1
|
Puranik AD, Dev ID, Rangarajan V, Jain Y, Patra S, Purandare NC, Sahu A, Choudhary A, Bhattacharya K, Gupta T, Chatterjee A, Dasgupta A, Moiyadi A, Shetty P, Singh V, Sridhar E, Sahay A, Shah A, Menon N, Ghosh S, Choudhury S, Shah S, Agrawal A, Lakshminarayanan N, Kumar A, Gopalakrishna A. FET PET to differentiate between post-treatment changes and recurrence in high-grade gliomas: a single center multidisciplinary clinic controlled study. Neuroradiology 2024:10.1007/s00234-024-03495-9. [PMID: 39527264 DOI: 10.1007/s00234-024-03495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE The clinico-radiological dilemma in post-treatment high-grade gliomas, between disease recurrence (TR) and treatment-related changes (TRC), still persists. FET (Fluoro-ethyl-tyrosine) PET has been extensively used as problem-solving modality for cases where MR imaging is inconclusive. We incorporated a systematic imaging and clinical follow-up algorithm in a multi-disciplinary clinic (MDC) setting to analyse our cohort of FET PET in post-treatment gliomas. METHODS We retrospectively analyzed 171 patients of post-treatment grade III and IV glioma with equivocal findings on MRI. 185-222 MBq of 18 F-FET was injected and dedicated static imaging of brain was performed at 20 min. TBR (Tumor to background ratio) was used as semi-quantitative parameter. Cutoff of 2.5 was used for image interpretation. Imaging findings were confirmed with histopathological diagnosis, wherever available or in a multidisciplinary joint clinic based on serial imaging. RESULTS 121 of 171 patients showed recurrent disease on FET PET, on follow up, 109 were confirmed with recurrence; 7 patients showed TRC, whereas 5 were treated with bevacizumab, with no further clinico-radiological deterioration, thus confirming TRC. 50 patients showed TRC on FET PET, on follow up on follow up, 40 were confirmed as true-negative. 10 patients who showed TBR less than 2.5 had confirmed TR on subsequent MR imaging. The overall sensitivity and specificity was 91.6 and 76.9% respectively, with a diagnostic accuracy of 87.13%. CONCLUSION There is potential for FET PET to be used along with MRI in the post treatment algorithm of high-grade glial tumors.
Collapse
Affiliation(s)
- Ameya D Puranik
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India.
| | - Indraja D Dev
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Yash Jain
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Sukriti Patra
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Nilendu C Purandare
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Arpita Sahu
- Department of Radiodiagnosis, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Amitkumar Choudhary
- Department of Radiodiagnosis, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Kajari Bhattacharya
- Department of Radiodiagnosis, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Vikas Singh
- Department of Neurosurgery, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Epari Sridhar
- Department of Pathology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Ayushi Sahay
- Department of Pathology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Aekta Shah
- Department of Pathology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Suchismita Ghosh
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Sayak Choudhury
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Sneha Shah
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - N Lakshminarayanan
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology (BRIT), Bhabha Atomic Research Center, Mumbai, India
| | - Amit Kumar
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology (BRIT), Bhabha Atomic Research Center, Mumbai, India
| | - Arjun Gopalakrishna
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology (BRIT), Bhabha Atomic Research Center, Mumbai, India
| |
Collapse
|
2
|
Robert JA, Leclerc A, Ducloie M, Emery E, Agostini D, Vigne J. Contribution of [ 18F]FET PET in the Management of Gliomas, from Diagnosis to Follow-Up: A Review. Pharmaceuticals (Basel) 2024; 17:1228. [PMID: 39338390 PMCID: PMC11435125 DOI: 10.3390/ph17091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas, the most common type of primary malignant brain tumors in adults, pose significant challenges in diagnosis and management due to their heterogeneity and potential aggressiveness. This review evaluates the utility of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) positron emission tomography (PET), a promising imaging modality, to enhance the clinical management of gliomas. We reviewed 82 studies involving 4657 patients, focusing on the application of [18F]FET in several key areas: diagnosis, grading, identification of IDH status and presence of oligodendroglial component, guided resection or biopsy, detection of residual tumor, guided radiotherapy, detection of malignant transformation in low-grade glioma, differentiation of recurrence versus treatment-related changes and prognostic factors, and treatment response evaluation. Our findings confirm that [18F]FET helps delineate tumor tissue, improves diagnostic accuracy, and aids in therapeutic decision-making by providing crucial insights into tumor metabolism. This review underscores the need for standardized parameters and further multicentric studies to solidify the role of [18F]FET PET in routine clinical practice. By offering a comprehensive overview of current research and practical implications, this paper highlights the added value of [18F]FET PET in improving management of glioma patients from diagnosis to follow-up.
Collapse
Affiliation(s)
- Jade Apolline Robert
- CHU de Caen Normandie, UNICAEN, Department of Nuclear Medicine, Normandie Université, 14000 Caen, France; (J.A.R.)
| | - Arthur Leclerc
- Department of Neurosurgery, Caen University Hospital, 14000 Caen, France
- Caen Normandie University, ISTCT UMR6030, GIP Cyceron, 14000 Caen, France
| | - Mathilde Ducloie
- Department of Neurology, Caen University Hospital, 14000 Caen, France
- Centre François Baclesse, Department of Neurology, 14000 Caen, France
| | - Evelyne Emery
- Department of Neurosurgery, Caen University Hospital, 14000 Caen, France
| | - Denis Agostini
- CHU de Caen Normandie, UNICAEN, Department of Nuclear Medicine, Normandie Université, 14000 Caen, France; (J.A.R.)
| | - Jonathan Vigne
- CHU de Caen Normandie, UNICAEN, Department of Nuclear Medicine, Normandie Université, 14000 Caen, France; (J.A.R.)
- CHU de Caen Normandie, UNICAEN Department of Pharmacy, Normandie Université, 14000 Caen, France
- Centre Cyceron, Institut Blood and Brain @ Caen-Normandie, Normandie Université, UNICAEN, INSERM U1237, PhIND, 14000 Caen, France
| |
Collapse
|
3
|
Yu P, Wang Y, Su F, Chen Y. Comparing [18F]FET PET and [18F]FDOPA PET for glioma recurrence diagnosis: a systematic review and meta-analysis. Front Oncol 2024; 13:1346951. [PMID: 38269019 PMCID: PMC10805829 DOI: 10.3389/fonc.2023.1346951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Purpose The purpose of our meta-analysis and systematic review was to evaluate and compare the diagnostic effectiveness of [18F]FET PET and [18F]FDOPA PET in detecting glioma recurrence. Methods Sensitivities and specificities were assessed using the DerSimonian and Laird methodology, and subsequently transformed using the Freeman-Tukey double inverse sine transformation. Confidence intervals were computed employing the Jackson method, while heterogeneity within and between groups was evaluated through the Cochrane Q and I² statistics. If substantial heterogeneity among the studies was observed (P < 0.10 or I² > 50%), we conducted meta-regression and sensitivity analyses. Publication bias was assessed through the test of a funnel plot and the application of Egger's test. For all statistical tests, except for assessing heterogeneity (P < 0.10), statistical significance was determined when the two-tailed P value fell below 0.05. Results Initially, 579 publications were identified, and ultimately, 22 studies, involving 1514 patients(1226 patients for [18F]FET PET and 288 patients for [18F]FDOPA PET), were included in the analysis. The sensitivity and specificity of [18F]FET PET were 0.84 (95% CI, 0.75-0.90) and 0.86 (95% CI, 0.80-0.91), respectively, while for [18F]FDOPA PET, the values were 0.95 (95% CI, 0.86-1.00) for sensitivity and 0.90 (95% CI, 0.77-0.98) for specificity. A statistically significant difference in sensitivity existed between these two radiotracers (P=0.04), while no significant difference was observed in specificity (P=0.58). Conclusion It seems that [18F]FDOPA PET demonstrates superior sensitivity and similar specificity to [18F] FET PET. Nevertheless, it's crucial to emphasize that [18F]FDOPA PET results were obtained from studies with limited sample sizes. Further larger prospective studies, especially head-to-head comparisons, are needed in this issue. Systematic Review Registration identifier CRD42023463476.
Collapse
Affiliation(s)
| | | | | | - Yan Chen
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Kertels O, Krauß J, Monoranu CM, Samnick S, Dierks A, Kircher M, Mihovilovic MI, Pham M, Buck AK, Eyrich M, Schlegel PG, Frühwald MC, Bison B, Lapa C. [ 18F]FET-PET in children and adolescents with central nervous system tumors: does it support difficult clinical decision-making? Eur J Nucl Med Mol Imaging 2023; 50:1699-1708. [PMID: 36670283 PMCID: PMC10119036 DOI: 10.1007/s00259-023-06114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
PURPOSE Positron emission tomography (PET) with O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) is a well-established tool for non-invasive assessment of adult central nervous system (CNS) tumors. However, data on its diagnostic utility and impact on clinical management in children and adolescents are limited. METHODS Twenty-one children and young adults (13 males; mean age, 8.6 ± 5.2 years; range, 1-19 at initial diagnosis) with either newly diagnosed (n = 5) or pretreated (n = 16) CNS tumors were retrospectively analyzed. All patients had previously undergone neuro-oncological work-up including cranial magnetic resonance imaging. In all cases, [18F]FET-PET was indicated in a multidisciplinary team conference. The impact of PET imaging on clinical decision-making was assessed. Histopathology (n = 12) and/or clinical and imaging follow-up (n = 9) served as the standard of reference. RESULTS The addition of [18F]FET-PET to the available information had an impact on further patient management in 14 out of 21 subjects, with avoidance of invasive surgery or biopsy in four patients, biopsy guidance in four patients, change of further treatment in another five patients, and confirmation of diagnosis in one patient. CONCLUSION [18F]FET-PET may provide important additional information for treatment guidance in pediatric and adolescent patients with CNS tumors.
Collapse
Affiliation(s)
- Olivia Kertels
- Institute of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
| | - Jürgen Krauß
- Section Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
| | - Camelia Maria Monoranu
- Department of Neuropathology, Institute for Pathology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
| | - Alexander Dierks
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Malte Kircher
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Milena I. Mihovilovic
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
| | - Mirko Pham
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children’s Hospital, University of Würzburg, Josef-Schneider- Str. 2, 97080 Würzburg, Germany
| | - Paul-Gerhardt Schlegel
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children’s Hospital, University of Würzburg, Josef-Schneider- Str. 2, 97080 Würzburg, Germany
| | - Michael C. Frühwald
- Paediatric and Adolescent Medicine, University Medical Center Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| | - Brigitte Bison
- Diagnostic and Interventional Neuroradiology, Neuroradiological Reference Center for Pediatric Brain Tumor (HIT) Studies of the German Society of Pediatric Oncology and Hematology, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156 Augsburg, Germany
| |
Collapse
|
5
|
Singnurkar A, Poon R, Detsky J. 18F-FET-PET imaging in high-grade gliomas and brain metastases: a systematic review and meta-analysis. J Neurooncol 2023; 161:1-12. [PMID: 36502457 DOI: 10.1007/s11060-022-04201-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To provide a summary of the diagnostic performance of 18F-FET-PET in the management of patients with high-grade brain gliomas or metastases from extracranial primary malignancies. METHODS MEDLINE, EMBASE, and Cochrane Database of Systematic Reviews databases were searched for studies that reported on diagnostic test parameters in radiotherapy planning, response assessment, and tumour recurrence/treatment-related changes differentiation. Radiomic studies were excluded. Quality assessment was performed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool and the GRADE approach. A bivariate, random-effects model was used to produce summary estimates of sensitivity and specificity. RESULTS Twenty-six studies with a total of 1206 patients/lesions were included in the analysis. For radiotherapy planning of glioma, the pooled proportion of patients from 3 studies with 18F-FET uptake extending beyond the 20 mm margin from the gadolinium enhancement on standard MRI was 39% (95% CI, 10-73%). In 3 studies, 18F-FET-PET was also shown to be predictive of early responders to treatment, whereas MRI failed to show any prognostic value. For the differentiation of glioma recurrence from treatment-related changes, the pooled sensitivity and specificity of TBRmax 1.9-2.3 from 6 studies were 91% (95% CI, 74-97%) and 84% (95% CI, 69-93%), respectively. The respective values for brain metastases from 4 studies were 82% (95% CI, 74-88%) and 82% (95% CI, 74-88%) using TBRmax 2.15-3.11. CONCLUSION While 18F-FET shows promise as a complementary modality to standard-of-care MRI for the management of primary and metastatic brain malignancies, further validation with standardized image interpretation methods in well-designed prospective studies are warranted.
Collapse
Affiliation(s)
- Amit Singnurkar
- Department of Medical Imaging, University of Toronto Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Raymond Poon
- Program in Evidence-Based Care, Ontario Health (Cancer Care Ontario), Department of Oncology, McMaster University McMaster University, Hamilton, ON, Canada. .,Program in Evidence-Based Care, Ontario Health (Cancer Care Ontario), Juravinski Hospital and Cancer Centre, G Wing, 2nd Floor, 711 Concession Street, Hamilton, ON, L8V 1C3, Canada.
| | - Jay Detsky
- Department of Radiation Oncology, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
6
|
Qin D, Yang G, Jing H, Tan Y, Zhao B, Zhang H. Tumor Progression and Treatment-Related Changes: Radiological Diagnosis Challenges for the Evaluation of Post Treated Glioma. Cancers (Basel) 2022; 14:cancers14153771. [PMID: 35954435 PMCID: PMC9367286 DOI: 10.3390/cancers14153771] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Glioma is the most common primary malignant tumor of the adult central nervous system. Despite aggressive multimodal treatment, its prognosis remains poor. During follow-up, it remains challenging to distinguish treatment-related changes from tumor progression in treated patients with gliomas due to both share clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions). The early effective identification of tumor progression and treatment-related changes is of great significance for the prognosis and treatment of gliomas. We believe that advanced neuroimaging techniques can provide additional information for distinguishing both at an early stage. In this article, we focus on the research of magnetic resonance imaging technology and artificial intelligence in tumor progression and treatment-related changes. Finally, it provides new ideas and insights for clinical diagnosis. Abstract As the most common neuro-epithelial tumors of the central nervous system in adults, gliomas are highly malignant and easy to recurrence, with a dismal prognosis. Imaging studies are indispensable for tracking tumor progression (TP) or treatment-related changes (TRCs). During follow-up, distinguishing TRCs from TP in treated patients with gliomas remains challenging as both share similar clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions) and fulfill criteria for progression. Thus, the early identification of TP and TRCs is of great significance for determining the prognosis and treatment. Histopathological biopsy is currently the gold standard for TP and TRC diagnosis. However, the invasive nature of this technique limits its clinical application. Advanced imaging methods (e.g., diffusion magnetic resonance imaging (MRI), perfusion MRI, magnetic resonance spectroscopy (MRS), positron emission tomography (PET), amide proton transfer (APT) and artificial intelligence (AI)) provide a non-invasive and feasible technical means for identifying of TP and TRCs at an early stage, which have recently become research hotspots. This paper reviews the current research on using the abovementioned advanced imaging methods to identify TP and TRCs of gliomas. First, the review focuses on the pathological changes of the two entities to establish a theoretical basis for imaging identification. Then, it elaborates on the application of different imaging techniques and AI in identifying the two entities. Finally, the current challenges and future prospects of these techniques and methods are discussed.
Collapse
Affiliation(s)
- Danlei Qin
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
| | - Guoqiang Yang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Hui Jing
- Department of MRI, The Six Hospital, Shanxi Medical University, Taiyuan 030008, China;
| | - Yan Tan
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Bin Zhao
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| |
Collapse
|
7
|
The Value of FET PET/CT in Recurrent Glioma with a Different IDH Mutation Status: The Relationship between Imaging and Molecular Biomarkers. Int J Mol Sci 2022; 23:ijms23126787. [PMID: 35743228 PMCID: PMC9224265 DOI: 10.3390/ijms23126787] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
The evaluation of treatment response remains a challenge in glioma cases because the neuro oncological therapy can lead to the development of treatment-related changes (TRC) that mimic true progression (TP). Positron emission tomography (PET) using O-(2-[18F] fluoroethyl-)-L-tyrosine (18F-FET) has been shown to be a useful tool for detecting TRC and TP. We assessed the diagnostic performance of different 18F-FET PET segmentation approaches and different imaging biomarkers for differentiation between late TRC and TP in glioma patients. Isocitrate dehydrogenase (IDH) status was evaluated as a predictor of disease outcome. In our study, the proportion of TRC in IDH wild type (IDHwt) and IDH mutant (IDHm) subgroups was without significant difference. We found that the diagnostic value of static and dynamic biomarkers of 18F-FET PET for discrimination between TRC and TP depends on the IDH mutation status of the tumor. Dynamic 18F-FET PET acquisition proved helpful in the IDH wild type (IDHwt) subgroup, as opposed to the IDH mutant (IDHm) subgroup, providing an early indication to discontinue dynamic imaging in the IDHm subgroup.
Collapse
|
8
|
The Use of 18F-FET-PET-MRI in Neuro-Oncology: The Best of Both Worlds—A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12051202. [PMID: 35626357 PMCID: PMC9140561 DOI: 10.3390/diagnostics12051202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Gliomas are the most frequent primary tumors of the brain. They can be divided into grade II-IV astrocytomas and grade II-III oligodendrogliomas, based on their histomolecular profile. The prognosis and treatment is highly dependent on grade and well-identified prognostic and/or predictive molecular markers. Multi-parametric MRI, including diffusion weighted imaging, perfusion, and MR spectroscopy, showed increasing value in the non-invasive characterization of specific molecular subsets of gliomas. Radiolabeled amino-acid analogues, such as 18F-FET, have also been proven valuable in glioma imaging. These tracers not only contribute in the diagnostic process by detecting areas of dedifferentiation in diffuse gliomas, but this technique is also valuable in the follow-up of gliomas, as it can differentiate pseudo-progression from real tumor progression. Since multi-parametric MRI and 18F-FET PET are complementary imaging techniques, there may be a synergistic role for PET-MRI imaging in the neuro-oncological imaging of primary brain tumors. This could be of value for both primary staging, as well as during treatment and follow-up.
Collapse
|
9
|
Santo G, Laudicella R, Linguanti F, Nappi AG, Abenavoli E, Vergura V, Rubini G, Sciagrà R, Arnone G, Schillaci O, Minutoli F, Baldari S, Quartuccio N, Bisdas S. The Utility of Conventional Amino Acid PET Radiotracers in the Evaluation of Glioma Recurrence also in Comparison with MRI. Diagnostics (Basel) 2022; 12:diagnostics12040844. [PMID: 35453892 PMCID: PMC9027186 DOI: 10.3390/diagnostics12040844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
AIM In this comprehensive review we present an update on the most relevant studies evaluating the utility of amino acid PET radiotracers for the evaluation of glioma recurrence as compared to magnetic resonance imaging (MRI). METHODS A literature search extended until June 2020 on the PubMed/MEDLINE literature database was conducted using the terms "high-grade glioma", "glioblastoma", "brain tumors", "positron emission tomography", "PET", "amino acid PET", "[11C]methyl-l-methionine", "[18F]fluoroethyl-tyrosine", "[18F]fluoro-l-dihydroxy-phenylalanine", "MET", "FET", "DOPA", "magnetic resonance imaging", "MRI", "advanced MRI", "magnetic resonance spectroscopy", "perfusion-weighted imaging", "diffusion-weighted imaging", "MRS", "PWI", "DWI", "hybrid PET/MR", "glioma recurrence", "pseudoprogression", "PSP", "treatment-related change", and "radiation necrosis" alone and in combination. Only original articles edited in English and about humans with at least 10 patients were included. RESULTS Forty-four articles were finally selected. Conventional amino acid PET tracers were demonstrated to be reliable diagnostic techniques in differentiating tumor recurrence thanks to their high uptake from tumor tissue and low background in normal grey matter, giving additional and early information to standard modalities. Among them, MET-PET seems to present the highest diagnostic value but its use is limited to on-site cyclotron facilities. [18F]labelled amino acids, such as FDOPA and FET, were developed to provide a more suitable PET tracer for routine clinical applications, and demonstrated similar diagnostic performance. When compared to the gold standard MRI, amino acid PET provides complementary and comparable information to standard modalities and seems to represent an essential tool in the differentiation between tumor recurrence and other entities such as pseudoprogression, radiation necrosis, and pseudoresponse. CONCLUSIONS Despite the introduction of new advanced imaging techniques, the diagnosis of glioma recurrence remains challenging. In this scenario, the growing knowledge about imaging techniques and analysis, such as the combined PET/MRI and the application of artificial intelligence (AI) and machine learning (ML), could represent promising tools to face this difficult and debated clinical issue.
Collapse
Affiliation(s)
- Giulia Santo
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Riccardo Laudicella
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Anna Giulia Nappi
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Elisabetta Abenavoli
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Vittoria Vergura
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Giuseppe Rubini
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.S.); (A.G.N.); (G.R.)
| | - Roberto Sciagrà
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (F.L.); (E.A.); (V.V.); (R.S.)
| | - Gaspare Arnone
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.A.); (N.Q.)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy;
| | - Fabio Minutoli
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Sergio Baldari
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98125 Messina, Italy; (R.L.); (F.M.); (S.B.)
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy; (G.A.); (N.Q.)
| | - Sotirios Bisdas
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London WC1N 3BG, UK
- Correspondence:
| |
Collapse
|
10
|
Puranik AD, Rangarajan V, Dev ID, Jain Y, Purandare NC, Sahu A, Choudhary A, Gupta T, Chatterjee A, Moiyadi A, Shetty P, Sridhar E, Sahay A, Patil VM, Shah S, Agrawal A. Brain FET PET tumor-to-white mater ratio to differentiate recurrence from post-treatment changes in high-grade gliomas. J Neuroimaging 2021; 31:1211-1218. [PMID: 34388273 DOI: 10.1111/jon.12914] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Highergrade glial neoplasms undergo standard treatment with surgery, radiotherapy, and alkylating agents. There is often a clinical/neuroimaging dilemma in the post-treatment setting to differentiate disease recurrence from treatment-related changes. FET (fluoro-ethyl-tyrosine) PET has emerged as a molecular imaging modality for cases where MR imaging is inconclusive. This study aims to develop a cutoff on FET PET for differentiating true recurrence from post-treatment changes. METHODS We retrospectively analyzed72 patientswith post-treatment grade 3 or 4 brain gliomas. Five to six mCi of 18 F-FET was injected and static imaging of the brain was performed at 20 min. A tumor-to-white matter (T/Wm) ratio was used as semiquantitative parameter. A T/Wm cutoff of 2.5 was used for image interpretation. Imaging findings were confirmed by either histopathologic diagnosis in a multidisciplinary joint clinic or based on follow-up of clinical and neuroimaging findings. RESULTS Forty-one of 72 patients (57%) showed recurrent disease on FET PET. Thirty-five of them were confirmed to have tumor recurrence; six patients showed post-treatment changes. Thirty-one of 72 patients (43%) showed post-treatment changes on FET PET; 27 were confirmed as post-treatment change and four patients had tumor recurrence on subsequent MR imaging. An optimum T/Wm cutoff of 2.65 was derived based on receiver operating characteristic analysis with a sensitivity of 80% and specificity of 87.5%. CONCLUSION Static FET PET can be used as problem-solving imaging modality with a T/Wm cutoff of 2.65 to differentiate late recurrence from post-treatment changes in grade 3 or 4 brain gliomas with equivocal MR features.
Collapse
Affiliation(s)
- Ameya D Puranik
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Indraja D Dev
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Yash Jain
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Nilendu C Purandare
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Arpita Sahu
- Department of Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Amitkumar Choudhary
- Department of Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Navi Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Navi Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neuro-surgery, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Navi Mumbai, India
| | - Prakash Shetty
- Department of Neuro-surgery, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Navi Mumbai, India
| | - Epari Sridhar
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Ayushi Sahay
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vijay M Patil
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sneha Shah
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
11
|
Cui M, Zorrilla-Veloz RI, Hu J, Guan B, Ma X. Diagnostic Accuracy of PET for Differentiating True Glioma Progression From Post Treatment-Related Changes: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:671867. [PMID: 34093419 PMCID: PMC8173157 DOI: 10.3389/fneur.2021.671867] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose: To evaluate the diagnostic accuracy of PET with different radiotracers and parameters in differentiating between true glioma progression (TPR) and post treatment-related change (PTRC). Methods: Studies on using PET to differentiate between TPR and PTRC were screened from the PubMed and Embase databases. By following the PRISMA checklist, the quality assessment of included studies was performed, the true positive and negative values (TP and TN), false positive and negative values (FP and FN), and general characteristics of all the included studies were extracted. Results of PET consistent with reference standard were defined as TP or TN. The pooled sensitivity (Sen), specificity (Spe), and hierarchical summary receiver operating characteristic curves (HSROC) were generated to evaluate the diagnostic accuracy. Results: The 33 included studies had 1,734 patients with 1,811 lesions suspected of glioma recurrence. Fifteen studies tested the accuracy of 18F-FET PET, 12 tested 18F-FDG PET, seven tested 11C-MET PET, and three tested 18F-DOPA PET. 18F-FET PET showed a pooled Sen and Spe of 0.88 (95% CI: 0.80, 0.93) and 0.78 (0.69, 0.85), respectively. In the subgroup analysis of FET-PET, diagnostic accuracy of high-grade gliomas (HGGs) was higher than that of mixed-grade gliomas (P interaction = 0.04). 18F-FDG PET showed a pooled Sen and Spe of 0.78 (95% CI: 0.71, 0.83) and 0.87 (0.80, 0.92), the Spe of the HGGs group was lower than that of the low-grade gliomas group (0.82 vs. 0.90, P = 0.02). 11C-MET PET had a pooled Sen and Spe of 0.92 (95% CI: 0.83, 0.96) and 0.78 (0.69, 0.86). 18F-DOPA PET had a pooled Sen and Spe of 0.85 (95% CI: 0.80, 0.89) and 0.70 (0.60, 0.79). FET-PET combined with MRI had a pooled Sen and Spe of 0.88 (95% CI: 0.78, 0.94) and 0.76 (0.57, 0.88). Multi-parameters analysis of FET-PET had pooled Sen and Spe values of 0.88 (95% CI: 0.81, 0.92) and 0.79 (0.63, 0.89). Conclusion: PET has a moderate diagnostic accuracy in differentiating between TPR and PTRC. The high Sen of amino acid PET and high Spe of FDG-PET suggest that the combination of commonly used FET-PET and FDG-PET may be more accurate and promising, especially for low-grade glioma.
Collapse
Affiliation(s)
- Meng Cui
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, The First Medical Centre of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Rocío Isabel Zorrilla-Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Centre UT Health Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Centre UT Health Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Bing Guan
- Department of Health Economics, The First Medical Centre of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaodong Ma
- Medical School of Chinese People's Liberation Army, Beijing, China
- Department of Neurosurgery, The First Medical Centre of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
12
|
Werner JM, Weller J, Ceccon G, Schaub C, Tscherpel C, Lohmann P, Bauer EK, Schäfer N, Stoffels G, Baues C, Celik E, Marnitz S, Kabbasch C, Gielen GH, Fink GR, Langen KJ, Herrlinger U, Galldiks N. Diagnosis of Pseudoprogression Following Lomustine-Temozolomide Chemoradiation in Newly Diagnosed Glioblastoma Patients Using FET-PET. Clin Cancer Res 2021; 27:3704-3713. [PMID: 33947699 DOI: 10.1158/1078-0432.ccr-21-0471] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The CeTeG/NOA-09 phase III trial demonstrated a significant survival benefit of lomustine-temozolomide chemoradiation in patients with newly diagnosed glioblastoma with methylated O6-methylguanine-DNA methyltransferase (MGMT) promoter. Following lomustine-temozolomide chemoradiation, late and prolonged pseudoprogression may occur. We here evaluated the value of amino acid PET using O-(2-[18F]fluoroethyl)-l-tyrosine (FET) for differentiating pseudoprogression from tumor progression. EXPERIMENTAL DESIGN We retrospectively identified patients (i) who were treated off-study according to the CeTeG/NOA-09 protocol, (ii) had equivocal MRI findings after radiotherapy, and (iii) underwent additional FET-PET imaging for diagnostic evaluation (number of scans, 1-3). Maximum and mean tumor-to-brain ratios (TBRmax, TBRmean) and dynamic FET uptake parameters (e.g., time-to-peak) were calculated. In patients with more than one FET-PET scan, relative changes of TBR values were evaluated, that is, an increase or decrease of >10% compared with the reference scan was considered as tumor progression or pseudoprogression. Diagnostic performances were evaluated using ROC curve analyses and Fisher exact test. Diagnoses were confirmed histologically or clinicoradiologically. RESULTS We identified 23 patients with 32 FET-PET scans. Within 5-25 weeks after radiotherapy (median time, 9 weeks), pseudoprogression occurred in 11 patients (48%). The parameter TBRmean calculated from the FET-PET performed 10 ± 7 days after the equivocal MRI showed the highest accuracy (87%) to identify pseudoprogression (threshold, <1.95; P = 0.029). The integration of relative changes of TBRmean further improved the accuracy (91%; P < 0.001). Moreover, the combination of static and dynamic parameters increased the specificity to 100% (P = 0.005). CONCLUSIONS The data suggest that FET-PET parameters are of significant clinical value to diagnose pseudoprogression related to lomustine-temozolomide chemoradiation.
Collapse
Affiliation(s)
- Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Johannes Weller
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Garry Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christina Schaub
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Caroline Tscherpel
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena K Bauer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Niklas Schäfer
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Christian Baues
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Simone Marnitz
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Christoph Kabbasch
- Department of Neuroradiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gerrit H Gielen
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| |
Collapse
|
13
|
Le Fèvre C, Constans JM, Chambrelant I, Antoni D, Bund C, Leroy-Freschini B, Schott R, Cebula H, Noël G. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review. Part 2 - Radiological features and metric markers. Crit Rev Oncol Hematol 2021; 159:103230. [PMID: 33515701 DOI: 10.1016/j.critrevonc.2021.103230] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/10/2021] [Accepted: 01/16/2021] [Indexed: 12/28/2022] Open
Abstract
After chemoradiotherapy for glioblastoma, pseudoprogression can occur and must be distinguished from true progression to correctly manage glioblastoma treatment and follow-up. Conventional treatment response assessment is evaluated via conventional MRI (contrast-enhanced T1-weighted and T2/FLAIR), which is unreliable. The emergence of advanced MRI techniques, MR spectroscopy, and PET tracers has improved pseudoprogression diagnostic accuracy. This review presents a literature review of the different imaging techniques and potential imaging biomarkers to differentiate pseudoprogression from true progression.
Collapse
Affiliation(s)
- Clara Le Fèvre
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Jean-Marc Constans
- Department of Radiology, Amiens-Picardie University Hospital, 1 rond-point du Professeur Christian Cabrol, 80054, Amiens Cedex 1, France.
| | - Isabelle Chambrelant
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Delphine Antoni
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Caroline Bund
- Department of Nuclear Medicine, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Benjamin Leroy-Freschini
- Department of Nuclear Medicine, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Roland Schott
- Departement of Medical Oncology, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| | - Hélène Cebula
- Departement of Neurosurgery, Hautepierre University Hospital, 1, avenue Molière, 67200, Strasbourg, France.
| | - Georges Noël
- Department of Radiotherapy, ICANS, Institut Cancérologie Strasbourg Europe, 17 rue Albert Calmette, 67200, Strasbourg Cedex, France.
| |
Collapse
|