1
|
Foroughi AA, Rahmani A, Borazjani R, Nazeri M, Zeinali-Rafsanjani B, Khalili H. Temporal changes in extra-axial brain hematoma's signal intensity in magnetic resonance images of trauma patients: A preliminary, technical study. J Forensic Leg Med 2021; 85:102296. [PMID: 34896891 DOI: 10.1016/j.jflm.2021.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Dating the exact or estimated time of trauma is an important issue facing forensic medicine. Several clinical and radiological methods were used to achieve this purpose. In the recent study, we aimed to track the changes in the signal intensity of the extra-axial brain hematoma using magnetic resonance imaging (MRI) conventional sequences as well as diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC). MATERIALS AND METHODS Considering inclusion and exclusion criteria, all patients with blunt head trauma were involved. After proper management., stabilization, and resuscitation, the participants were assessed using conventional sequences of MRI and DWI twenty-four hours, forty-eight hours, and three weeks after the injury. Temporal changes of signal intensity were compared by Wilcoxon ranged test. RESULTS Sixteen patients sustaining blunt head trauma were included in this study. The study showed that during the time, diffusion restriction could be seen in an extraaxial hematoma. At the first 24 hours, the signal of hematoma was void in 87.5% of DWI and 100% of ADC. On the second day, they were hypo-signal in 75% of DWI and 100% 0f ADCs, and after three weeks, 100% of cases were hyper-signal in DWI and hypo-signal ADCs. CONCLUSION This preliminary study has shown that the DWI can be used to detect and track the extra-axial hematoma. The signal intensity was void during the first twentyfour hours, although it became hypo-signal after 48 hours. Of note, the diffusion restriction is noted after three weeks.
Collapse
Affiliation(s)
- Amin Abolhasani Foroughi
- Epilepsy Research Center,Shiraz University of Medical Sciences, Shiraz, Iran; Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Rahmani
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Roham Borazjani
- Trauma Research Center, Shahid Rajaee Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Masoume Nazeri
- Epilepsy Research Center,Shiraz University of Medical Sciences, Shiraz, Iran; Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Hosseinali Khalili
- Trauma Research Center, Shahid Rajaee Trauma Hospital, Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
The diffusion-tensor imaging reveals alterations in water diffusion parameters in acute pediatric concussion. Acta Neurol Belg 2021; 121:1463-1468. [PMID: 32246319 DOI: 10.1007/s13760-020-01347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Wide-spread visualization methods which are computed tomography (CT) and magnetic resonance imaging (MRI) are not sensitive to mild traumatic brain injury (mTBI). However, mTBI may cause changes of cerebral microstructure that could be found using diffusion-tensor imaging. The aim of this study is to reveal the impact of acute mTBI (no more than 3 days after trauma) on diffusion parameters in corpus callosum, corticospinal tract, and thalamus in children (aged 14-18). Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were analyzed. Significant increase in FA and decrease in ADC were observed in thalamus. The trend to an increase in FA is observed in corpus callosum.
Collapse
|
3
|
Beitchman JA, Griffiths DR, Hur Y, Ogle SB, Bromberg CE, Morrison HW, Lifshitz J, Adelson PD, Thomas TC. Experimental Traumatic Brain Injury Induces Chronic Glutamatergic Dysfunction in Amygdala Circuitry Known to Regulate Anxiety-Like Behavior. Front Neurosci 2020; 13:1434. [PMID: 32038140 PMCID: PMC6985437 DOI: 10.3389/fnins.2019.01434] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
Up to 50% of traumatic brain injury (TBI) survivors demonstrate persisting and late-onset anxiety disorders indicative of limbic system dysregulation, yet the pathophysiology underlying the symptoms is unclear. We hypothesize that the development of TBI-induced anxiety-like behavior in an experimental model of TBI is mediated by changes in glutamate neurotransmission within the amygdala. Adult, male Sprague-Dawley rats underwent midline fluid percussion injury or sham surgery. Anxiety-like behavior was assessed at 7 and 28 days post-injury (DPI) followed by assessment of real-time glutamate neurotransmission in the basolateral amygdala (BLA) and central nucleus of the amygdala (CeA) using glutamate-selective microelectrode arrays. The expression of anxiety-like behavior at 28 DPI coincided with decreased evoked glutamate release and slower glutamate clearance in the CeA, not BLA. Numerous factors contribute to the changes in glutamate neurotransmission over time. In two additional animal cohorts, protein levels of glutamatergic transporters (Glt-1 and GLAST) and presynaptic modulators of glutamate release (mGluR2, TrkB, BDNF, and glucocorticoid receptors) were quantified using automated capillary western techniques at 28 DPI. Astrocytosis and microglial activation have been shown to drive maladaptive glutamate signaling and were histologically assessed over 28 DPI. Alterations in glutamate neurotransmission could not be explained by changes in protein levels for glutamate transporters, mGluR2 receptors, astrocytosis, and microglial activation. Presynaptic modulators, BDNF and TrkB, were significantly decreased at 28 DPI in the amygdala. Dysfunction in presynaptic regulation of glutamate neurotransmission may contribute to anxiety-related behavior and serve as a therapeutic target to improve circuit function.
Collapse
Affiliation(s)
- Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Daniel R Griffiths
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Yerin Hur
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Sarah B Ogle
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Banner University Medical Center, Phoenix, AZ, United States
| | - Caitlin E Bromberg
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix VA Health Care System, Phoenix, AZ, United States
| | - P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix VA Health Care System, Phoenix, AZ, United States
| |
Collapse
|
4
|
Minaee S, Wang Y, Aygar A, Chung S, Wang X, Lui YW, Fieremans E, Flanagan S, Rath J. MTBI Identification From Diffusion MR Images Using Bag of Adversarial Visual Features. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2545-2555. [PMID: 30892204 PMCID: PMC6751027 DOI: 10.1109/tmi.2019.2905917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this paper, we propose bag of adversarial features (BAFs) for identifying mild traumatic brain injury (MTBI) patients from their diffusion magnetic resonance images (MRIs) (obtained within one month of injury) by incorporating unsupervised feature learning techniques. MTBI is a growing public health problem with an estimated incidence of over 1.7 million people annually in USA. Diagnosis is based on clinical history and symptoms, and accurate, concrete measures of injury are lacking. Unlike most of the previous works, which use hand-crafted features extracted from different parts of brain for MTBI classification, we employ feature learning algorithms to learn more discriminative representation for this task. A major challenge in this field thus far is the relatively small number of subjects available for training. This makes it difficult to use an end-to-end convolutional neural network to directly classify a subject from MRIs. To overcome this challenge, we first apply an adversarial auto-encoder (with convolutional structure) to learn patch-level features, from overlapping image patches extracted from different brain regions. We then aggregate these features through a bag-of-words approach. We perform an extensive experimental study on a dataset of 227 subjects (including 109 MTBI patients, and 118 age and sex-matched healthy controls) and compare the bag-of-deep-features with several previous approaches. Our experimental results show that the BAF significantly outperforms earlier works relying on the mean values of MR metrics in selected brain regions.
Collapse
|
5
|
Ye M, Solarana K, Rafi H, Patel S, Nabili M, Liu Y, Huang S, Fisher JAN, Krauthamer V, Myers M, Welle C. Longitudinal Functional Assessment of Brain Injury Induced by High-Intensity Ultrasound Pulse Sequences. Sci Rep 2019; 9:15518. [PMID: 31664091 PMCID: PMC6820547 DOI: 10.1038/s41598-019-51876-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/09/2019] [Indexed: 01/02/2023] Open
Abstract
Exposure of the brain to high-intensity stress waves creates the potential for long-term functional deficits not related to thermal or cavitational damage. Possible sources of such exposure include overpressure from blast explosions or high-intensity focused ultrasound (HIFU). While current ultrasound clinical protocols do not normally produce long-term neurological deficits, the rapid expansion of potential therapeutic applications and ultrasound pulse-train protocols highlights the importance of establishing a safety envelope beyond which therapeutic ultrasound can cause neurological deficits not detectable by standard histological assessment for thermal and cavitational damage. In this study, we assessed the neuroinflammatory response, behavioral effects, and brain micro-electrocorticographic (µECoG) signals in mice following exposure to a train of transcranial pulses above normal clinical parameters. We found that the HIFU exposure induced a mild regional neuroinflammation not localized to the primary focal site, and impaired locomotor and exploratory behavior for up to 1 month post-exposure. In addition, low frequency (δ) and high frequency (β, γ) oscillations recorded by ECoG were altered at acute and chronic time points following HIFU application. ECoG signal changes on the hemisphere ipsilateral to HIFU exposure are of greater magnitude than the contralateral hemisphere, and persist for up to three months. These results are useful for describing the upper limit of transcranial ultrasound protocols, and the neurological sequelae of injury induced by high-intensity stress waves.
Collapse
Affiliation(s)
- Meijun Ye
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.
| | - Krystyna Solarana
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Harmain Rafi
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Shyama Patel
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
- Division of Neurological and Physical Medicine Devices, Office of Device Evaluation, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Marjan Nabili
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
- Division of Radiological Health, Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Yunbo Liu
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Jonathan A N Fisher
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| | - Victor Krauthamer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Matthew Myers
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Cristin Welle
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA.
- Departments of Neurosurgery and Physiology & Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Kundu S, Ghodadra A, Fakhran S, Alhilali LM, Rohde GK. Assessing Postconcussive Reaction Time Using Transport-Based Morphometry of Diffusion Tensor Images. AJNR Am J Neuroradiol 2019; 40:1117-1123. [PMID: 31196860 DOI: 10.3174/ajnr.a6087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/27/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE Cognitive deficits are among the most commonly reported post-concussive symptoms, yet the underlying microstructural injury is poorly understood. Our aim was to discover white matter injury underlying reaction time in mild traumatic brain injury DTI by applying transport-based morphometry. MATERIALS AND METHODS In this retrospective study, we performed DTI on 64 postconcussive patients (10-28 years of age; 69% male, 31% female) between January 2006 and March 2013. We measured the reaction time percentile by using Immediate Post-Concussion Assessment and Cognitive Testing. Using the 3D transport-based morphometry technique we developed, we mined fractional anisotropy maps to extract the common microstructural injury associated with reaction time percentile in an automated manner. Permutation testing established statistical significance of the extracted injuries. We visualized the physical substrate responsible for reaction time through inverse transport-based morphometry transformation. RESULTS The direction in the transport space most correlated with reaction time was significant after correcting for covariates of age, sex, and time from injury (Pearson r = 0.44, P < .01). Inverting the computed direction using transport-based morphometry illustrates physical shifts in fractional anisotropy in the corpus callosum (increase) and within the optic radiations, corticospinal tracts, and anterior thalamic radiations (decrease) with declining reaction time. The observed shifts are consistent with biologic pathways underlying the visual-spatial interpretation and response-selection aspects of reaction time. CONCLUSIONS Transport-based morphometry discovers complex white matter injury underlying postconcussive reaction time in an automated manner. The potential influences of edema and axonal loss are visualized in the visual-spatial interpretation and response-selection pathways. Transport-based morphometry can bridge the gap between brain microstructure and function in diseases in which the structural basis is unknown.
Collapse
Affiliation(s)
- S Kundu
- Department of Biomedical Engineering at Carnegie Mellon University and Medical Scientist Training Program (S.K.), University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - A Ghodadra
- Department of Radiology (A.G.), Banner Health and Hospital Systems, Mesa, Arizona
| | - S Fakhran
- Department of Neuroradiology (S.F.), Barrow Neurological Institute, Phoenix, Arizona
| | - L M Alhilali
- From the Department of Biomedical Engineering, Electrical and Computer Engineering (G.K.R.), University of Virginia, Charlottesville, Virginia
| | - G K Rohde
- From the Department of Biomedical Engineering, Electrical and Computer Engineering (G.K.R.), University of Virginia, Charlottesville, Virginia
| |
Collapse
|
7
|
Thomas TC, Stockhausen EM, Law LM, Khodadad A, Lifshitz J. Rehabilitation modality and onset differentially influence whisker sensory hypersensitivity after diffuse traumatic brain injury in the rat. Restor Neurol Neurosci 2018; 35:611-629. [PMID: 29036852 DOI: 10.3233/rnn-170753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND As rehabilitation strategies advance as therapeutic interventions, the modality and onset of rehabilitation after traumatic brain injury (TBI) are critical to optimize treatment. Our laboratory has detected and characterized a late-onset, long-lasting sensory hypersensitivity to whisker stimulation in diffuse brain-injured rats; a deficit that is comparable to visual or auditory sensory hypersensitivity in humans with an acquired brain injury. OBJECTIVE We hypothesize that the modality and onset of rehabilitation therapies will differentially influence sensory hypersensitivity in response to the Whisker Nuisance Task (WNT) as well as WNT-induced corticosterone (CORT) stress response in diffuse brain-injured rats and shams. METHODS After midline fluid percussion brain injury (FPI) or sham surgery, rats were assigned to one of four rehabilitative interventions: (1) whisker sensory deprivation during week one or (2) week two or (3) whisker stimulation during week one or (4) week two. At 28 days following FPI and sham procedures, sensory hypersensitivity was assessed using the WNT. Plasma CORT was evaluated immediately following the WNT (aggravated levels) and prior to the pre-determined endpoint 24 hours later (non-aggravated levels). RESULTS Deprivation therapy during week two elicited significantly greater sensory hypersensitivity to the WNT compared to week one (p < 0.05), and aggravated CORT levels in FPI rats were significantly lower than sham levels. Stimulation therapy during week one resulted in low levels of sensory hypersensitivity to the WNT, similar to deprivation therapy and naïve controls, however, non-aggravated CORT levels in FPI rats were significantly higher than sham. CONCLUSION These data indicate that modality and onset of sensory rehabilitation can differentially influence FPI and sham rats, having a lasting impact on behavioral and stress responses to the WNT, emphasizing the necessity for continued evaluation of modality and onset of rehabilitation after TBI.
Collapse
Affiliation(s)
- Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital - Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, AZ, USA.,Phoenix VA Healthcare System - Phoenix, AZ, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center - Lexington, KY, USA
| | - Ellen Magee Stockhausen
- Core Medical Group, Manchester, NH, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center - Lexington, KY, USA
| | - L Matthew Law
- Barrow Neurological Institute at Phoenix Children's Hospital - Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, AZ, USA
| | - Aida Khodadad
- Barrow Neurological Institute at Phoenix Children's Hospital - Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, AZ, USA
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital - Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine - Phoenix, AZ, USA.,Phoenix VA Healthcare System - Phoenix, AZ, USA.,Neuroscience Program, Arizona State University - Tempe, AZ, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center - Lexington, KY, USA
| |
Collapse
|
8
|
Preliminary Study of Diffusion Kurtosis Imaging in Mild Traumatic Brain Injury. IRANIAN JOURNAL OF RADIOLOGY 2018. [DOI: 10.5812/iranjradiol.56115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
|
10
|
de la Tremblaye PB, O'Neil DA, LaPorte MJ, Cheng JP, Beitchman JA, Thomas TC, Bondi CO, Kline AE. Elucidating opportunities and pitfalls in the treatment of experimental traumatic brain injury to optimize and facilitate clinical translation. Neurosci Biobehav Rev 2018; 85:160-175. [PMID: 28576511 PMCID: PMC5709241 DOI: 10.1016/j.neubiorev.2017.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
The aim of this review is to discuss the research presented in a symposium entitled "Current progress in characterizing therapeutic strategies and challenges in experimental CNS injury" which was presented at the 2016 International Behavioral Neuroscience Society annual meeting. Herein we discuss diffuse and focal traumatic brain injury (TBI) and ensuing chronic behavioral deficits as well as potential rehabilitative approaches. We also discuss the effects of stress on executive function after TBI as well as the response of the endocrine system and regulatory feedback mechanisms. The role of the endocannabinoids after CNS injury is also discussed. Finally, we conclude with a discussion of antipsychotic and antiepileptic drugs, which are provided to control TBI-induced agitation and seizures, respectively. The review consists predominantly of published data.
Collapse
Affiliation(s)
- Patricia B de la Tremblaye
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Darik A O'Neil
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan J LaPorte
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jeffrey P Cheng
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua A Beitchman
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Midwestern University, Glendale, AZ, United States
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, United States; Phoenix VA Healthcare System, Phoenix, AZ, United States
| | - Corina O Bondi
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony E Kline
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
11
|
Longitudinal hippocampal and extra-hippocampal microstructural and macrostructural changes following temporal lobe epilepsy surgery. Epilepsy Res 2018; 140:128-137. [DOI: 10.1016/j.eplepsyres.2018.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/17/2017] [Accepted: 01/04/2018] [Indexed: 11/23/2022]
|
12
|
Does time heal all wounds? Experimental diffuse traumatic brain injury results in persisting histopathology in the thalamus. Behav Brain Res 2016; 340:137-146. [PMID: 28042008 DOI: 10.1016/j.bbr.2016.12.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Thalamic dysfunction has been implicated in overall chronic neurological dysfunction after traumatic brain injury (TBI), however little is known about the underlying histopathology. In experimental diffuse TBI (dTBI), we hypothesize that persisting histopathological changes in the ventral posteromedial (VPM) nucleus of the thalamus is indicative of progressive circuit reorganization. Since circuit reorganization in the VPM impacts the whisker sensory system, the histopathology could explain the development of hypersensitivity to whisker stimulation by 28days post-injury; similar to light and sound hypersensitivity in human TBI survivors. METHODS Adult, male Sprague-Dawley rats underwent craniotomy and midline fluid percussion injury (FPI) (moderate severity; 1.8-2.0atm) or sham surgery. At 1d, 7d, and 28days post-FPI (d FPI) separate experiments confirmed the cytoarchitecture (Giemsa stain) and evaluated neuropathology (silver stain), activated astrocytes (GFAP), neuron morphology (Golgi stain) and microglial morphology (Iba-1) in the VPM. RESULTS Cytoarchitecture was unchanged throughout the time course, similar to previously published data; however, neuropathology and astrocyte activation were significantly increased at 7d and 28d and activated microglia were present at all time points. Neuron morphology was dynamic over the time course with decreased dendritic complexity (fewer branch points; decreased length of processes) at 7d FPI and return to sham values by 28d FPI. CONCLUSIONS These data indicate that dTBI results in persisting thalamic histopathology out to a chronic time point. While these changes can be indicative of either adaptive (recovery) or maladaptive (neurological dysfunction) circuit reorganization, they also provide a potential mechanism by which maladaptive circuit reorganization could contribute to the development of chronic neurological dysfunction. Understanding the processes that mediate circuit reorganization is critical to the development of future therapies for TBI patients.
Collapse
|
13
|
Hyper-connectivity of the thalamus during early stages following mild traumatic brain injury. Brain Imaging Behav 2016; 9:550-63. [PMID: 26153468 DOI: 10.1007/s11682-015-9424-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The thalamo-cortical resting state functional connectivity of seven sub-thalamic regions were examined in a prospectively recruited population of 77 acute mild TBI (mTBI) patients within the first 10 days (mean 6 ± 3 days) of injury and 35 neurologically intact control subjects using the Oxford thalamic connectivity atlas. Neuropsychological assessments were conducted using the Automated Neuropsychological Assessment Metrics (ANAM). A subset of participants received a magentic resonance spectroscopy (MRS) exam to determine metabolite concentrations in the thalamus and the posterior cingulate cortex. Results show that patients performed worse than the control group on various subtests of ANAM and the weighted throughput score, suggesting reduced cognitive performance at this early stage of injury. Both voxel and region of interest based analysis of the resting state fMRI data demonstrated that acute mTBI patients have increased functional connectivity between the various sub-thalamic regions and cortical regions associated with sensory processing and the default mode network (DMN). In addition, a significant reduction in NAA/Cr was observed in the thalamus in the mTBI patients. Furthermore, an increase in Cho/Cr ratio specific to mTBI patients with self-reported sensory symptoms was observed compared to those without self-reported sensory symptoms. These results provide novel insights into the neural mechanisms of the brain state related to internal rumination and arousal, which have implications for new interventions for mTBI patients with persistent symptoms. Furthermore, an understanding of heightened sensitivity to sensory related inputs during early stages of injury may facilitate enhanced prediction of safe return to work.
Collapse
|
14
|
Veeramuthu V, Hariri F, Narayanan V, Tan LK, Ramli N, Ganesan D. Microstructural Change and Cognitive Alteration in Maxillofacial Trauma and Mild Traumatic Brain Injury: A Diffusion Tensor Imaging Study. J Oral Maxillofac Surg 2016; 74:1197.e1-1197.e10. [DOI: 10.1016/j.joms.2016.01.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 01/14/2023]
|
15
|
Fink AZ, Mogil LB, Lipton ML. Advanced neuroimaging in the clinic: critical appraisal of the evidence base. Br J Radiol 2016; 89:20150753. [PMID: 27074623 DOI: 10.1259/bjr.20150753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The shortage of high-quality systematic reviews in the field of radiology limits evidence-based integration of imaging methods into clinical practice and may perpetuate misconceptions regarding the efficacy and appropriateness of imaging techniques for specific applications. Diffusion tensor imaging for patients with mild traumatic brain injury (DTI-mTBI) and dynamic susceptibility contrast MRI for patients with glioma (DSC-glioma) are applications of quantitative neuroimaging, which similarly detect manifestations of disease where conventional neuroimaging techniques cannot. We performed a critical appraisal of reviews, based on the current evidence-based medicine methodology, addressing the ability of DTI-mTBI and DSC-glioma to (a) detect brain abnormalities and/or (b) predict clinical outcomes. 23 reviews of DTI-mTBI and 26 reviews of DSC-glioma met criteria for inclusion. All reviews addressed detection of brain abnormalities, whereas 12 DTI-mTBI reviews and 22 DSC-glioma reviews addressed prediction of a clinical outcome. All reviews were assessed using a critical appraisal worksheet consisting of 19 yes/no questions. Reviews were graded according to the total number of positive responses and the 2011 Oxford Centre for evidence-based medicine levels of evidence criteria. Reviews addressing DTI-mTBI detection had moderate quality, while those addressing DSC-glioma were of low quality. Reviews addressing prediction of outcomes for both applications were of low quality. Five DTI-mTBI reviews, but only one review of DSC-glioma met criteria for classification as a meta-analysis/systematic/quantitative review.
Collapse
Affiliation(s)
- Adam Z Fink
- 1 The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lisa B Mogil
- 1 The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,2 SUNY Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Michael L Lipton
- 1 The Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,3 Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.,4 The Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.,5 Department of Radiology, Montefiore Medical Center, Bronx, NY, USA.,6 Departments of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Abstract
There is growing alarm in the United States about an epidemiologically large occurrence of mild traumatic brain injury with serious long lasting consequences. Although conventional imaging has been unable to identify damage capable of explaining its organic origin or discerning patients at risk of developing long-term or permanently disabling neurological impairment, most disease models assume that diffuse axonal injury in white matter must be present but is difficult to resolve. The few histopathological investigations conducted, however, show only limited evidence of such damage, which cannot account for the stereotypical globalized nature of symptoms generally reported in patients. This review examines recent proposals that in addition to white matter, the thalamus may be another important further site of injury. Although its possible role still remains largely under-investigated, evidence from experimental human and animal models, as well as simulational and analytical representations of mild head injury and other related conditions, suggest that this strategically vital region of the brain, which has reciprocal projections to the entire cerebral cortex, could feasibly play an important role in understanding pathology and predicting outcome.
Collapse
Affiliation(s)
- Elan J Grossman
- 1 Department of Radiology, New York University School of Medicine , New York, New York.,2 Department of Physiology and Neuroscience, New York University School of Medicine , New York, New York
| | - Matilde Inglese
- 3 Department of Neurology, Radiology, and Neuroscience, Mount Sinai School of Medicine , New York, New York
| |
Collapse
|
17
|
Veeramuthu V, Narayanan V, Kuo TL, Delano-Wood L, Chinna K, Bondi MW, Waran V, Ganesan D, Ramli N. Diffusion Tensor Imaging Parameters in Mild Traumatic Brain Injury and Its Correlation with Early Neuropsychological Impairment: A Longitudinal Study. J Neurotrauma 2015; 32:1497-509. [PMID: 25952562 PMCID: PMC4589266 DOI: 10.1089/neu.2014.3750] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We explored the prognostic value of diffusion tensor imaging (DTI) parameters of selected white matter (WM) tracts in predicting neuropsychological outcome, both at baseline and 6 months later, among well-characterized patients diagnosed with mild traumatic brain injury (mTBI). Sixty-one patients with mTBI (mean age=27.08; standard deviation [SD], 8.55) underwent scanning at an average of 10 h (SD, 4.26) post-trauma along with assessment of their neuropsychological performance at an average of 4.35 h (SD, 7.08) upon full Glasgow Coma Scale recovery. Results were then compared to 19 healthy control participants (mean age=29.05; SD, 5.84), both in the acute stage and 6 months post-trauma. DTI and neuropsychological measures between acute and chronic phases were compared, and significant differences emerged. Specifically, chronic-phase fractional anisotropy and radial diffusivity values showed significant group differences in the corona radiata, anterior limb of internal capsule, cingulum, superior longitudinal fasciculus, optic radiation, and genu of corpus callosum. Findings also demonstrated associations between DTI indices and neuropsychological outcome across two time points. Our results provide new evidence for the use of DTI as an imaging biomarker and indicator of WM damage occurring in the context of mTBI, and they underscore the dynamic nature of brain injury and possible biological basis of chronic neurocognitive alterations.
Collapse
Affiliation(s)
- Vigneswaran Veeramuthu
- 1 Division of Neurosurgery, Department of Surgery, University of Malaya , Kuala Lumpur, Malaysia
| | - Vairavan Narayanan
- 1 Division of Neurosurgery, Department of Surgery, University of Malaya , Kuala Lumpur, Malaysia
| | - Tan Li Kuo
- 2 University Malaya Research Imaging Center, University of Malaya , Kuala Lumpur, Malaysia
| | - Lisa Delano-Wood
- 3 VA San Diego Healthcare System , San Diego, California.,4 Department of Psychiatry, University of California San Diego , San Diego, California
| | - Karuthan Chinna
- 5 Julius Center University Malaya, Department of Social and Preventive Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Mark William Bondi
- 3 VA San Diego Healthcare System , San Diego, California.,4 Department of Psychiatry, University of California San Diego , San Diego, California
| | - Vicknes Waran
- 1 Division of Neurosurgery, Department of Surgery, University of Malaya , Kuala Lumpur, Malaysia
| | - Dharmendra Ganesan
- 1 Division of Neurosurgery, Department of Surgery, University of Malaya , Kuala Lumpur, Malaysia
| | - Norlisah Ramli
- 2 University Malaya Research Imaging Center, University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Stokum JA, Sours C, Zhuo J, Kane R, Shanmuganathan K, Gullapalli RP. A longitudinal evaluation of diffusion kurtosis imaging in patients with mild traumatic brain injury. Brain Inj 2014; 29:47-57. [PMID: 25259786 DOI: 10.3109/02699052.2014.947628] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PRIMARY OBJECTIVE To investigate longitudinal diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) changes in white and grey matter in patients with mild traumatic brain injury (mTBI). RESEARCH DESIGN A prospective case-control study. METHODS AND PROCEDURES DKI data was obtained from 24 patients with mTBI along with cognitive assessments within 10 days, 1 month and 6 months post-injury and compared with age-matched control (n¼ 24). Fractional anisotropy (FA), mean diffusivity (MD), radial diffusion (l(r)), mean kurtosis (MK) and radial kurtosis (Kr) were extracted from the thalamus, internal capsule and corpus callosum. MAIN OUTCOMES AND RESULTS Results demonstrate reduced Kr and MK in the anterior internal capsule in patients with mTBI across the three visits, and reduced MK in the posterior internal capsule during the 10 day time point. Correlations were observed between the change in MK or Kr between 1–6 months and the improvements in cognition between the 1 and 6 month visits in the thalamus, internal capsule and corpus callosum. CONCLUSIONS These data demonstrate that DKI may be sensitive in tracking pathophysiological changes associated with mTBI and may provide additional information to conventional DTI parameters in evaluating longitudinal changes following TBI.
Collapse
|
19
|
Tate DF, Shenton ME, Bigler ED. Introduction to the brain imaging and behavior special issue on neuroimaging findings in mild traumatic brain injury. Brain Imaging Behav 2012; 6:103-7. [PMID: 22706729 DOI: 10.1007/s11682-012-9185-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Contemporary neuroimaging methods and research findings in mild traumatic brain injury (mTBI) are reviewed in this special issue. Topics covered include structural and functional neuroimaging techniques with a particular emphasis on the most contemporary research involving magnetic resonance imaging (MRI). Future research directions as well as applied applications of using neuroimaging techniques to define biomarkers of brain injury are covered.
Collapse
Affiliation(s)
- D F Tate
- Defense and Veterans Brain Injury Centers, Contractor for the Henry M. Jackson Foundation for the Advancement of Military Medicine, San Antonio, TX, USA.
| | | | | |
Collapse
|
20
|
Grossman EJ, Jensen JH, Babb JS, Chen Q, Tabesh A, Fieremans E, Xia D, Inglese M, Grossman RI. Cognitive impairment in mild traumatic brain injury: a longitudinal diffusional kurtosis and perfusion imaging study. AJNR Am J Neuroradiol 2012. [PMID: 23179649 DOI: 10.3174/ajnr.a3358] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Cognitive impairment is frequent among patients with mild traumatic brain injury despite the absence of detectable damage on conventional MR imaging. In this study, the quantitative MR imaging techniques DTI, DKI, and ASL were used to measure changes in the structure and function in the thalamus and WM of patients with MTBI during a short follow-up period, to determine whether these techniques can be used to investigate relationships with cognitive performance and to predict outcome. MATERIALS AND METHODS Twenty patients with MTBI and 16 controls underwent MR imaging at 3T and a neuropsychological battery designed to yield measures for attention, concentration, executive functioning, memory, learning, and information processing. MK, FA, MD, and CBF were measured in the thalamus by using region-of-interest analysis and in WM by using tract-based spatial statistics. Analyses were performed comparing regional imaging measures of subject groups and the results of testing of their associations with neuropsychological performance. RESULTS Patients with MTBI exhibited significant differences from controls for DTI, DKI, and ASL measures in the thalamus and various WM regions both within 1 month after injury and >9 months after injury. At baseline, DTI and DKI measures in the thalamus and various WM regions were significantly associated with performance in different neuropsychological domains, and cognitive impairment was significantly associated with MK in the thalamus and FA in optic radiations. CONCLUSIONS Combined application of DTI, DKI, and ASL to study MTBI might be useful for investigating dynamic changes in the thalamus and WM as well as cognitive impairment during a short follow-up period, though the small number of patients examined did not predict outcome.
Collapse
Affiliation(s)
- E J Grossman
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, 4th Floor, Room 420, New York, New York 10016, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|