1
|
Afonso M, Brito MA. Therapeutic Options in Neuro-Oncology. Int J Mol Sci 2022; 23:5351. [PMID: 35628161 PMCID: PMC9140894 DOI: 10.3390/ijms23105351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
One of the biggest challenges in neuro-oncology is understanding the complexity of central nervous system tumors, such as gliomas, in order to develop suitable therapeutics. Conventional therapies in malignant gliomas reconcile surgery and radiotherapy with the use of chemotherapeutic options such as temozolomide, chloroethyl nitrosoureas and the combination therapy of procarbazine, lomustine and vincristine. With the unraveling of deregulated cancer cell signaling pathways, targeted therapies have been developed. The most affected signaling pathways in glioma cells involve tyrosine kinase receptors and their downstream pathways, such as the phosphatidylinositol 3-kinases (PI3K/AKT/mTOR) and mitogen-activated protein kinase pathways (MAPK). MAPK pathway inhibitors include farnesyl transferase inhibitors, Ras kinase inhibitors and mitogen-activated protein extracellular regulated kinase (MEK) inhibitors, while PI3K/AKT/mTOR pathway inhibitors are divided into pan-inhibitors, PI3K/mTOR dual inhibitors and AKT inhibitors. The relevance of the immune system in carcinogenesis has led to the development of immunotherapy, through vaccination, blocking of immune checkpoints, oncolytic viruses, and adoptive immunotherapy using chimeric antigen receptor T cells. In this article we provide a comprehensive review of the signaling pathways underlying malignant transformation, the therapies currently used in the treatment of malignant gliomas and further explore therapies under development, including several ongoing clinical trials.
Collapse
Affiliation(s)
- Mariana Afonso
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Maria Alexandra Brito
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
- Research Institute for Medicines (iMed), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
3
|
AlRayahi J, Zapotocky M, Ramaswamy V, Hanagandi P, Branson H, Mubarak W, Raybaud C, Laughlin S. Pediatric Brain Tumor Genetics: What Radiologists Need to Know. Radiographics 2019; 38:2102-2122. [PMID: 30422762 DOI: 10.1148/rg.2018180109] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain tumors are the most common solid tumors in the pediatric population. Pediatric neuro-oncology has changed tremendously during the past decade owing to ongoing genomic advances. The diagnosis, prognosis, and treatment of pediatric brain tumors are now highly reliant on the genetic profile and histopathologic features of the tumor rather than the histopathologic features alone, which previously were the reference standard. The clinical information expected to be gleaned from radiologic interpretations also has evolved. Imaging is now expected to not only lead to a relevant short differential diagnosis but in certain instances also aid in predicting the specific tumor and subtype and possibly the prognosis. These processes fall under the umbrella of radiogenomics. Therefore, to continue to actively participate in patient care and/or radiogenomic research, it is important that radiologists have a basic understanding of the molecular mechanisms of common pediatric central nervous system tumors. The genetic features of pediatric low-grade gliomas, high-grade gliomas, medulloblastomas, and ependymomas are reviewed; differences between pediatric and adult gliomas are highlighted; and the critical oncogenic pathways of each tumor group are described. The role of the mitogen-activated protein kinase pathway in pediatric low-grade gliomas and of histone mutations as epigenetic regulators in pediatric high-grade gliomas is emphasized. In addition, the oncogenic drivers responsible for medulloblastoma, the classification of ependymomas, and the associated imaging correlations and clinical implications are discussed. ©RSNA, 2018.
Collapse
Affiliation(s)
- Jehan AlRayahi
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Michal Zapotocky
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Vijay Ramaswamy
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Prasad Hanagandi
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Helen Branson
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Walid Mubarak
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Charles Raybaud
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| | - Suzanne Laughlin
- From the Departments of Diagnostic Imaging (J.A., W.M.), Neurooncology (M.Z., V.R.), and Pediatric Neuroradiology (H.B., C.R., S.L.), The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada M5G 1X8; and Departments of Diagnostic Imaging (J.A., P.H.) and Pediatric Interventional Radiology (W.M.), Sidra Medical and Research Center, Doha, Ad Dawhah, Qatar
| |
Collapse
|
4
|
Khan IN, Ullah N, Hussein D, Saini KS. Current and emerging biomarkers in tumors of the central nervous system: Possible diagnostic, prognostic and therapeutic applications. Semin Cancer Biol 2018; 52:85-102. [PMID: 28774835 DOI: 10.1016/j.semcancer.2017.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Ishaq N Khan
- PK-Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Najeeb Ullah
- Department of Anatomy, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan.
| | - Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Kulvinder S Saini
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh 173101, India.
| |
Collapse
|