grist
- Radiology, Medical Physics and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Meng Law
- Radiology and Neurological Surgery, University of South California, Keck School of Medicine, USC University Hospital, Los Angeles, CA, USA
| | - Jeong Min Lee
- College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Tim Leiner
- Radiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Kun-Cheng Li
- Radiology, Xuan Wu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Konstantin Nikolaou
- Radiology, Ludwig-Maximilians University, University Hospitals, Munich, Germany
| | - Martin R Prince
- Radiology, Weill Cornell Medical College, New York, NY, USA
- Columbia College of Physicians and Surgeons, New York, NY, USA
| | | | | | - Kohki Yoshikawa
- Graduate Division of Medical Health Sciences, Graduate School of Komazawa University, Tokyo, Japan
| | - Hubertus Pietsch
- MR and CT Contrast Media Research, Bayer HealthCare, Berlin, Germany.
| |
Collapse
|
19
|
McKinney AM, Gawande R, Pezeshk P, Truwit CL, Rykken JB. Preliminary experience with intravenous gadoxetate disodium as a craniospinal MR contrast agent. Eur J Radiol 2015; 84:2539-47. [DOI: 10.1016/j.ejrad.2015.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 08/01/2015] [Accepted: 09/08/2015] [Indexed: 11/24/2022]
|
20
|
Comparison Between Magnetic Resonance Imaging and Computed Tomography of the Lung in Patients With Cystic Fibrosis With Regard to Clinical, Laboratory, and Pulmonary Functional Parameters. Invest Radiol 2015; 50:733-42. [DOI: 10.1097/rli.0000000000000178] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ. Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology 2015; 275:772-82. [PMID: 25742194 DOI: 10.1148/radiol.15150025] [Citation(s) in RCA: 1015] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To determine if repeated intravenous exposures to gadolinium-based contrast agents (GBCAs) are associated with neuronal tissue deposition. MATERIALS AND METHODS In this institutional review board-approved single-center study, signal intensities from T1-weighted magnetic resonance (MR) images and postmortem neuronal tissue samples from 13 patients who underwent at least four GBCA-enhanced brain MR examinations between 2000 and 2014 (contrast group) were compared with those from 10 patients who did not receive GBCA (control group). Antemortem consent was obtained from all study participants. Neuronal tissues from the dentate nuclei, pons, globus pallidus, and thalamus of these 23 deceased patients were harvested and analyzed with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy, and light microscopy to quantify, localize, and assess the effects of gadolinium deposition. Associations between cumulative gadolinium dose, changes in T1-weighted MR signal intensity, and ICP-MS-derived tissue gadolinium concentrations were examined by using the Spearman rank correlation coefficient (ρ). RESULTS Compared with neuronal tissues of control patients, all of which demonstrated undetectable levels of gadolinium, neuronal tissues of patients from the contrast group contained 0.1-58.8 μg gadolinium per gram of tissue, in a significant dose-dependent relationship that correlated with signal intensity changes on precontrast T1-weighted MR images (ρ = 0.49-0.93). All patients in the contrast group had relatively normal renal function at the time of MR examination. Gadolinium deposition in the capillary endothelium and neural interstitium was observed only in the contrast group. CONCLUSION Intravenous GBCA exposure is associated with neuronal tissue deposition in the setting of relatively normal renal function. Additional studies are needed to investigate the clinical significance of these findings and the generalizability to other GBCAs. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Robert J McDonald
- From the Departments of Radiology (R.J.M., J.S.M., D.F.K., K.R.T., E.E.W., L.J.E.), Neurosurgery (D.F.K.), and Laboratory Medicine and Pathology (M.E.J., D.L.M.), College of Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Progressive Increase of T1 Signal Intensity of the Dentate Nucleus on Unenhanced Magnetic Resonance Images Is Associated With Cumulative Doses of Intravenously Administered Gadodiamide in Patients With Normal Renal Function, Suggesting Dechelation. Invest Radiol 2014; 49:685-90. [PMID: 24872007 DOI: 10.1097/rli.0000000000000072] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Idée JM, Fretellier N, Robic C, Corot C. The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: A critical update. Crit Rev Toxicol 2014; 44:895-913. [PMID: 25257840 DOI: 10.3109/10408444.2014.955568] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jean-Marc Idée
- Guerbet, Research & Innovation Division , Aulnay-sous-Bois , France
| | | | | | | |
Collapse
|
24
|
Incidence of nephrogenic systemic fibrosis in patients undergoing dialysis after contrast-enhanced magnetic resonance imaging with gadolinium-based contrast agents: the Prospective Fibrose Nephrogénique Systémique study. Invest Radiol 2014; 49:109-15. [PMID: 24169070 DOI: 10.1097/rli.0000000000000000] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nephrogenic systemic fibrosis (NSF) has been related to the use of gadolinium-based contrast agents (GBCAs) in patients undergoing dialysis. The Prospective Fibrose Nephrogénique Systémique study, a French prospective study supported by the French drug regulatory agency (Agence Nationale de Sécurité du Médicament) and the French Societies of Nephrology, Dermatology, and Radiology, aimed at determining the incidence of NSF in patients undergoing long-term dialysis. MATERIALS AND METHODS Adult patients undergoing long-term dialysis receiving a magnetic resonance imaging (MRI) examination prescribed between January 15, 2009 and May 31, 2011, with or without GBCA were included. The methodology was based on a patient form intended to detect any dermatological event (DE) that may occur within 4 months after the examination. Further investigations were planned with their physicians if a DE was reported. RESULTS A total of 571 patients were included. A total of 50.3% received GBCA. Among them, 93.4% received a macrocyclic GBCA, usually gadoteric acid (88.9%). All in all, 22 patients (3.9%) reported a DE. Dermatological diagnoses did not reveal any evidence of NSF. CONCLUSIONS The incidence of NSF after a single dose of a macrocyclic GBCA is null in our sample of 268 patients undergoing dialysis (hemodialysis and peritoneal dialysis). This incidence is just lower than 0.5%. When contrast-enhanced MRI can be essential, or even decisive, to the diagnosis, these results are important and reassuring if physicians need to perform contrast-enhanced MRI in patients undergoing dialysis.
Collapse
|
25
|
Do C, Barnes JL, Tan C, Wagner B. Type of MRI contrast, tissue gadolinium, and fibrosis. Am J Physiol Renal Physiol 2014; 307:F844-55. [PMID: 25100280 DOI: 10.1152/ajprenal.00379.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been presupposed that the thermodynamic stability constant (K(therm)) of gadolinium-based MRI chelates relate to the risk of precipitating nephrogenic systemic fibrosis. The present study compared low-K(therm) gadodiamide with high-K(therm) gadoteridol in cultured fibroblasts and rats with uninephrectomies. Gadolinium content was assessed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy in paraffin-embedded tissues. In vitro, fibroblasts demonstrated dose-dependent fibronectin generation, transforming growth factor-β production, and expression of activated myofibroblast stress fiber protein α-smooth muscle actin. There were negligible differences with respect to toxicity or proliferation between the two contrast agents. In the rodent model, gadodiamide treatment led to greater skin fibrosis and dermal cellularity than gadoteridol. In the kidney, both contrast agents led to proximal tubule vacuolization and increased fibronectin accumulation. Despite large detectable gadolinium signals in the spleen, skin, muscle, and liver from the gadodiamide-treated group, contrast-induced fibrosis appeared to be limited to the skin and kidney. These findings support the hypothesis that low-K(therm) chelates have a greater propensity to elicit nephrogenic systemic fibrosis and demonstrate that certain tissues are resistant to these effects.
Collapse
Affiliation(s)
- Catherine Do
- University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Jeffrey L Barnes
- University of Texas Health Science Center at San Antonio, San Antonio, Texas; and South Texas Veterans Health Care System, San Antonio, Texas
| | - Chunyan Tan
- University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | - Brent Wagner
- South Texas Veterans Health Care System, San Antonio, Texas
| |
Collapse
|
26
|
Comparison of Gadoteric Acid and Gadobutrol for Detection as Well as Morphologic and Dynamic Characterization of Lesions on Breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Invest Radiol 2014; 49:474-84. [DOI: 10.1097/rli.0000000000000039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
A novel gadolinium-based trimetasphere metallofullerene for application as a magnetic resonance imaging contrast agent. Invest Radiol 2014; 48:745-54. [PMID: 23748228 DOI: 10.1097/rli.0b013e318294de5d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Macromolecular contrast agents for magnetic resonance imaging (MRI) are useful blood-pool agents because of their long systemic half-life and have found applications in monitoring tumor vasculature and angiogenesis. Macromolecular contrast agents have been able to overcome some of the disadvantages of the conventional small-molecule contrast agent Magnevist (gadolinium-diethylenetriaminepentaacetic acid), such as rapid extravasation and quick renal clearance, which limits the viable MRI time. There is an urgent need for new MRI contrast agents that increase the sensitivity of detection with a higher relaxivity, longer blood half-life, and reduced toxicity from free Gd3+ ions. Here, we report on the characterization of a novel water-soluble, derivatized, gadolinium-enclosed metallofullerene nanoparticle (Hydrochalarone-1) in development as an MRI contrast agent. MATERIALS AND METHODS The physicochemical properties of Hydrochalarone-1 were characterized by dynamic light scattering (hydrodynamic diameter), atomic force microscopy (particle height), ζ potential analysis (surface charge), and inductively coupled plasma-mass spectrometry (gadolinium concentration). The blood compatibility of Hydrochalarone-1 was also assessed in vitro through analysis of hemolysis, platelet aggregation, and complement activation of human blood. In vitro relaxivities, in vivo pharmacokinetics, and a pilot in vivo acute toxicity study were also performed. RESULTS An extensive in vitro and in vivo characterization of Hydrochalarone-1 is described here. The hydrodynamic size of Hydrochalarone-1 was 5 to 7 nm depending on the dispersing media, and it was negatively charged at physiological pH. Hydrochalarone-1 showed compatibility with blood cells in vitro, and no significant hemolysis, platelet aggregation, or complement activation was observed in vitro. In addition, Hydrochalarone-1 had significantly higher r1 and r2 in vitro relaxivities in human plasma in comparison with Magnevist and was not toxic at the doses administered in an in vivo pilot acute-dose toxicity study in mice.In vivo MRI pharmacokinetic analysis after a single intravenous injection of Hydrochalarone-1 (0.2 mmol Gd/kg) showed that the volume of distribution at steady state was approximately 100 mL/kg, suggesting prolonged systemic circulation. Hydrochalarone-1 also had a long blood half-life (88 minutes) and increased relaxivity, suggesting application as a promising blood-pool MRI contrast agent. CONCLUSIONS The evidence suggests that Hydrochalarone-1, with its long systemic half-life, may have significant utility as a blood-pool MRI contrast agent.
Collapse
|
28
|
A historical overview of magnetic resonance imaging, focusing on technological innovations. Invest Radiol 2013; 47:725-41. [PMID: 23070095 DOI: 10.1097/rli.0b013e318272d29f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Magnetic resonance imaging (MRI) has now been used clinically for more than 30 years. Today, MRI serves as the primary diagnostic modality for many clinical problems. In this article, historical developments in the field of MRI will be discussed with a focus on technological innovations. Topics include the initial discoveries in nuclear magnetic resonance that allowed for the advent of MRI as well as the development of whole-body, high field strength, and open MRI systems. Dedicated imaging coils, basic pulse sequences, contrast-enhanced, and functional imaging techniques will also be discussed in a historical context. This article describes important technological innovations in the field of MRI, together with their clinical applicability today, providing critical insights into future developments.
Collapse
|
29
|
Hope TA, LeBoit PE, High WA, Fu Y, Brasch RC. Evaluation of imatinib mesylate as a possible treatment for nephrogenic systemic fibrosis in a rat model. Magn Reson Imaging 2013; 31:139-44. [DOI: 10.1016/j.mri.2012.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/08/2012] [Accepted: 06/21/2012] [Indexed: 02/03/2023]
|
30
|
Wagner B, Tan C, Barnes JL, Ahuja S, Davis TL, Gorin Y, Jimenez F. Nephrogenic systemic fibrosis: evidence for oxidative stress and bone marrow-derived fibrocytes in skin, liver, and heart lesions using a 5/6 nephrectomy rodent model. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1941-52. [PMID: 23041060 DOI: 10.1016/j.ajpath.2012.08.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 08/09/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
Nephrogenic systemic fibrosis (NSF) is associated with gadolinium-based magnetic resonance imaging (MRI) contrast exposure in the setting of acute or chronic renal compromise. It has been proposed that circulating fibrocytes mediate the disease. A study was conducted to determine whether bone marrow-derived fibroblast precursors are involved in contributing to organ fibrosis in MRI contrast-treated rodents with renal insufficiency. Rats status post 5/6 nephrectomy underwent bone marrow transplant from human placental alkaline phosphatase (hPAP)-expressing donors. After engraftment, animals were treated with gadolinium-based MRI contrast (2.5 mmol/kg IP), during weekdays for 4 weeks, or an equivalent volume of normal saline. Dermal cellularity in the contrast-treated group was fourfold that of control. Skin cells from the contrast-treated group demonstrated greater hPAP expression with co-expression of pro-collagen I and α-smooth muscle actin-positive stress fibers. Donor and host cells expressed CD34. Dihydroethidium staining of skin was greater in the contrast-treated animals, indicating oxidative stress. This was abrogated when the animals were co-administered the superoxide dismutase mimetic tempol. In conclusion, a bone marrow-derived cell population is increased in the dermis of MRI contrast-treated rodents. The cell markers are consistent with fibrocytes mediating the disease. These changes correlate with oxidative stress and expression of Nox4, suggestive of a novel therapeutic target. Elucidation of the mechanisms of MRI contrast-induced fibrosis may aid in discovering therapies to this devastating disease.
Collapse
Affiliation(s)
- Brent Wagner
- VA Research, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Magnetic resonance evaluation of renal artery stenosis in a swine model: performance of low-dose gadobutrol versus gadoterate meglumine in comparison with digital subtraction intra-arterial catheter angiography. Invest Radiol 2012; 47:376-82. [PMID: 22543971 DOI: 10.1097/rli.0b013e3182539554] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to compare low-dose imaging with gadobutrol and gadoterate meglumine (Gd-DOTA) for evaluation of renal artery stenosis with 3-T magnetic resonance angiography (MRA) in a swine model. METHOD AND MATERIALS A total of 12 experimental animals were evaluated using equivalently dosed gadobutrol and Gd-DOTA for time-resolved and static imaging. For time-resolved imaging, the time-resolved imaging with stochastic trajectories (TWIST) technique (temporal footprint, 4.4 seconds) was used; a dose of 1 mL of gadobutrol was injected at 2 mL/s and a dose of 2 mL of Gd-DOTA was injected at both 2 and 4 mL/s. For a separate static acquisition, doses were doubled. The static scans were used for stenosis gradation and the time-resolved scans for comparison of enhancement dynamics, signal-to-noise ratio (SNR), and qualitative assessments. RESULTS The average magnitude of difference in the stenosis measurements with static gadobutrol scans relative to digital subtraction intra-arterial catheter angiography (mean [SD], 7.4% [5.6%]) was less than with both the 2 mL/s (10.6% [6.2%]) and 4 mL/s (11.5% [7.8%]) Gd-DOTA MRA protocols. On time-resolved scans, peak signal-to-noise ratio was greatest with the gadobutrol protocol (P < 0.05), and the gadobutrol TWIST scan was preferred to the TWIST Gd-DOTA scan in terms of image quality and stenosis visualization in every case for every reader. CONCLUSION Low-dose gadobutrol (~0.05 mmoL/kg) contrast-enhanced MRA results in improved accuracy of renal artery stenosis assessments relative to equivalently dosed Gd-DOTA at 3 T.
Collapse
|
32
|
Abstract
OBJECTIVE The purpose of this article is to discuss nephrogenic systemic fibrosis (NSF) in detail regarding its history, possible pathophysiology, clinical and pathologic presentations, diagnosis, and implications for the radiology community. CONCLUSION NSF is a potentially lethal disorder that occurs in patients with reduced kidney function. Current evidence suggests a strong association with gadolinium-based contrast agents--mostly used in MRI--in this patient group. This has urged the radiology community to emphasize careful screening for the presence of renal dysfunction among patients for whom gadolinium-enhanced MRI is contemplated. Appropriate selection of gadolinium-based contrast agent type, avoidance of nonstandard dosage, patient education, and informed consent have been recommended by authorities.
Collapse
|
33
|
Reiter T, Ritter O, Prince MR, Nordbeck P, Wanner C, Nagel E, Bauer WR. Minimizing risk of nephrogenic systemic fibrosis in cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14:31. [PMID: 22607376 PMCID: PMC3409035 DOI: 10.1186/1532-429x-14-31] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/20/2012] [Indexed: 02/08/2023] Open
Abstract
Nephrogenic Systemic Fibrosis is a rare condition appearing only in patients with severe renal impairment or failure and presents with dermal lesions and involvement of internal organs. Although many cases are mild, an estimated 5% have a progressive debilitating course. To date, there is no known effective treatment thus stressing the necessity of ample prevention measures. An association with the use of Gadolinium based contrast agents (GBCA) makes Nephrogenic Systemic Fibrosis a potential side effect of contrast enhanced magnetic resonance imaging and offers the opportunity for prevention by limiting use of gadolinium based contrast agents in renal failure patients. In itself toxic, Gadolinium is embedded into chelates that allow its safe use as a contrast agent. One NSF theory is that Gadolinium chelates distribute into the extracellular fluid compartment and set Gadolinium ions free, depending on multiple factors among which the duration of chelates exposure is directly related to the renal function. Major medical societies both in Europe and in North America have developed guidelines for the usage of GBCA. Since the establishment of these guidelines and the increased general awareness of this condition, the occurrence of NSF has been nearly eliminated. Giving an overview over the current knowledge of NSF pathobiochemistry, pathogenesis and treatment options this review focuses on the guidelines of the European Medicines Agency, the European Society of Urogenital Radiology, the FDA and the American College of Radiology from 2008 up to 2011 and the transfer of this knowledge into every day practice.
Collapse
Affiliation(s)
- Theresa Reiter
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Oliver Ritter
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Martin R Prince
- Department of Radiology, Cornell & Columbia Universities, New York, USA
| | - Peter Nordbeck
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christoph Wanner
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Eike Nagel
- Division of Imaging Sciences, King’s College London, London, UK
| | - Wolfgang Rudolf Bauer
- Department of Internal Medicine I, Divisions of Cardiology and Nephrology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
34
|
Detection of small metastatic brain tumors: comparison of 3D contrast-enhanced whole-brain black-blood imaging and MP-RAGE imaging. Invest Radiol 2012; 47:136-41. [PMID: 22104961 DOI: 10.1097/rli.0b013e3182319704] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Early and accurate diagnosis of small metastatic brain tumors may affect outcomes and treatment strategies. For this reason, 3-dimensional (3D) thin-section imaging is preferred. However, with conventional contrast-enhanced (CE) 3D imaging, such as magnetization-prepared rapid gradient echo (MP-RAGE), many visually enhanced vessels may mimic small metastatic tumors, hindering tumor detection. CE black-blood single-slab 3D turbo-spin echo imaging (BB-ssTSE) was recently developed, which uses variable refocusing flip angles and flow-sensitizing gradient schemes, to enhance metastatic brain tumors while selectively suppressing blood vessels. The purpose of this work was to investigate the efficiency of the proposed CE BB-ssTSE in detecting small metastatic brain tumors as compared with conventional MP-RAGE. MATERIALS AND METHODS Numerical comparisons of MP-RAGE and BB-ssTSE were performed by simulation studies to investigate the signal/contrast behaviors of flowing blood and stationary CE tumors. For in vivo studies, we enrolled 35 patients (18 women; mean age, 58.1 years) with breast or lung cancer who underwent brain magnetic resonance imaging. After administering a double dose of contrast medium, whole-brain 2-dimensional T1-weighted imaging followed by high-resolution isotropic 3D BB-ssTSE and MP-RAGE was performed at 3.0 T. Two reviewers independently evaluated the presence of metastatic brain tumors using: (1) MP-RAGE; (2) BB-ssTSE; and (3) MP-RAGE + BB-ssTSE sequentially in 3 review sessions, 2 weeks apart. The lesions were classified by size into 2 groups: large (≥5 mm) and small (<5 mm). Both reviewers marked all tumors detected at each session. Another reviewer combined the results of the 2 reviewers and compared the detection rates of metastatic brain tumors between BB-ssTSE and MP-RAGE by using follow-up imaging. Intraclass correlation coefficients between the 2 reviewers were measured. RESULTS Numerical simulations showed that the proposed BB-ssTSE effectively attenuated the signal intensity of flowing blood over the entire echo train, resulting in CE tumor-to-white matter contrast comparable with conventional MP-RAGE. The combined evaluation of MP-RAGE + BB-ssTSE showed 242 tumors in 28 patients. Of these, 153 lesions were <5 mm. MP-RAGE found 111 small metastatic brain tumors, BB-ssTSE found 150, and MP-RAGE + BB-ssTSE found 153. Significantly, more small tumors were detected by BB-ssTSE than MP-RAGE (P = 0.001, Wilcoxon signed-rank test). All large tumors were detected similarly by both MP-RAGE and BB-ssTSE. By combined results for MP-RAGE + BB-ssTSE, sensitivities for detection of small metastatic tumors were 72.5% for MP-RAGE and 98.0% for BB-ssTSE (P < 0.0001, McNemar test). Intraclass correlation coefficients between the 2 reviewers were 0.826 for MP-RAGE and 0.954 for BB-ssTSE. CONCLUSION Compared with conventional MP-RAGE, the proposed CE BB-ssTSE imaging, which enhances tumors while selectively suppressing blood vessels, leads to significantly better detection of small metastatic brain tumors <5 mm.
Collapse
|
35
|
Fretellier N, Idée J, Bruneval P, Guerret S, Daubiné F, Jestin G, Factor C, Poveda N, Dencausse A, Massicot F, Laprévote O, Mandet C, Bouzian N, Port M, Corot C. Hyperphosphataemia sensitizes renally impaired rats to the profibrotic effects of gadodiamide. Br J Pharmacol 2012; 165:1151-62. [PMID: 21740412 DOI: 10.1111/j.1476-5381.2011.01585.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Hyperphosphataemia is common in patients with nephrogenic systemic fibrosis (NSF). NSF has been linked to administration of gadolinium (Gd) chelates (GCs) and elevated serum phosphate levels accelerate the release of Gd from linear, non-ionic GCs but not macrocyclic GCs. Hence, we determined whether hyperphosphataemia is a cofactor or risk factor for NSF by investigating the role of hyperphosphataemia in renally impaired rats. EXPERIMENTAL APPROACH Firstly, the clinical, pathological and bioanalytical consequences of hyperphosphataemia were investigated in subtotal nephrectomized (SNx) Wistar rats following i.v. administration of the non-ionic, linear GC gadodiamide (5 × 2.5 mmol·kg(-1) ·day(-1) ). Secondly, the effects of several GCs were compared in these high-phosphate diet fed rats. Total Gd concentration in skin, femur and plasma was measured by inductively coupled plasma mass spectrometry (ICP-MS) and free Gd(3+) in plasma by liquid chromatography coupled to ICP-MS. Relaxometry was used to measure dissociated Gd in skin and bone. KEY RESULTS Four out of seven SNx rats fed a high-phosphate diet administered gadodiamide developed macroscopic and microscopic (fibrotic and inflammatory) skin lesions, whereas no skin lesions were observed in SNx rats treated with saline, the other GCs and free ligands or in the normal diet, gadodiamide-treated group. Unlike the other molecules, gadodiamide gradually increased the r(1) relaxivity value, consistent with its in vivo dissociation and release of soluble Gd. CONCLUSIONS AND IMPLICATIONS Hyperphosphataemia sensitizes renally impaired rats to the profibrotic effects of gadodiamide. Unlike the other GCs investigated, gadodiamide gradually dissociates in vivo. Our data confirm that hyperphosphataemia is a risk factor for NSF.
Collapse
Affiliation(s)
- N Fretellier
- Guerbet, Research Division, Aulnay-sous-Bois, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|