1
|
Automatic lung tumor segmentation from CT images using improved 3D densely connected UNet. Med Biol Eng Comput 2022; 60:3311-3323. [DOI: 10.1007/s11517-022-02667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/12/2022] [Indexed: 11/25/2022]
|
2
|
Svaton M, Blazek J, Krakorova G, Buresova M, Teufelova Z, Vodicka J, Hurdalkova K, Barinova M, Pesek M. Laboratory Parameters are Possible Prognostic Markers in Patients with Advanced-stage NSCLC Treated with Bevacizumab plus Chemotherapy. J Cancer 2021; 12:5753-5759. [PMID: 34475989 PMCID: PMC8408121 DOI: 10.7150/jca.58851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/29/2021] [Indexed: 01/08/2023] Open
Abstract
Purpose: To investigate potential associations between selected laboratory markers (CRP, LDH, albumin, sodium, hemoglobin, neutrophils, and neutrophils/lymphocytes ratio [NLR]) and outcomes in patients with non-small cell lung cancer (NSCLC) treated with bevacizumab (BEV) plus chemotherapy. Patients and Methods: We retrospectively analyzed 105 patients with NSCLC from the Czech TULUNG registry treated at University Hospital in Pilsen with BEV + chemotherapy. Response to therapy was tested by Fisher's exact test. Survival statistics were evaluated using the Kaplan-Meier method and Cox analysis. Results: We showed significantly better disease control rate when CRP, albumin, hemoglobin, and NLR were within established “normal” values. In univariate analysis, normal values of CRP, LDH, albumin, sodium, hemoglobin, neutrophils, and NLR were associated with better overall survival (OS). Normal values of CRP, albumin, hemoglobin, neutrophils, and NLR were associated also with better progression-free survival (PFS). In a multivariate Cox model, normal values of LDH, albumin, and NLR were associated with significantly better OS while normal CRP, albumin, and NLR were associated with better PFS. Conclusions: LDH and sodium appear to be possible prognostic markers for BEV treatment in combination with chemotherapy in NSCLC. The parameters associated with inflammatory response (CRP, NLR, albumin, and possibly hemoglobin) appear to be promising predictive markers for this treatment combination.
Collapse
Affiliation(s)
- Martin Svaton
- Department of Pneumology and Phthisiology, University hospital in Pilsen, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | - Jiri Blazek
- Department of Pneumology and Phthisiology, University hospital in Pilsen, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | - Gabriela Krakorova
- Department of Pneumology and Phthisiology, University hospital in Pilsen, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | - Marcela Buresova
- Department of Pneumology and Phthisiology, University hospital in Pilsen, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | - Zuzana Teufelova
- Department of Pneumology and Phthisiology, University hospital in Pilsen, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | - Josef Vodicka
- Department of Surgery, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| | | | - Magda Barinova
- Institute of Biostatistics and Analyses, Ltd. Brno, Czech Republic
| | - Milos Pesek
- Department of Pneumology and Phthisiology, University hospital in Pilsen, Charles University, Faculty of Medicine in Pilsen, Pilsen, Czech Republic
| |
Collapse
|
3
|
Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin Cancer Biol 2020; 69:349-364. [PMID: 32088362 DOI: 10.1016/j.semcancer.2020.02.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the second most common cancer and the leading cause of death in both men and women in the world. Lung cancer is heterogeneous in nature and diagnosis is often at an advanced stage as it develops silently in the lung and is frequently associated with high mortality rates. Despite the advances made in understanding the biology of lung cancer, progress in early diagnosis, cancer therapy modalities and considering the mechanisms of drug resistance, the prognosis and outcome still remains low for many patients. Nanotechnology is one of the fastest growing areas of research that can solve many biological problems such as cancer. A growing number of therapies based on using nanoparticles (NPs) have successfully entered the clinic to treat pain, cancer, and infectious diseases. Recent progress in nanotechnology has been encouraging and directed to developing novel nanoparticles that can be one step ahead of the cancer reducing the possibility of multi-drug resistance. Nanomedicine using NPs is continuingly impacting cancer diagnosis and treatment. Chemotherapy is often associated with limited targeting to the tumor, side effects and low solubility that leads to insufficient drug reaching the tumor. Overcoming these drawbacks of chemotherapy by equipping NPs with theranostic capability which is leading to the development of novel strategies. This review provides a synopsis of current progress in theranostic applications for lung cancer diagnosis and therapy using NPs including liposome, polymeric NPs, quantum dots, gold NPs, dendrimers, carbon nanotubes and magnetic NPs.
Collapse
Affiliation(s)
- Christopher Woodman
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Gugulethu Vundu
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom
| | - Alex George
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; Jubilee Centre for Medical Research, Jubilee Mission Medical College & Research Institute, Thrissur, Kerala, India
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, United Kingdom; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, United Kingdom; Novel Global Community Educational Foundation, Australia.
| |
Collapse
|
4
|
Zhang G, Yang Z, Gong L, Jiang S, Wang L. Classification of benign and malignant lung nodules from CT images based on hybrid features. ACTA ACUST UNITED AC 2019; 64:125011. [DOI: 10.1088/1361-6560/ab2544] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Zhang G, Yang Z, Gong L, Jiang S, Wang L, Cao X, Wei L, Zhang H, Liu Z. An Appraisal of Nodule Diagnosis for Lung Cancer in CT Images. J Med Syst 2019; 43:181. [PMID: 31093830 DOI: 10.1007/s10916-019-1327-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
As "the second eyes" of radiologists, computer-aided diagnosis systems play a significant role in nodule detection and diagnosis for lung cancer. In this paper, we aim to provide a systematic survey of state-of-the-art techniques (both traditional techniques and deep learning techniques) for nodule diagnosis from computed tomography images. This review first introduces the current progress and the popular structure used for nodule diagnosis. In particular, we provide a detailed overview of the five major stages in the computer-aided diagnosis systems: data acquisition, nodule segmentation, feature extraction, feature selection and nodule classification. Second, we provide a detailed report of the selected works and make a comprehensive comparison between selected works. The selected papers are from the IEEE Xplore, Science Direct, PubMed, and Web of Science databases up to December 2018. Third, we discuss and summarize the better techniques used in nodule diagnosis and indicate the existing future challenges in this field, such as improving the area under the receiver operating characteristic curve and accuracy, developing new deep learning-based diagnosis techniques, building efficient feature sets (fusing traditional features and deep features), developing high-quality labeled databases with malignant and benign nodules and promoting the cooperation between medical organizations and academic institutions.
Collapse
Affiliation(s)
- Guobin Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhiyong Yang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Li Gong
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Shan Jiang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China. .,Centre for advanced Mechanisms and Robotics, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300350, China.
| | - Lu Wang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Xi Cao
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Lin Wei
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Hongyun Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Ziqi Liu
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
6
|
Venkat B, Sharma S, Sharma D, Sood S, Aggarwal N, Sarkar M, Seam RK, Mittal N, Rana L. CT perfusion in non-small cell lung cancers for assessing treatment response, monitoring treatment and predicting prognosis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2018. [DOI: 10.1016/j.ejrnm.2017.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
7
|
Wei G, Ma H, Qian W, Han F, Jiang H, Qi S, Qiu M. Lung nodule classification using local kernel regression models with out-of-sample extension. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Eldridge L, Moldobaeva A, Zhong Q, Jenkins J, Snyder M, Brown RH, Mitzner W, Wagner EM. Bronchial Artery Angiogenesis Drives Lung Tumor Growth. Cancer Res 2016; 76:5962-5969. [PMID: 27569207 DOI: 10.1158/0008-5472.can-16-1131] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/11/2016] [Indexed: 02/06/2023]
Abstract
Angiogenesis is vital for tumor growth but in well-vascularized organs such as the lung its importance is unclear. This situation is complicated by the fact that the lung has two separate circulations, the pulmonary and the systemic bronchial circulation. There are few relevant animal models of non-small cell lung cancer, which can be used to study the lung's complex circulations, and mice, lacking a systemic bronchial circulation cannot be used. We report here a novel orthotopic model of non-small cell lung cancer in rats, where we have studied the separate contributions of each of the two circulations for lung tumor growth. Results show that bronchial artery perfusion, quantified by fluorescent microspheres (206% increase in large tumors) or high-resolution computed tomography scans (276% increase in large tumors), parallels the growth in tumor volume, whereas pulmonary artery perfusion remained unchanged. Ablation of the bronchial artery after the initiation of tumor growth resulted in a decrease in tumor volume over a subsequent course of 4 weeks. These results demonstrate that although the existing pulmonary circulation can supply the metabolic needs for tumor initiation, further growth of the tumor requires angiogenesis from the highly proliferative bronchial circulation. This model may be useful to investigate new therapeutic approaches that target specifically the bronchial circulation. Cancer Res; 76(20); 5962-9. ©2016 AACR.
Collapse
Affiliation(s)
- Lindsey Eldridge
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Aigul Moldobaeva
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Qiong Zhong
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland
| | - John Jenkins
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Michael Snyder
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Robert H Brown
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Wayne Mitzner
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Wagner
- Departments of Medicine and Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
9
|
Quantitative Computed Tomography Imaging Biomarkers in the Diagnosis and Management of Lung Cancer. Invest Radiol 2016; 50:571-83. [PMID: 25811833 DOI: 10.1097/rli.0000000000000152] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor diameter has traditionally been used as a standard metric in terms of diagnosis and prognosis prediction of lung cancer. However, recent advances in imaging techniques and data analyses have enabled novel quantitative imaging biomarkers that can characterize disease status more comprehensively and/or predict tumor behavior more precisely. The most widely used imaging modality for lung tumor assessment is computed tomography. Therefore, we focused on computed tomography imaging biomarkers such as tumor volume and mass, ground-glass opacities, perfusion parameters, as well as texture features in this review. Herein, we first appraised the conventional 1- or 2-dimensional measurement with brief discussion on their limits and then introduced the potential imaging biomarkers with emphasis on the current understanding of their clinical usefulness with respect to the malignancy differentiation, treatment response monitoring, and patient outcome prediction.
Collapse
|
10
|
Exploration of Imaging Biomarkers for Predicting Survival of Patients With Advanced Non–Small Cell Lung Cancer Treated With Antiangiogenic Chemotherapy. AJR Am J Roentgenol 2016; 206:987-93. [DOI: 10.2214/ajr.15.15528] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Ma E, Ren A, Gao B, Yang M, Zhao Q, Wang W, Li K. ROI for outlining an entire tumor is a reliable approach for quantification of lung cancer tumor vascular parameters using CT perfusion. Onco Targets Ther 2016; 9:2377-84. [PMID: 27175083 PMCID: PMC4854238 DOI: 10.2147/ott.s98060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To investigate the effect of position and size of tumor region of interest (ROI) on the estimation of lung cancer vascular parameters using 256-slice computed tomography (CT) perfusion. METHODS After institutional review board approval and written informed consent, 16 men and 11 women with lung cancer were enrolled in this CT perfusion study. Perfusion, blood volume, and peak enhancement were determined for 60 or 120 mm(2) circular ROIs placed at the edge, center, and around (outlining) the visible tumor. Average values were obtained by performing ROI analysis twice by the same observers without any procedural changes. RESULTS Perfusion, blood volume, and peak enhancement measurements were substantially higher at the edge than at the center for both 60 and 120 mm(2) ROIs (all P<0.05). Measurements varied substantially depending on the ROI size. Perfusion, blood volume, and peak enhancement for the ROIs outlining tumor were intermediate between those at the tumor edge and center. There were significant correlations between median values and interquartile ranges as follows; perfusion (12.51 [7.91-28.10] mL⋅min(-1)⋅100 mL(-1)), blood volume (29.31 [21.82-37.65] mL⋅100 g(-1)), peak enhancement (12.93 [2.42-22.50]) for the ROIs outlining the tumor, and microvascular density ([19.43±8.78] vessels/0.74 mm(2)), respectively (r values were 0.732, 0.590, and 0.544 respectively, all P<0.05). CONCLUSION Spatial and size selection of ROI significantly affects CT perfusion analysis. ROI outlining of entire tumor provides efficient and reliable measurements for clinical assessment of lung cancer using CT perfusion.
Collapse
Affiliation(s)
- Ensen Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - An Ren
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Baoxiang Gao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Minxing Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Qichao Zhao
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Wu Wang
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Kefeng Li
- Department of Medicine, School of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
12
|
Assessment of bronchial and pulmonary blood supply in non-small cell lung cancer subtypes using computed tomography perfusion. Invest Radiol 2015; 50:179-86. [PMID: 25500892 DOI: 10.1097/rli.0000000000000124] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the dual blood supply of non-small cell lung cancer (NSCLC) and its association with tumor subtype, size, and stage, using computed tomography perfusion (CTP). MATERIALS AND METHODS A total of 54 patients (median age, 65 years; range, 42-79 years; 15 women, 39 men) with suspected lung cancer underwent a CTP scan of the lung tumor. Pulmonary and bronchial vasculature regions of interest were used to calculate independently CTP parameters (blood flow [BF], blood volume [BV], and mean transit time [MTT]) of the tumor tissue. The mean and maximum pulmonary and bronchial perfusion indexes (PImean and PImax) were calculated. The tumoral volume and the largest tumoral diameter were assessed. Differences in CTP parameters and indexes among NSCLC subtypes, tumor stages and tumor dimensions were analyzed using non-parametric tests. RESULTS According to biopsy, 37 patients had NSCLC (22 adenocarcinomas [ACs], 8 squamous cell carcinomas [SCCs], 7 large-cell carcinomas [LCC]). The mean bronchial BF/pulmonary BF, bronchial BV/pulmonary BV, and bronchial MTT/pulmonary MTT was 41.2 ± 30.0/36.9 ± 24.2 mL/100 mL/min, 11.4 ± 9.7/10.4 ± 9.4 mL/100 mL, and 11.4 ± 4.3/14.9 ± 4.4 seconds, respectively. In general, higher bronchial BF than pulmonary BF was observed in NSCLC (P = 0.014). Using a tumoral volume cutoff of 3.5 cm, a significant difference in pulmonary PImax was found (P = 0.028). There was a significantly higher mean pulmonary BF in LCCs and SCCs compared with ACs (P = 0.018 and P = 0.044, respectively), whereas the mean bronchial BF was only significantly higher in LCCs compared with ACs (P = 0.024). Correspondingly, the PImax was significantly higher in LCCs and SCCs than in ACs (P = 0.001 for both). Differences between bronchial and pulmonary PImean and PImax among T stages and Union Internationale Contre le Cancer stages were not statistically significant (P values ranging from 0.691 to 0.753). CONCLUSIONS The known dual blood supply of NSCLC, which depends on tumor size and histological subtype, is reflected in CTP parameters, with parameters depending both on tumor size and histological subtype. This has to be accounted for when analyzing NSCLC with CTP.
Collapse
|
13
|
Multiparametric imaging of patient and tumour heterogeneity in non-small-cell lung cancer: quantification of tumour hypoxia, metabolism and perfusion. Eur J Nucl Med Mol Imaging 2015; 43:240-248. [PMID: 26338178 PMCID: PMC4700090 DOI: 10.1007/s00259-015-3169-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023]
Abstract
Purpose Multiple imaging techniques are nowadays available for clinical in-vivo visualization of tumour biology. FDG PET/CT identifies increased tumour metabolism, hypoxia PET visualizes tumour oxygenation and dynamic contrast-enhanced (DCE) CT characterizes vasculature and morphology. We explored the relationships among these biological features in patients with non-small-cell lung cancer (NSCLC) at both the patient level and the tumour subvolume level. Methods A group of 14 NSCLC patients from two ongoing clinical trials (NCT01024829 and NCT01210378) were scanned using FDG PET/CT, HX4 PET/CT and DCE CT prior to chemoradiotherapy. Standardized uptake values (SUV) in the primary tumour were calculated for the FDG and hypoxia HX4 PET/CT scans. For hypoxia imaging, the hypoxic volume, fraction and tumour-to-blood ratio (TBR) were also defined. Blood flow and blood volume were obtained from DCE CT imaging. A tumour subvolume analysis was used to quantify the spatial overlap between subvolumes. Results At the patient level, negative correlations were observed between blood flow and the hypoxia parameters (TBR >1.2): hypoxic volume (−0.65, p = 0.014), hypoxic fraction (−0.60, p = 0.025) and TBR (−0.56, p = 0.042). At the tumour subvolume level, hypoxic and metabolically active subvolumes showed an overlap of 53 ± 36 %. Overlap between hypoxic sub-volumes and those with high blood flow and blood volume was smaller: 15 ± 17 % and 28 ± 28 %, respectively. Half of the patients showed a spatial mismatch (overlap <5 %) between increased blood flow and hypoxia. Conclusion The biological imaging features defined in NSCLC tumours showed large interpatient and intratumour variability. There was overlap between hypoxic and metabolically active subvolumes in the majority of tumours, there was spatial mismatch between regions with high blood flow and those with increased hypoxia. Electronic supplementary material The online version of this article (doi:10.1007/s00259-015-3169-4) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Effects of guided random sampling of TCCs on blood flow values in CT perfusion studies of lung tumors. Acad Radiol 2015; 22:58-69. [PMID: 25481516 DOI: 10.1016/j.acra.2014.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 11/24/2022]
Abstract
RATIONALE AND OBJECTIVES Tissue perfusion is commonly used to evaluate lung tumor lesions through dynamic contrast-enhanced computed tomography (DCE-CT). The aim of this study was to improve the reliability of the blood flow (BF) maps by means of a guided sampling of the tissue time-concentration curves (TCCs). MATERIALS AND METHODS Fourteen selected CT perfusion (CTp) examinations from different patients with lung lesions were considered, according to different degrees of motion compensation. For each examination, two regions of interest (ROIs) referring to the target lesion and the arterial input were manually segmented. To obtain the perfusion parameters, we computed the maximum slope of the Hill equation, describing the pharmacokinetics of the contrast agent, and the TCC was fitted for each voxel. A guided iterative approach based on the Random Sample Consensus method was used to detect and exclude samples arising from motion artifacts through the assessment of the confidence level of each single temporal sample of the TCC compared to the model. Removing these samples permits to refine the model fitting, thus exploiting more reliable data. Goodness-of-fit measures of the fitted TCCs to the original data (eg, root mean square error and correlation distance) were used to assess the reliability of the BF values, so as to preserve the functional structure of the resulting perfusion map. We devised a quantitative index, the local coefficient of variation (lCV), to measure the spatial coherence of perfusion maps, from local to regional and global resolution. The effectiveness of the algorithm was tested under three different degrees of motion yielded by as many alignment procedures. RESULTS At pixel level, the proposed approach improved the reliability of BF values, quantitatively assessed through the correlation index. At ROI level, a comparative analysis emphasized how our approach "replaced" the noisy pixels, providing smoother parametric maps while preserving the main functional structure. Moreover, the implemented algorithm provides a more meaningful effect in correspondence of a higher motion degree. This was confirmed both quantitatively, using the lCV, and qualitatively, through visual inspection by expert radiologists. CONCLUSIONS Perfusion maps achieved with the proposed approach can now be used as a valid tool supporting radiologists in DCE-CTp studies. This represents a step forward to clinical utilization of these studies for staging, prognosis, and monitoring values of therapeutic regimens.
Collapse
|
15
|
First-pass perfusion of non-small-cell lung cancer (NSCLC) with 64-detector-row CT: a study of technique repeatability and intra- and interobserver variability. Radiol Med 2013; 119:4-12. [PMID: 24272480 DOI: 10.1007/s11547-013-0300-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/21/2012] [Indexed: 10/26/2022]
Abstract
PURPOSE This study was done to prospectively assess the repeatability and intra- and interobserver variability of first-pass perfusion with 64-detector-row computed tomography (CT) in non-small-cell lung cancer (NSCLC) with a maximum diameter of up to 8 cm. MATERIALS AND METHODS Twelve patients with NSCLC underwent 64-detector-row first-pass CT perfusion (CTP) of the whole tumour. Two different techniques were used according to lesion size (cine mode; sequential mode). After 24 h, each study was repeated to assess repeatability. Lesion blood volume (BV), blood flow (BF), mean transit time (MTT) and peak enhancement intensity (PEI) were automatically calculated by two chest radiologists in two different reading sessions. Intra- and interobserver variability was also assessed. RESULTS The first-pass CTP technique was repeatable and precise with within-subject coefficient of variation (WCV) of 9.3, 16.4, 11.2 and 14.9 %, respectively, for BV, BF, MTT and PEI. High intra- and interobserver agreement was demonstrated for each perfusion parameter, with Cronbach's α coefficients and intraclass correlation coefficients ranging from 0.99 to 1. Precision of measurements was slightly better for intraobserver analysis with WCV ranging between 1.05 and 3.03 %. CONCLUSIONS Non-small-cell lung cancer first-pass perfusion performed with 64-detector-row CT showed good repeatability and high intra- and interobserver agreement for all perfusion parameters and may be considered a reliable and robust tool for assessing tumour vascularisation.
Collapse
|
16
|
Xing N, Cai ZL, Zhao SH, Yang L, Xu BX, Wang FL. The Use of CT Perfusion to Determine Microvessel Density in Lung Cancer: Comparison with FDG-PET and Pathology. Chin J Cancer Res 2013; 23:118-22. [PMID: 23483098 DOI: 10.1007/s11670-011-0118-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/23/2011] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To investigate the validity of CT perfusion in assessing angiogenic activity of lung cancer. METHODS Fifty-six patients with lung cancer scheduled for elective surgical resection received 16-slice helical CT perfusion imaging. Time-density curve (TDC), blood flow (BF), blood volume (BV), mean transmit time (MTT) and permeability surface area product (PS) were calculated. 18F-deoxyglucose-positron emission tomography (FGD-PET) was carried out in 14 out of the 56 patients to calculate standardized uptake values (SUVs). Tumor microvessel density (MVD) was examined using CD34 immunohistochemical staining of the resected tumor tissue. Pearson's correlation analysis was used to evaluate potential correlation between CT perfusion parameters and MVD or SUV. RESULTS Average time to peak height (TPH) of the TDCs (including two types of TDC) was 24.38±5.69 seconds. Average BF, BV, MTT and PS were 93.42±53.45 ml/100g/min,93.42±53.45 ml/100g,6.83±4.51 s and 31.92±18.73 ml/100g/min, respectively. Average MVD was 62.04±29.06/HPF. The mean SUV was 6.33±3.26. BF was positively correlated with MVD (r=0.620,P<0.01) and SUV (r=0.891, P<0.01). PS was also positively correlated with SUV (r=0.720, P<0.05). A positive correlation was also observed between tumor MVD and SUV (r=0.915, P<0.01). CONCLUSIONS CT perfusion imaging is a reliable tool to evaluate the tumor neovascularity of lung cancer.
Collapse
Affiliation(s)
- Ning Xing
- Department of Radiology, China PLA General Hospital, Beijing 100853, China
| | | | | | | | | | | |
Collapse
|
17
|
Shan F, Zhang Z, Xing W, Qiu J, Yang S, Wang J, Jiang Y, Chen G. Differentiation between malignant and benign solitary pulmonary nodules: use of volume first-pass perfusion and combined with routine computed tomography. Eur J Radiol 2012; 81:3598-605. [PMID: 22608062 DOI: 10.1016/j.ejrad.2012.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/02/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE To evaluate the capability of first-pass volume perfusion computed tomography (PCT) for differentiation of solitary pulmonary nodules (SPNs) and to compare that of combination of PCT and routine CT with CT alone for the differentiation. MATERIALS AND METHODS Our institutional review board approved this study and informed consent was obtained. With nine excluded, 65 consecutive patients having a SPN with histopathologic proof or follow-up underwent a 30s PCT using the deconvolution model were evaluated. Kruskal-Wallis tests and receiver operating characteristics (ROC) analysis were underwent. Four radiologists assessed nodules independently and retrospectively. Diagnostic capability was compared for CT alone and PCT plus CT. ROC analysis, McNemar test, and weighted kappa statistics were performed. RESULTS Significant differences were found in parameters between malignant and benign nodules (p<0.0001 for blood flow, blood volume, and permeability surface area product), SPNs were more likely to be malignant by using threshold values of more than 55 ml/100 g/min, 2.5 ml/100 g, and 10 ml/100 g/min, respectively. PCT plus CT was significantly better in overall sensitivity (93%, p=0.004) and accuracy (94%, p=0.003) compared to CT alone, not specificity (96%). Area under the curve for ROC analyses of PCT plus CT was significantly larger than that of CT alone (p=0.018). Mean weighted kappa for PCT plus CT was 0.715, that for CT alone was 0.447. CONCLUSION Volume first-pass PCT can distinguish SPNs. Using PCT plus routine CT may be more sensitive and accurate for differentiating malignant from benign nodules than CT alone and allows more confidence and constancy.
Collapse
Affiliation(s)
- Fei Shan
- Department of Radiology, Third Affiliated Hospital of Suzhou University, 185, Juqian Road, Changzhou, Zip Code: 213003, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Salgia R. Prognostic significance of angiogenesis and angiogenic growth factors in nonsmall cell lung cancer. Cancer 2011; 117:3889-99. [PMID: 21858799 PMCID: PMC3160199 DOI: 10.1002/cncr.25935] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/30/2010] [Accepted: 12/16/2010] [Indexed: 01/22/2023]
Abstract
Currently, nonsmall-cell lung cancer (NSCLC) is the leading cause of cancer-related death in the United States. Angiogenesis, the formation of new vasculature, is a complex and tightly regulated process that promotes metastasis and disease progression in lung cancer and other malignancies. Developmental antiangiogenic agents have shown activity in NSCLC, and bevacizumab, an antiangiogenic monoclonal antibody, is approved for the treatment of patients with advanced disease. However, predictive biomarkers are needed to guide the administration of antiangiogenic agents. It is possible that angiogenic molecules could accurately predict patient response to targeted antiangiogenic therapies, which would allow individualized and perhaps more effective treatment. Angiogenic signaling molecules may also have value as prognostic indicators, which may be useful for the management of NSCLC. Here the author provides an overview of angiogenic molecules currently being investigated as prognostic biomarkers in NSCLC and discusses their potential to guide treatment choices.
Collapse
Affiliation(s)
- Ravi Salgia
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
19
|
Sauter AW, Merkle A, Schulze M, Spira D, Hetzel J, Claussen CD, Horger MS. Intraobserver and interobserver agreement of volume perfusion CT (VPCT) measurements in patients with lung lesions. Eur J Radiol 2011; 81:2853-9. [PMID: 21794997 DOI: 10.1016/j.ejrad.2011.06.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To evaluate intraobserver and interobserver agreement of manually encompassed lung lesions for perfusion measurements using volume-perfusion computed tomography (VPCT). MATERIALS AND METHODS Institutional review board approval and informed consent were obtained. HIPAA guidelines were followed. A 65-s dynamic study was acquired with scan parameters 80 kV, 60 mAs (80 mAs for patients ≥ 70 kg), 128 × 0.6mm collimation. Blood flow (BF), blood volume (BV) and K(trans) parameters were determined by syngo volume perfusion CT body with 88 lesions analyzed retrospectively. RESULTS Within-subject coefficients of variation for intraobserver agreement (range 6.59-12.82%) were superior to those for interobserver agreement (range 21.75-38.30%). Size-dependent analysis revealed lower agreements for lesions <4 cm as compared to larger lesions. Additionally, agreements of the upper, middle and lower lung zones were different. CONCLUSIONS Intraobserver agreement was substantial for VPCT lung cancer perfusion measurements encouraging the use for tumor characterization and therapy response monitoring. Interobserver agreement is limited and unexperienced readers should be trained before using this new method.
Collapse
Affiliation(s)
- Alexander W Sauter
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | |
Collapse
|