1
|
Toro-Tobon D, Morris JC, Hilger C, Peskey C, Durski JM, Ryder M. Clinical Outcomes of Radioactive Iodine Redifferentiation Therapy in Previously Iodine Refractory Differentiated Thyroid Cancers. Thyroid 2024; 34:70-81. [PMID: 37917101 DOI: 10.1089/thy.2023.0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Objective: Redifferentiation therapy (RDT) can restore radioactive iodine (RAI) uptake in differentiated thyroid cancer (DTC) cells to enable salvage 131I therapy for previously RAI refractory (RAIR) disease. This study evaluated the clinical outcomes of patients who underwent RDT and identified clinicopathologic characteristics predictive of RAI restoration following RDT. Methods: This is a retrospective case series of 33 patients with response evaluation criteria in solid tumors (RECIST)-progressive metastatic RAIR-DTC who underwent RDT between 2017 and 2022 at the Mayo Clinic (Rochester, MN). All patients underwent genomic profiling and received MEK, RET or ALK inhibitors alone, or combination BRAF-MEK inhibitors for 4 weeks. At week 3, those with increased RAI avidity in metastatic foci received high-dose 131I therapy. Baseline and clinicopathologic outcomes were comprehensively reviewed. Results: Of the 33 patients, 57.6% had restored RAI uptake following RDT (Redifferentiated subgroup). 42.1% (8/19) with papillary thyroid cancers (PTC), 100% (4/4) with invasive encapsulated follicular variant PTCs (IEFV-PTCs), and 100% (7/7) with follicular thyroid cancers (FTC) redifferentiated. All (11/11) RAS mutant tumors redifferentiated compared with 38.9% (7/18) with BRAF mutant disease (6 PTC and 1 IEFV-PTC). 76.5% (13/17) of redifferentiated and 66.7% (8/12) of non-redifferentiated patients achieved a best overall RECIST response of stable disease (SD) or non-complete response/non-progressive disease. Both subgroups had a median 12% tumor shrinkage at 3 weeks on drug(s) alone. The redifferentiated subgroup, following high-dose 131I therapy, achieved an additional median 20% tumor reduction at 6 months after RDT. There were no statistically significant differences between both groups in progression free survival (PFS), time to initiation of systemic therapy, and time to any additional therapy. Of the entire cohort, 6.1% (2/33) experienced histologic transformation to anaplastic thyroid cancer, 15.1% (5/33) died, and all had redifferentiated following RDT and received 131I therapy. Conclusion: RDT has the potential to restore RAI avidity and induce RECIST responses following 131I therapy in select patients with RAIR-DTC, particularly those with RAS-driven "follicular" phenotypes. In patients with PTC, none of the evaluated clinical outcomes differed statistically between the redifferentiated and non-redifferentiated subgroups. Further studies are needed to better characterize the long-term survival and/or safety outcomes of high-dose RAI following RDT, particularly whether it could be associated with histologic anaplastic transformation.
Collapse
Affiliation(s)
- David Toro-Tobon
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
| | - John C Morris
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Crystal Hilger
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Candy Peskey
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jolanta M Durski
- Division of Nuclear Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mabel Ryder
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Abstract
Radiopharmaceutical therapy (RPT) is an invigorated form of cancer therapy that systemically delivers targeted radioactive drugs to cancer cells. Theranostics is a type of RPT that utilizes imaging, either of the RPT drug directly or a companion diagnostic, to inform whether a patient will benefit from the treatment. Given the ability to image the drug onboard theranostic treatments also lends itself readily to patient-specific dosimetry, which is a physics-based process that determines the overall absorbed dose burden to healthy organs and tissues and tumors in patients. While companion diagnostics identify who will benefit from RPT treatments, dosimetry determines how much activity these beneficiaries can receive to maximize therapeutic efficacy. Clinical data is starting to accrue suggesting tremendous benefits when dosimetry is performed for RPT patients. RPT dosimetry, which was once performed by florid and often inaccurate workflows, can now be performed more efficiently and accurately with FDA-cleared dosimetry software. Therefore, there is no better time for the field of oncology to adopt this form of personalize medicine to improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Bryan Bednarz
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI.
| |
Collapse
|
3
|
Jaimovich R. Teranóstica: conceptos y aplicaciones. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
4
|
Advances in Functional Imaging of Differentiated Thyroid Cancer. Cancers (Basel) 2021; 13:cancers13194748. [PMID: 34638232 PMCID: PMC8507556 DOI: 10.3390/cancers13194748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Since the 1940s, radioactive iodine has been used for functional imaging and for treating patients with differentiated thyroid cancer (DTC). During this long-lasting experience, the use of iodine isotopes evolved, especially during the last years due to improved knowledge of thyroid cancer biology and improved performances of imaging tools. The present review summarizes recent advances in the field of functional imaging and theragnostic approach of DTC. Abstract The present review provides a description of recent advances in the field of functional imaging that takes advantage of the functional characteristics of thyroid neoplastic cells (such as radioiodine uptake and FDG uptake) and theragnostic approach of differentiated thyroid cancer (DTC). Physical and biological characteristics of available radiopharmaceuticals and their use with state-of-the-art technologies for diagnosis, treatment, and follow-up of DTC patients are depicted. Radioactive iodine is used mostly with a therapeutic intent, while PET/CT with 18F-FDG emerges as a useful tool in the diagnostic management and complements the use of radioactive iodine. Beyond 18F-FDG PET/CT, other tracers including 124I, 18F-TFB and 68Ga-PSMA, and new methods such as PET/MR, might offer new opportunities in selecting patients with DTC for specific imaging modalities or treatments.
Collapse
|