1
|
Canton L, Suma N, Amicone S, Impellizzeri A, Bodega F, Marinelli V, Ciarlantini M, Casuso M, Bavuso L, Belà R, Salerno J, Armillotta M, Angeli F, Sansonetti A, Attinà D, Russo V, Lovato L, Tuttolomondo D, Gaibazzi N, Bergamaschi L, Pizzi C. Clinical impact of multimodality assessment of myocardial viability. Echocardiography 2024; 41:e15854. [PMID: 38940225 DOI: 10.1111/echo.15854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Coronary artery disease (CAD) is a prevalent cause of left ventricular dysfunction. Nevertheless, effective elective revascularization, particularly surgical revascularization, can enhance long-term outcomes and, in selected cases, global left ventricular contractility. The assessment of myocardial viability and scars is still relevant in guiding treatment decisions and selecting patients who are likely to benefit most from blood flow restoration. Although the most recent randomized studies challenge the notion of "hibernating myocardium" and the clinical usefulness of assessing myocardial viability, the advancement of imaging techniques still renders this assessment valuable in specific situations. According to the guidelines of the European Society of Cardiology, non-invasive stress imaging may be employed to define myocardial ischemia and viability in patients with CAD and heart failure before revascularization. Currently, several non-invasive imaging techniques are available to evaluate the presence and extent of viable myocardium. The selection of the most suitable technique should be based on the patient, clinical context, and resource availability. This narrative review evaluates the characteristics of available imaging modalities for assessing myocardial viability to determine the most appropriate therapeutic strategy.
Collapse
Affiliation(s)
- Lisa Canton
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Nicole Suma
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Sara Amicone
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Andrea Impellizzeri
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesca Bodega
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Virginia Marinelli
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Mariachiara Ciarlantini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Marcello Casuso
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Leonardo Bavuso
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Rebecca Belà
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Jessica Salerno
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Matteo Armillotta
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Francesco Angeli
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Angelo Sansonetti
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Domenico Attinà
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Vincenzo Russo
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Lovato
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Nicola Gaibazzi
- Department of Cardiology, Parma University Hospital, Parma, Italy
| | - Luca Bergamaschi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences-DIMEC-Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Hochhegger B, Pasini R, Roncally Carvalho A, Rodrigues R, Altmayer S, Kayat Bittencourt L, Marchiori E, Forghani R. Artificial Intelligence for Cardiothoracic Imaging: Overview of Current and Emerging Applications. Semin Roentgenol 2023; 58:184-195. [PMID: 37087139 DOI: 10.1053/j.ro.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
Artificial intelligence algorithms can learn by assimilating information from large datasets in order to decipher complex associations, identify previously undiscovered pathophysiological states, and construct prediction models. There has been tremendous interest and increased incorporation of artificial intelligence into various industries, including healthcare. As a result, there has been an exponential rise in the number of research articles and industry participants producing models intended for a variety of applications in medical imaging, which can be challenging to navigate for radiologists. In thoracic imaging, multiple applications are being evaluated for chest radiography and computed tomography and include applications for lung nodule evaluation and cancer imaging, quantifying diffuse lung disorders, and cardiac imaging, to name a few. This review aims to provide an overview of current clinical AI models, focusing on the most common clinical applications of AI in cardiothoracic imaging.
Collapse
|
3
|
Muscogiuri G, Guglielmo M. Editorial: Multimodality imaging in the assessment of ischemic chronic coronary syndrome. Front Cardiovasc Med 2023; 10:1146050. [PMID: 37113705 PMCID: PMC10126425 DOI: 10.3389/fcvm.2023.1146050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Milan, Italy
- School of Medicine, University of Milano-Bicocca, Milan, Italy
- Correspondence: Giuseppe Muscogiuri
| | - Marco Guglielmo
- Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Cardiology, Haga Teaching Hospital, The Hague, Netherlands
| |
Collapse
|
4
|
Guglielmo M, Pontone G. Clinical implications of cardiac magnetic resonance imaging fibrosis. Eur Heart J Suppl 2022; 24:I123-I126. [PMID: 36380812 PMCID: PMC9653130 DOI: 10.1093/eurheartjsupp/suac085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Cardiac magnetic resonance (CMR) is a non-invasive imaging method that allows to characterize myocardial tissue. In particular, using the late gadolinium enhancement technique, it is possible to identify areas of focal fibrosis. Specific distribution patterns of this fibrosis allow us to distinguish ischaemic cardiomyopathy (iCMP) from non-ischaemic cardiomyopathy (nCMP) and sometimes to identify the aetiology of the latter. Diffuse fibrosis can also be identified using the parametric T1 mapping sequences. For this purpose, the native T1 of the tissue is measured before the administration of the contrast agent (c.a.) or the extracellular volume is calculated after c.a. Both focal and diffuse fibrosis evaluated with CMR appear to be strong prognostic predictors for the identification of threatening ventricular arrhythmias and sudden cardiac death. These evidence open the doors to a possible role of CMR in the selection of the patient to be sent to a defibrillator implant in primary prevention. In this review, we will briefly review the techniques used in CMR for the evaluation of fibrosis. We will then focus on the clinical role of myocardial tissue fibrosis detection in iCMP and nCMP.
Collapse
Affiliation(s)
- Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, The Netherlands
| | | |
Collapse
|
5
|
Muscogiuri G, Guaricci AI, Cau R, Saba L, Senatieri A, Chierchia G, Pontone G, Volpato V, Palmisano A, Esposito A, Basile P, Marra P, D'angelo T, Booz C, Rabbat M, Sironi S. Multimodality imaging in acute myocarditis. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1097-1109. [PMID: 36218216 DOI: 10.1002/jcu.23310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
The diagnosis of acute myocarditis often involves several noninvasive techniques that can provide information regarding volumes, ejection fraction, and tissue characterization. In particular, echocardiography is extremely helpful for the evaluation of biventricular volumes, strain and ejection fraction. Cardiac magnetic resonance, beyond biventricular volumes, strain, and ejection fraction allows to characterize myocardial tissue providing information regarding edema, hyperemia, and fibrosis. Contemporary cardiac computed tomography angiography (CCTA) can not only be extremely important for the assessment of coronary arteries, pulmonary arteries and aorta but also tissue characterization using CCTA can be an additional tool that can explain chest pain with a diagnosis of myocarditis.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Milano, Italy
- School of Medicine, University of Milano-Bicocca, Milano, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, Cagliari, Italy
| | | | | | | | - Valentina Volpato
- University Cardiology Unit, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Milan, Italy
| | - Anna Palmisano
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milano, Italy
| | - Antonio Esposito
- Clinical and Experimental Radiology Unit, Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milano, Italy
| | - Paolo Basile
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Paolo Marra
- Department of Radiology, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Tommaso D'angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Messina, Italy
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital of Frankfurt, Frankfurt, Germany
| | - Mark Rabbat
- Loyola University of Chicago, Chicago, Illinois, USA
- Edward Hines Jr. VA Hospital, Hines, Illinois, USA
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, Milano, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
6
|
Muscogiuri G, Guaricci AI, Soldato N, Cau R, Saba L, Siena P, Tarsitano MG, Giannetta E, Sala D, Sganzerla P, Gatti M, Faletti R, Senatieri A, Chierchia G, Pontone G, Marra P, Rabbat MG, Sironi S. Multimodality Imaging of Sudden Cardiac Death and Acute Complications in Acute Coronary Syndrome. J Clin Med 2022; 11:jcm11195663. [PMID: 36233531 PMCID: PMC9573273 DOI: 10.3390/jcm11195663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Sudden cardiac death (SCD) is a potentially fatal event usually caused by a cardiac arrhythmia, which is often the result of coronary artery disease (CAD). Up to 80% of patients suffering from SCD have concomitant CAD. Arrhythmic complications may occur in patients with acute coronary syndrome (ACS) before admission, during revascularization procedures, and in hospital intensive care monitoring. In addition, about 20% of patients who survive cardiac arrest develop a transmural myocardial infarction (MI). Prevention of ACS can be evaluated in selected patients using cardiac computed tomography angiography (CCTA), while diagnosis can be depicted using electrocardiography (ECG), and complications can be evaluated with cardiac magnetic resonance (CMR) and echocardiography. CCTA can evaluate plaque, burden of disease, stenosis, and adverse plaque characteristics, in patients with chest pain. ECG and echocardiography are the first-line tests for ACS and are affordable and useful for diagnosis. CMR can evaluate function and the presence of complications after ACS, such as development of ventricular thrombus and presence of myocardial tissue characterization abnormalities that can be the substrate of ventricular arrhythmias.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Piazzale Brescia 20, 20149 Milan, Italy
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Nicola Soldato
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09124 Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09124 Cagliari, Italy
| | - Paola Siena
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Maria Grazia Tarsitano
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Davide Sala
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Paolo Sganzerla
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Alberto Senatieri
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
| | | | | | - Paolo Marra
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60611, USA
- Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
7
|
Liao R, Li Z, Wang Q, Lin H, Sun H. Revascularization of chronic total occlusion coronary artery and cardiac regeneration. Front Cardiovasc Med 2022; 9:940808. [PMID: 36093131 PMCID: PMC9455703 DOI: 10.3389/fcvm.2022.940808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Coronary chronic total occlusion (CTO) contributes to the progression of heart failure in patients with ischemic cardiomyopathy. Randomized controlled trials demonstrated that percutaneous coronary intervention (PCI) for CTO significantly improves angina symptoms and quality of life but fails to reduce clinical events compared with optimal medical therapy. Even so, intervening physicians strongly support CTO-PCI. Cardiac regeneration therapy after CTO-PCI should be a promising approach to improving the prognosis of ischemic cardiomyopathy. However, the relationship between CTO revascularization and cardiac regeneration has rarely been studied, and experimental studies on cardiac regeneration usually employ rodent models with permanent ligation of the coronary artery rather than reopening of the occlusive artery. Limited early-stage clinical trials demonstrated that cell therapy for cardiac regeneration in ischemic cardiomyopathy reduces scar size, reverses cardiac remodeling, and promotes angiogenesis. This review focuses on the status quo of CTO-PCI in ischemic cardiomyopathy and the clinical prospect of cardiac regeneration in this setting.
Collapse
Affiliation(s)
- Ruoxi Liao
- Department of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Zhihong Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiancheng Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hairuo Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Hairuo Lin, ,
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Huijun Sun,
| |
Collapse
|
8
|
Baessato F, Romeo C, Rabbat MG, Pontone G, Meierhofer C. A Comprehensive Assessment of Cardiomyopathies through Cardiovascular Magnetic Resonance: Focus on the Pediatric Population. Diagnostics (Basel) 2022; 12:diagnostics12051022. [PMID: 35626178 PMCID: PMC9139185 DOI: 10.3390/diagnostics12051022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/26/2022] Open
Abstract
Cardiomyopathies (CMPs) are a heterogeneous group of diseases that involve the myocardium and result in systolic or diastolic impairment of the cardiac muscle, potentially leading to heart failure, malignant arrhythmias, or sudden cardiac death. Occurrence in pediatric age is rare but has been associated with worse outcomes. Non-invasive cardiac imaging techniques, integrated with clinical, genetic, and electrocardiographic data, have shown a pivotal role in the clinical work-up of such diseases by defining structural alterations and assessing potential complications. Above all modalities, cardiovascular magnetic resonance (CMR) has emerged as a powerful tool complementary to echocardiography to confirm diagnosis, provide prognostic information and guide therapeutic strategies secondary to its high spatial and temporal resolution, lack of ionizing radiation, and good reproducibility. Moreover, CMR can provide in vivo tissue characterization of the myocardial tissue aiding the identification of structural pathologic changes such as replacement or diffuse fibrosis, which are predictors of worse outcomes. Large prospective randomized studies are needed for further validation of CMR in the context of childhood CMPs. This review aims to highlight the role of advanced imaging with CMR in CMPs with particular reference to the dilated, hypertrophic and non-compacted phenotypes, which are more commonly seen in children.
Collapse
Affiliation(s)
- Francesca Baessato
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, 80636 Munich, Germany;
- Department of Cardiology, Regional Hospital S. Maurizio, 39100 Bolzano, Italy;
- Correspondence:
| | - Cristina Romeo
- Department of Cardiology, Regional Hospital S. Maurizio, 39100 Bolzano, Italy;
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University Medical Center, Chicago, IL 60153, USA;
| | - Gianluca Pontone
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
| | - Christian Meierhofer
- Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, 80636 Munich, Germany;
| |
Collapse
|
9
|
Guglielmo M, Rovera C, Rabbat MG, Pontone G. The Role of Cardiac Magnetic Resonance in Aortic Stenosis and Regurgitation. J Cardiovasc Dev Dis 2022; 9:108. [PMID: 35448084 PMCID: PMC9030119 DOI: 10.3390/jcdd9040108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiac magnetic resonance (CMR) imaging is a well-set diagnostic technique for assessment of valvular heart diseases and is gaining ground in current clinical practice. It provides high-quality images without the administration of ionizing radiation and occasionally without the need of contrast agents. It offers the unique possibility of a comprehensive stand-alone assessment of the heart including biventricular function, left ventricle remodeling, myocardial fibrosis, and associated valvulopathies. CMR is the recognized reference for the quantification of ventricular volumes, mass, and function. A particular strength is the ability to quantify flow, especially with new techniques which allow accurate measurement of stenosis and regurgitation. Furthermore, tissue mapping enables the visualization and quantification of structural changes in the myocardium. In this way, CMR has the potential to yield important prognostic information predicting those patients who will progress to surgery and impact outcomes. In this review, the fundamentals of CMR in assessment of aortic valve diseases (AVD) are described, together with its strengths and weaknesses. This state-of-the-art review provides an updated overview of CMR potentials in all AVD issues, including valve anatomy, flow quantification, ventricular volumes and function, and tissue characterization.
Collapse
Affiliation(s)
- Marco Guglielmo
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.G.); (C.R.)
| | - Chiara Rovera
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.G.); (C.R.)
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60611, USA;
- Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | - Gianluca Pontone
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.G.); (C.R.)
| |
Collapse
|
10
|
Muscogiuri G, Guglielmo M, Serra A, Gatti M, Volpato V, Schoepf UJ, Saba L, Cau R, Faletti R, McGill LJ, De Cecco CN, Pontone G, Dell’Aversana S, Sironi S. Multimodality Imaging in Ischemic Chronic Cardiomyopathy. J Imaging 2022; 8:jimaging8020035. [PMID: 35200737 PMCID: PMC8877428 DOI: 10.3390/jimaging8020035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Ischemic chronic cardiomyopathy (ICC) is still one of the most common cardiac diseases leading to the development of myocardial ischemia, infarction, or heart failure. The application of several imaging modalities can provide information regarding coronary anatomy, coronary artery disease, myocardial ischemia and tissue characterization. In particular, coronary computed tomography angiography (CCTA) can provide information regarding coronary plaque stenosis, its composition, and the possible evaluation of myocardial ischemia using fractional flow reserve CT or CT perfusion. Cardiac magnetic resonance (CMR) can be used to evaluate cardiac function as well as the presence of ischemia. In addition, CMR can be used to characterize the myocardial tissue of hibernated or infarcted myocardium. Echocardiography is the most widely used technique to achieve information regarding function and myocardial wall motion abnormalities during myocardial ischemia. Nuclear medicine can be used to evaluate perfusion in both qualitative and quantitative assessment. In this review we aim to provide an overview regarding the different noninvasive imaging techniques for the evaluation of ICC, providing information ranging from the anatomical assessment of coronary artery arteries to the assessment of ischemic myocardium and myocardial infarction. In particular this review is going to show the different noninvasive approaches based on the specific clinical history of patients with ICC.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy
- Correspondence: ; Tel.: +39-329-404-9840
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, 3584 Utrecht, The Netherlands;
| | - Alessandra Serra
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy; (M.G.); (R.F.)
| | - Valentina Volpato
- Department of Cardiac, Neurological and Metabolic Sciences, Istituto Auxologico Italiano IRCCS, San Luca Hospital, University Milano Bicocca, 20149 Milan, Italy;
| | - Uwe Joseph Schoepf
- Department of Radiology and Radiological Science, MUSC Ashley River Tower, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, USA; (U.J.S.); (L.J.M.)
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09042 Cagliari, Italy; (A.S.); (L.S.); (R.C.)
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy; (M.G.); (R.F.)
| | - Liam J. McGill
- Department of Radiology and Radiological Science, MUSC Ashley River Tower, Medical University of South Carolina, 25 Courtenay Dr, Charleston, SC 29425, USA; (U.J.S.); (L.J.M.)
| | - Carlo Nicola De Cecco
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA;
| | | | - Serena Dell’Aversana
- Department of Radiology, Ospedale S. Maria Delle Grazie—ASL Napoli 2 Nord, 80078 Pozzuoli, Italy;
| | - Sandro Sironi
- School of Medicine and Post Graduate School of Diagnostic Radiology, University of Milano-Bicocca, 20126 Milan, Italy;
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|