1
|
Ebbehoj A, Iversen P, Kramer S, Stochholm K, Poulsen PL, Hjorthaug K, Søndergaard E. Positron Emission Tomography Imaging of Pheochromocytoma and Paraganglioma-18F-FDOPA vs Somatostatin Analogues. J Clin Endocrinol Metab 2025; 110:303-316. [PMID: 39468778 DOI: 10.1210/clinem/dgae764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/26/2024] [Indexed: 10/30/2024]
Abstract
CONTEXT Functional imaging with positron emission tomography (PET) scans is an essential part of the diagnostic workup for pheochromocytoma and paraganglioma (PPGL). The purpose of this review is to (1) provide a brief overview of functional imaging for PPGL, (2) summarize selected present and older guideline and review recommendations, and (3) conduct a literature review on the diagnostic performance of the most used PET tracers for PPGL. EVIDENCE ACQUISITION We conducted a systematic literature search in PubMed from January 2004 to August 2024 with the search string ("Pheochromocytoma" OR "Paraganglioma") AND ("Positron Emission Tomography" OR "Radionuclide Imaging" OR ("PET" AND ("FDG" OR "DOTATOC" OR "DOTANOC" OR "DOTATATE" OR "DOPA" OR "FDOPA"))). Studies involving PET scans of at least 20 individuals with PPGL or at least 5 individuals in a rare, well-defined subgroup of PPGL (eg, sympathetic or head-neck paragangliomas and specific pathogenic variants) were included. EVIDENCE SYNTHESIS Seventy studies were identified of which 21 were head-to-head comparisons of at least 2 different PET tracers [18F-fluorodihydroxyphenylalanine, fluorodihydroxyphenylalanine positron emission tomography (18F-FDOPA), 68Ga-DOTA-conjugated somatostatin analogues, 68Ga-DOTA-conjugated somatostatin analogue positron emission tomography (68Ga-SSA), and 18F-fluorodeoxyglucose]. 18F-FDOPA had higher sensitivity for pheochromocytoma compared to 68Ga-SSA and equal sensitivity for metastatic pheochromocytoma. 18F-FDOPA and 68Ga-SSA had similar sensitivity for primary non-succinate dehydrogenase subunits (SDHx) sympathetic and head-neck paraganglioma. However, 68Ga-SSA had higher sensitivity for metastatic sympathetic and head-neck paraganglioma and for SDHx-related paraganglioma. CONCLUSION 18F-FDOPA and 68Ga-SSA PET are both sensitive for localizing PPGL. However, 18F-FDOPA is the most sensitive for detecting pheochromocytoma, while 68Ga-SSA is superior to 18F-FDOPA for metastatic sympathetic and head-neck paraganglioma and SDHx-related paraganglioma.
Collapse
Affiliation(s)
- Andreas Ebbehoj
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| | - Peter Iversen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| | - Stine Kramer
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| | - Kirstine Stochholm
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| | - Per Løgstrup Poulsen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N DK-8200, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| | - Karin Hjorthaug
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| | - Esben Søndergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus N DK-8200, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N DK-8200, Denmark
| |
Collapse
|
2
|
Bian L, Xu J, Li P, Bai L, Song S. Comparison of 68Ga-DOTANOC and 18F-FDOPA PET/CT for Detection of Recurrent or Metastatic Paragangliomas. Radiol Imaging Cancer 2025; 7:e240059. [PMID: 39641622 PMCID: PMC11791669 DOI: 10.1148/rycan.240059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024]
Abstract
Purpose To evaluate the diagnostic performance of gallium 68 (68Ga)-DOTA-NaI3-octreotide (68Ga-DOTANOC) and fluorine 18 (18F)-fluoro-l-3,4-dihydroxyphenylalanine (18F-FDOPA) PET/CT in detecting recurrent or metastatic paragangliomas. Materials and Methods This single-center retrospective study included patients with paragangliomas who underwent both 68Ga-DOTANOC PET/CT and 18F-FDOPA PET/CT between August 2021 and December 2023. The diagnostic performance of these two tracers in detecting recurrent or metastatic tumors was compared using several metrics, including sensitivity, negative predictive value, and accuracy. Results This study included 36 patients (median age, 52 years [range, 14-78 years]; 16 female, 20 male). Of these, nine underwent initial 68Ga-DOTANOC and 18F-FDOPA PET/CT examinations before treatment, and the remaining 27 underwent posttreatment examinations. Twenty-two of those 27 patients had recurrence or metastasis. According to lesion-level analysis, 68Ga-DOTANOC had higher sensitivity, negative predictive value, and accuracy for diagnosis of bone metastases than did 18F-FDOPA PET/CT (97% vs 78% [P < .001], 85% vs 42% [P = .02], and 97% vs 81% [P < .001], respectively). 18F-FDOPA PET/CT had higher sensitivity, negative predictive value, and accuracy for the diagnosis of liver metastases than did 68Ga-DOTANOC PET/CT (73% vs 15% [P < .001], 68% vs 41% [P = .04], and 83% vs 46% [P < .001], respectively). According to patient-level analysis, the sensitivity of 18F-FDOPA PET/CT for diagnosing liver metastases was higher than that of 68Ga-DOTANOC PET/CT (88% vs 25%; P = .04). Conclusion In patients with recurrent or metastatic paragangliomas, 68Ga-DOTANOC PET/CT showed better performance than 18F-FDOPA PET/CT in detecting bone metastases, and 18F-FDOPA PET/CT performed better in detecting liver metastases. Keywords: 68Ga-DOTANOC, 18F-FDOPA, Pheochromocytoma, Paraganglioma Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
| | | | - Panli Li
- From the Department of Nuclear Medicine, Fudan University Shanghai
Cancer Center, 270 Dongan Road, Xuhui District, 200032 Shanghai, China; and
Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai,
China
| | - Liyan Bai
- From the Department of Nuclear Medicine, Fudan University Shanghai
Cancer Center, 270 Dongan Road, Xuhui District, 200032 Shanghai, China; and
Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai,
China
| | - Shaoli Song
- From the Department of Nuclear Medicine, Fudan University Shanghai
Cancer Center, 270 Dongan Road, Xuhui District, 200032 Shanghai, China; and
Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai,
China
| |
Collapse
|
3
|
Mallak N, Yilmaz B, Meyer C, Winters C, Mench A, Jha AK, Prasad V, Mittra E. Theranostics in Neuroendocrine Tumors: Updates and Emerging Technologies. Curr Probl Cancer 2024; 52:101129. [PMID: 39232443 DOI: 10.1016/j.currproblcancer.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/22/2024] [Indexed: 09/06/2024]
Abstract
Advancements in somatostatin receptor (SSTR) targeted imaging and treatment of well-differentiated neuroendocrine tumors (NETs) have revolutionized the management of these tumors. This comprehensive review delves into the current practice, discussing the use of the various FDA-approved SSTR-agonist PET tracers and the predictive imaging biomarkers, and elaborating on Lu177-DOTATATE peptide receptor radionuclide therapy (PRRT) including the evolving areas of post-therapy imaging practices, PRRT retreatment, and the potential role of dosimetry in optimizing patient treatments. The future directions sections highlight ongoing research on investigational PET imaging radiotracers, future prospects in alpha particle therapy, and combination therapy strategies.
Collapse
Affiliation(s)
- Nadine Mallak
- Department of Diagnostic Radiology, Molecular Imaging and Therapy Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Burcak Yilmaz
- Department of Diagnostic Radiology, Molecular Imaging and Therapy Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Catherine Meyer
- Department of Diagnostic Radiology, Medical Physics Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Celeste Winters
- Department of Diagnostic Radiology, Medical Physics Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Anna Mench
- Department of Diagnostic Radiology, Medical Physics Section, Oregon Health & Sciences University, Portland, OR, USA
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Department of Radiology, Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, US
| | - Vikas Prasad
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, US
| | - Erik Mittra
- Department of Diagnostic Radiology, Molecular Imaging and Therapy Section, Oregon Health & Sciences University, Portland, OR, USA.
| |
Collapse
|
4
|
Oldan JD, Pomper MG, Werner RA, Higuchi T, Rowe SP. The cutting edge: Promising oncology radiotracers in clinical development. Diagn Interv Imaging 2024; 105:400-406. [PMID: 38744576 DOI: 10.1016/j.diii.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024]
Abstract
Molecular imaging moves forward with the development of new imaging agents, and among these are new radiotracers for nuclear medicine applications, particularly positron emission tomography (PET). A number of new targets are becoming accessible for use in oncologic applications. In this review, major new radiotracers in clinical development are discussed. Prominent among these is the family of fibroblast-activation protein-targeted agents that interact with the tumor microenvironment and may show superiority to 2-deoxy-2-[18F]fluoro-d-glucose in a subset of different tumor histologies. Additionally, carbonic anhydrase IX (CAIX) inhibitors are directed at clear cell renal cell carcinoma, which has long lacked an effective PET imaging agent. Those CAIX agents may also have utility in hypoxic tumors. Pentixafor, which binds to a transmembrane receptor, may similarly allow for visualization by PET of low-grade lymphomas, as well as being a second agent for multiple myeloma that opens theranostic possibilities. There are new adrenergic agents aimed at providing a PET-visible replacement to the single-photon-emitting radiotracer meta-[123I]iodobenzylguanidine (MIBG). Finally, in response to a major development in oncologic chemotherapy, there are new radiotracers targeted at assessing the suitability or use of immunotherapeutic agents. All of these and the existing evidence for their utility are discussed.
Collapse
Affiliation(s)
- Jorge D Oldan
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Martin G Pomper
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rudolf A Werner
- Goethe University Frankfurt, University Hospital, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, Division of Nuclear Medicine, 60590 Frankfurt, Germany
| | - Takahiro Higuchi
- Department of Radiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Steven P Rowe
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, Chapel Hill, NC 27516, USA.
| |
Collapse
|
5
|
Mori H, Wakabayashi H, Saito S, Nakajima K, Yoshida K, Hiromasa T, Kinuya S. Evaluating the diagnostic efficacy of whole-body MRI versus 123I-mIBG/ 131I-mIBG imaging in metastatic pheochromocytoma and paraganglioma. Sci Rep 2024; 14:13828. [PMID: 38879654 PMCID: PMC11180102 DOI: 10.1038/s41598-024-64607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 06/19/2024] Open
Abstract
This study aimed to compare tumor lesion detectability and diagnostic accuracy of whole-body magnetic resonance imaging (WB-MRI) and radioiodine-labeled meta-iodo-benzylguanidine (mIBG) imaging techniques in patients with metastatic pheochromocytoma and paraganglioma (PPGL). This retrospective study included 13 patients had pheochromocytoma and 5 had paraganglioma, who were all suspected of having metastatic tumors. Each patient underwent WB-MRI and 123I-mIBG as a pretreatment screening for 131I-mIBG therapy. Two expert reviewers evaluated WB-MRI, 123I-mIBG images, and post-therapy 131I-mIBG images for the presence of metastatic lesions in the lungs, bones, liver, lymph nodes, and other organs. Diagnostic measures for detecting metastatic lesions, including sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and receiver operating characteristics (ROC)-area under the curve (AUC), were calculated for each imaging technique. We analyzed WB-MRI images for detecting metastatic lesions, which demonstrated sensitivity, specificity, accuracy, PPV, NPV, and AUC of 82%, 97%, 90%, 96%, 86%, and 0.92, respectively. These values were 83%, 95%, 89%, 94%, 86%, and 0.90 in 123I-mIBG images and 85%, 92%, 89%, 91%, 87%, and 0.91 in post-therapy 131I-mIBG images, respectively. Our results reveal the comparable diagnostic accuracy of WB-MRI to one of the mIBG images.
Collapse
Affiliation(s)
- Hiroshi Mori
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shintaro Saito
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kotaro Yoshida
- Department of Radiology, Kanazawa University Hospital, Kanazawa, Japan
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Wang P, Li T, Zhuang H, Li F, Jing H. 18 F-MFBG PET/CT and MRI in Identifying Brain Metastases in a Posttreatment Neuroblastoma Patient. Clin Nucl Med 2024; 49:600-603. [PMID: 38584349 DOI: 10.1097/rlu.0000000000005224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
ABSTRACT A 7-year-old girl with known brain metastasis from neuroblastoma developed new onset of severe headache. A brain MRI confirmed known metastasis in the right frontal lobe of the brain without new abnormalities. The patient was enrolled in a clinical trial using 18 F-MFBG PET/CT to evaluate patients with neuroblastoma. The images confirmed abnormal activity in the known lesion in the right frontal lobe. In addition, the PET showed additional foci of abnormal activity in the left cerebellopontine region. A follow-up brain MRI study acquired 4 months later revealed abnormal signals in the same region.
Collapse
Affiliation(s)
- Peipei Wang
- From the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Tuo Li
- From the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Hongming Zhuang
- Department of Radiology, Children's Hospital of Philadelphia University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Fang Li
- From the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| | - Hongli Jing
- From the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
| |
Collapse
|
7
|
Else T, Wong KK, Frey KA, Brooks AF, Viglianti BL, Raffel DM. 3-[ 18F]Fluoro- para-hydroxyphenethylguanidine (3-[ 18F]pHPG) PET-A Novel Imaging Modality for Paraganglioma. J Endocr Soc 2024; 8:bvae049. [PMID: 38617812 PMCID: PMC11010306 DOI: 10.1210/jendso/bvae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 04/16/2024] Open
Abstract
Context Functional positron emission tomography (PET) imaging for the characterization of pheochromocytoma and paraganglioma (PCC/PGL) and for detection of metastases in malignant disease, offers valuable clinical insights that can significantly guide patient treatment. Objective This work aimed to evaluate a novel PET radiotracer, 3-[18F]fluoro-para-hydroxyphenethylguanidine (3-[18F]pHPG), a norepinephrine analogue, for its ability to localize PCC/PGL. Methods 3-[18F]pHPG PET/CT whole-body scans were performed on 16 patients (8 male:8 female; mean age 47.6 ± 17.6 years; range, 19-74 years) with pathologically confirmed or clinically diagnosed PCC/PGL. After intravenous administration of 304 to 475 MBq (8.2-12.8 mCi) of 3-[18F]pHPG, whole-body PET scans were performed at 90 minutes in all patients. 3-[18F]pHPG PET was interpreted for abnormal findings consistent with primary tumor or metastasis, and biodistribution in normal organs recorded. Standardized uptake value (SUV) measurements were obtained for target lesions and physiological organ distributions. Results 3-[18F]pHPG PET showed high radiotracer uptake and trapping in primary tumors, and metastatic tumor lesions that included bone, lymph nodes, and other solid organ sites. Physiological biodistribution was universally present in salivary glands (parotid, submandibular, sublingual), thyroid, heart, liver, adrenals, kidneys, and bladder. Comparison [68Ga]DOTATATE PET/CT was available in 10 patients and in all cases showed concordant distribution. Comparison [123I]meta-iodobenzylguanidine [123I]mIBG planar scintigraphy and SPECT/CT scans were available for 4 patients, with 3-[18F]pHPG showing a greater number of metastatic lesions. Conclusion We found the kinetic profile of 3-[18F]pHPG PET affords high activity retention within benign and metastatic PCC/PGL. Therefore, 3-[18F]pHPG PET imaging provides a novel modality for functional imaging and staging of malignant paraganglioma with advantages of high lesion affinity, whole-body coregistered computed tomography, and rapid same-day imaging.
Collapse
Affiliation(s)
- Tobias Else
- Endocrinology, Metabolism, and Diabetes, University of Michigan, Ann Arbor, MI 48109-5674, USA
| | - Ka Kit Wong
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI 48109-0028, USA
| | - Kirk A Frey
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI 48109-0028, USA
| | - Allen F Brooks
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI 48109-0028, USA
| | - Benjamin L Viglianti
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI 48109-0028, USA
| | - David M Raffel
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI 48109-0028, USA
| |
Collapse
|
8
|
He J, Yang L, He L, Zhang W, Guo L. Gastroesophageal Reflux Revealed by 18 F-MFBG PET/CT. Clin Nucl Med 2024; 49:373-374. [PMID: 38350080 DOI: 10.1097/rlu.0000000000005074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
ABSTRACT A 56-year-old woman who had a lung transplant 4 months ago presented frequent vomiting for 1 month. Barium meal and 99m Tc gastroesophageal scintigraphy showed no gastroesophageal reflux. The patient was enrolled in a clinical trial and underwent 18 F-MFBG PET/CT dynamic imaging. At the seventh minute of dynamic imaging, the images revealed reflux from the cardia into the esophagus and reached the oral cavity.
Collapse
Affiliation(s)
- Jian He
- From the Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine
| | - Liqing Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Limeng He
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhang
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| |
Collapse
|
9
|
Wang P, Li T, Liu Z, Jin M, Su Y, Zhang J, Jing H, Zhuang H, Li F. [ 18F]MFBG PET/CT outperforming [ 123I]MIBG SPECT/CT in the evaluation of neuroblastoma. Eur J Nucl Med Mol Imaging 2023; 50:3097-3106. [PMID: 37160439 DOI: 10.1007/s00259-023-06221-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/02/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE Iodine 123 labeled meta-iodobenzylguanidine ([123I]MIBG) scan with SPECT/CT imaging is one of the most commonly used imaging modalities in the evaluation of neuroblastoma. [18F]-meta-fluorobenzylguanidine ([18F]MFBG) is a novel positron emission tomography (PET) tracer which was reported to have a similar biodistribution to [123I]MIBG. However, the experience of using [18F]MFBG PET/CT in the evaluation of patients with neuroblastoma is limited. This preliminary investigation aims to assess the efficacy of [18F]MFBG PET/CT in the evaluation of neuroblastomas in comparison to [123I]MIBG scans with SPECT/CT. MATERIALS AND METHODS In this prospective, single-center study, 40 participants (mean age 6.0 ± 3.7 years) with history of neuroblastoma were enrolled. All children underwent both [123I]MIBG SPECT/CT and [18F]MFBG PET/CT studies. The number of lesions and the Curie scores revealed by each imaging method were recorded. RESULTS Six patients had negative findings on both [123I]MIBG and [18F]MFBG studies. Four of the 34 patients (11.8%) were negative on [123I]MIBG but positive on [18F]MFBG, while 30 patients were positive on both [123I]MIBG and [18F]MFBG studies. In these 34 patients, [18F]MFBG PET/CT identified 784 lesions while [123I]MIBG SPECT/CT detected 532 lesions (p < 0.001). The Curie scores obtained from [18F]MFBG PET/CT (11.32 ± 8.18, range 1-27) were statistically higher (p < 0.001) than those from [123I]MIBG SPECT/CT (7.74 ± 7.52, range 0-26). 30 of 34 patients (88.2%) with active disease on imaging had higher Curie scores based on the [18F]MFBG study than on the [123I]MIBG imaging. CONCLUSION [18F]MFBG PET/CT shows higher lesion detection rate than [123I]MIBG SPECT/CT in the evaluation of pediatric patients with neuroblastoma. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov : NCT05069220 (Registered: 25 September 2021, retrospectively registered); Institute Review Board of Peking Union Medical College Hospital: ZS-2514.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China
| | - Tuo Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China
| | - Zhikai Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, People's Republic of China
| | - Mei Jin
- Department of Medical Oncology, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yan Su
- Department of Medical Oncology, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China.
| | - Jingjing Zhang
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hongli Jing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China.
| | - Hongming Zhuang
- Department of Radiology, Children's Hospital of Philadelphia University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Wang P, Li T, Li F, Zhang J, Jing H. Bladder paraganglioma detection with [ 18F]MFBG PET/CT: a superior alternative to [ 68Ga]Ga-DOTATATE. Eur J Nucl Med Mol Imaging 2023; 50:3147-3148. [PMID: 37086274 DOI: 10.1007/s00259-023-06233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Affiliation(s)
- Peipei Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tuo Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China
| | - Jingjing Zhang
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Diagnostic Radiology, National University of Singapore, Singapore, Singapore.
| | - Hongli Jing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China.
| |
Collapse
|
11
|
Wei F, Wu B, Ling X, Gong J, Xu H. Comparison of 18 F-FDOPA and 18 F-MFBG PET/CT Images of Metastatic Pheochromocytoma. Clin Nucl Med 2023; 48:638-639. [PMID: 37083830 DOI: 10.1097/rlu.0000000000004664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
ABSTRACT A 30-year-old man with pheochromocytoma was hospitalized for hemoptysis without inducement. CT revealed a mass in the left lung, and biopsy pathology under the bronchoscope suggested that it was a pheochromocytoma metastasis. To further identify the location of the metastatic lesions, the patient was enrolled in a clinical trial and underwent 18 F-FDOPA and 18 F-MFBG PET/CT. Images from both examinations showed similar lesions. However, the lesions differed in that the uptake of some lesions was significantly higher with 18 F-FDOPA than with 18 F-MFBG, whereas the para-aortic lesion was active in 18 F-MFBG but not in 18 F-FDOPA.
Collapse
Affiliation(s)
- Feng Wei
- From the Department of Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | | | | | | | | |
Collapse
|
12
|
Feng L, Li S, Wang C, Yang J. Current Status and Future Perspective on Molecular Imaging and Treatment of Neuroblastoma. Semin Nucl Med 2023; 53:517-529. [PMID: 36682980 DOI: 10.1053/j.semnuclmed.2022.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 01/22/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor in children and arises from anywhere along the sympathetic nervous system. It is a highly heterogeneous disease with a wide range of prognosis, from spontaneous regression or maturing to highly aggressive. About half of pediatric neuroblastoma patients develop the metastatic disease at diagnosis, which carries a poor prognosis. Nuclear medicine plays a pivotal role in the diagnosis, staging, response assessment, and long-term follow-up of neuroblastoma. And it has also played a prominent role in the treatment of neuroblastoma. Because the structure of metaiodobenzylguanidine (MIBG) is similar to that of norepinephrine, 90% of neuroblastomas are MIBG-avid. 123I-MIBG whole-body scintigraphy is the standard nuclear imaging technique for neuroblastoma, usually in combination with SPECT/CT. However, approximately 10% of neuroblastomas are MIBG nonavid. PET imaging has many technical advantages over SPECT imaging, such as higher spatial and temporal resolution, higher sensitivity, superior quantitative capability, and whole-body tomographic imaging. In recent years, various tracers have been used for imaging neuroblastoma with PET. The importance of patient-specific targeted radionuclide therapy for neuroblastoma therapy has also increased. 131I-MIBG therapy is part of the front-line treatment for children with high-risk neuroblastoma. And peptide receptor radionuclide therapy with radionuclide-labeled somatostatin analogues has been successfully used in the therapy of neuroblastoma. Moreover, radioimmunoimaging has important applications in the diagnosis of neuroblastoma, and radioimmunotherapy may provide a novel treatment modality against neuroblastoma. This review discusses the use of current and novel radiopharmaceuticals in nuclear medicine imaging and therapy of neuroblastoma.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Siqi Li
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chaoran Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Suurd DPD, Poot AJ, van Leeuwaarde RS, Windhorst AD, Vriens MR, de Keizer B. [ 18F]mFBG PET/CT imaging outperforms MRI and [ 68 Ga]Ga-DOTA-TOC PET/CT in identifying recurrence pheochromocytoma. Eur J Nucl Med Mol Imaging 2023; 50:1538-1540. [PMID: 36517705 DOI: 10.1007/s00259-022-06064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Diederik P D Suurd
- Department of Surgical Oncology and Endocrine Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alex J Poot
- Department of Nuclear Medicine and Radiology, University Medical Center Utrecht, Room Q 01.4.309, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Rachel S van Leeuwaarde
- Department of Endocrine Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Menno R Vriens
- Department of Surgical Oncology and Endocrine Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bart de Keizer
- Department of Nuclear Medicine and Radiology, University Medical Center Utrecht, Room Q 01.4.309, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.
| |
Collapse
|
14
|
Filippi L, Schillaci O. Something old has become new: PET imaging of neural-crest tumors with [18F]-meta-fluorobenzylguanidine. Clin Transl Imaging 2023. [DOI: 10.1007/s40336-023-00551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|