1
|
Kostecka A, Kalamon N, Skoniecka A, Koczkowska M, Skowron PM, Piotrowski A, Pikuła M. Adipose-derived mesenchymal stromal cells in clinical trials: Insights from single-cell studies. Life Sci 2024; 351:122761. [PMID: 38866216 DOI: 10.1016/j.lfs.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Mesenchymal Stromal Cells (MSCs) offer tremendous potential for the treatment of various diseases and their healing properties have been explored in hundreds of clinical trials. These trails primarily focus on immunological and neurological disorders, as well as regenerative medicine. Adipose tissue is a rich source of mesenchymal stromal cells and methods to obtain and culture adipose-derived MSCs (AD-MSCs) have been well established. Promising results from pre-clinical testing of AD-MSCs activity prompted clinical trials that further led to the approval of AD-MSCs for the treatment of complex perianal fistulas in Crohn's disease and subcutaneous tissue defects. However, AD-MSC heterogeneity along with various manufacturing protocols or different strategies to boost their activity create the need for standardized quality control procedures and safety assessment of the intended cell product. High-resolution transcriptomic methods have been recently gaining attention, as they deliver insight into gene expression profiles of individual cells, helping to deconstruct cellular hierarchy and differentiation trajectories, and to understand cell-cell interactions within tissues. This article presents a comprehensive overview of completed clinical trials evaluating the safety and efficacy of AD-MSC treatment, together with current single-cell studies of human AD-MSC. Furthermore, our work emphasizes the increasing significance of single-cell research in elucidating the mechanisms of cellular action and predicting their therapeutic effects.
Collapse
Affiliation(s)
- Anna Kostecka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Natalia Kalamon
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Koczkowska
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Arkadiusz Piotrowski
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| |
Collapse
|
2
|
Weninger P, Feichtinger X, Steffel C, Kerschbaumer C, Duscher D. Arthroscopy with Lipoaspirate and Plasma Infiltration Using Adipose-Derived Stem Cells Plus Platelet-Rich Plasma: Harvesting and Injection for Arthroscopic Treatment of Cartilage Defects of the Knee. Arthrosc Tech 2023; 12:e2265-e2271. [PMID: 38196888 PMCID: PMC10773146 DOI: 10.1016/j.eats.2023.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/30/2023] [Indexed: 01/11/2024] Open
Abstract
Osteoarthritis, predominantly of the knee, is a highly prevalent disease leading to pain, reduced quality of life, and significantly reduced ability to work. With autologous orthobiologic options, new regenerative treatment methods have emerged, offering an alternative to early surgical intervention. Supercharged Liparthroplasty combines arthroscopy with lipoaspirate and plasma infiltration of the joint. Lipoaspirate contains high levels of adipose-derived stem cells, which show chondroprotective and anti-inflammatory qualities. Intra-articular injection, combined with platelet-rich plasma administration for accelerated cartilage metabolism, thus provides an optional approach in osteoarthritis treatment. This article aims to provide in detail our regimen for Supercharged Liparthroplasty, including tissue harvesting and preparation of the injectables, therefore enabling physicians to adopt this point-of-care technique.
Collapse
Affiliation(s)
- Patrick Weninger
- Sports Medical Center, Vienna, Austria
- Academic Stem Cell Center Vienna, Vienna, Austria
| | | | - Caterina Steffel
- Sports Medical Center, Vienna, Austria
- Academic Stem Cell Center Vienna, Vienna, Austria
| | | | - Dominik Duscher
- The Face and Longevity Center Munich, Munich, Germany
- Department of Plastic, Reconstructive, Hand and Burn Surgery, BG-Trauma Center, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Ranade A, Khan AA, Gul MT, Suresh S, Qaisar R, Ahmad F, Karim A. Suppression of endoplasmic reticulum stress reverses hindlimb unloading-induced hepatic cellular processes in mice. Biochim Biophys Acta Gen Subj 2023:130422. [PMID: 37406741 DOI: 10.1016/j.bbagen.2023.130422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The Hindlimb unloaded mouse, an animal model of simulated microgravity demonstrates significant metabolic and hepatic derangements. However, cellular and molecular mechanisms driving liver dysfunction in Hindlimb unloaded mice are poorly characterized. METHODS We investigated the possible contribution of dysregulated protein homeostasis by endoplasmic reticulum, endoplasmic reticulum stress, to liver dysfunction during HU. C57BL/6j male mice were grouped into ground-based controls or Hindlimb unloaded groups treated daily with vehicle or 4-phenylbutyrate (4-PBA), a potent inhibitor of endoplasmic reticulum stress. Following three weeks of HU, mice were sacrificed, and liver tissues were dissected for further analysis. RESULTS Hindlimb unloaded was associated with hepatic atrophy and elevated endoplasmic reticulum stress, which was restored by 4-PBA treatment. The Gene Ontology analysis revealed the downregulation of genes primarily involved in liver metabolic and Wingless-related integration site (WNT) signaling pathways, while those related to cytochrome P450, and liver fibrosis were upregulated. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed downregulation of several genes involved in metabolic pathways following treatment with 4-PBA, induced by HU. CONCLUSIONS We report several differential and uniquely expressed genes associated with microgravity-induced elevated ER stress and liver injury. Our data has translational potential in unraveling novel molecular targets for pharmaceutical therapies of liver diseases. GENERAL SIGNIFICANCE Our novel findings show a pathogenic role for elevated ER stress in liver injury in microgravity conditions.
Collapse
Affiliation(s)
- Anu Ranade
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Tehsil Gul
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Savitha Suresh
- Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Iron Biology Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
4
|
Mitigating sarcoplasmic reticulum stress limits disuse-induced muscle loss in hindlimb unloaded mice. NPJ Microgravity 2022; 8:24. [PMID: 35817772 PMCID: PMC9273600 DOI: 10.1038/s41526-022-00211-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/22/2022] [Indexed: 01/31/2023] Open
Abstract
Muscle disuse in the hindlimb unloaded (HU) mice causes significant atrophy and weakness. However, the cellular and molecular mechanisms driving disuse-muscle atrophy remain elusive. We investigated the potential contribution of proteins dysregulation by sarcoplasmic reticulum (SR), a condition called SR stress, to muscle loss during HU. Male, c57BL/6j mice were assigned to ground-based controls or HU groups treated with vehicle or 4-phenylbutyrate (4-PBA), a potent inhibitor of SR stress, once a day for three weeks. We report that the 4-PBA reduced the SR stress and partly reversed the muscle atrophy and weakness in the HU mice. Transcriptome analysis revealed that several genes were switched on (n = 3688) or differentially expressed (n = 1184) due to HU. GO, and KEGG term analysis revealed alterations in pathways associated with the assembly of cilia and microtubules, extracellular matrix proteins regulation, calcium homeostasis, and immune modulation during HU. The muscle restoration with 4-PBA partly reversed these changes along with differential and unique expression of several genes. The analysis of genes among the two comparisons (HU-v vs. control and HU-t vs. HU-v.) shows 841 genes were overlapped between the two comparisons and they may be regulated by 4-PBA. Altogether, our findings suggest that the pharmacological suppression of SR stress may be an effective strategy to prevent disuse-induced muscle weakness and atrophy.
Collapse
|
5
|
Çekiç D, Yılmaz ŞN, Bölgen N, Ünal S, Duce MN, Bayrak G, Demir D, Türkegün M, Sarı A, Demir Y, Ünal Ş. Impact of injectable chitosan cryogel microspherescaffolds on differentiation and proliferation of adiposederived mesenchymal stem cells into fat cells. J Biomater Appl 2021; 36:1335-1345. [PMID: 34965760 DOI: 10.1177/08853282211048284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Difficulty in the clinical practice of stem cell therapy is often experienced in achieving desired target tissue cell differentiation and migration of stem cells to other tissue compartments where they are destroyed or die. This study was performed to evaluate if mesenchymal stem cells (MSCs) may differentiate into desired cell types when injected after combined with an injectable cryogel scaffold and to investigate if this scaffold may help in preventing cells from passing into different tissue compartments. MSCs were obtained from fat tissue of the rabbits as autografts and nuclei and cytoplasms of these cells were labeled with BrdU and PKH26. In Group 1, only-scaffold; in Group 2, only-MSCs; and in Group 3, combined stem cell/scaffold were injected to the right malar area of the rabbits. At postoperative 3 weeks, volumes of the injected areas were calculated by computer-tomography scans and histopathological evaluation was performed. The increase in the volume of the right malar areas was more in Group 3. In histopathological evaluation, chitosan cryogel microspheres were observed microscopically within the tissue and the scaffold was only partially degraded. Normal tissue form was seen in Group 2. Cells differentiated morphologically into fat cells were detected in Groups 2 and 3. Injectable chitosan cryogel microspheres were used in vivo for the first time in this study. As it was demonstrated to be useful in carrying MSCs to the reconstructed area, help cell differentiation to desired cells and prevent migration to other tissue compartments, it may be used for reconstructive purposes in the future.
Collapse
Affiliation(s)
- Duran Çekiç
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | | | - Nimet Bölgen
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Selma Ünal
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Meltem Nass Duce
- Faculty of Medicine, Department of Radiology, Mersin University, Turkey
| | - Gülsen Bayrak
- Faculty of Medicine, Department of Histology, Mersin University, Turkey
| | - Didem Demir
- Faculty of Engineering, Department of Chemical Engineering, Mersin University, Turkey
| | - Merve Türkegün
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Mersin University, Turkey
| | - Alper Sarı
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | - Yavuz Demir
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| | - Şakir Ünal
- Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Mersin University, Turkey
| |
Collapse
|
6
|
Piccotti F, Rybinska I, Scoccia E, Morasso C, Ricciardi A, Signati L, Triulzi T, Corsi F, Truffi M. Lipofilling in Breast Oncological Surgery: A Safe Opportunity or Risk for Cancer Recurrence? Int J Mol Sci 2021; 22:ijms22073737. [PMID: 33916703 PMCID: PMC8038405 DOI: 10.3390/ijms22073737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Lipofilling (LF) is a largely employed technique in reconstructive and esthetic breast surgery. Over the years, it has demonstrated to be extremely useful for treatment of soft tissue defects after demolitive or conservative breast cancer surgery and different procedures have been developed to improve the survival of transplanted fat graft. The regenerative potential of LF is attributed to the multipotent stem cells found in large quantity in adipose tissue. However, a growing body of pre-clinical evidence shows that adipocytes and adipose-derived stromal cells may have pro-tumorigenic potential. Despite no clear indication from clinical studies has demonstrated an increased risk of cancer recurrence upon LF, these observations challenge the oncologic safety of the procedure. This review aims to provide an updated overview of both the clinical and the pre-clinical indications to the suitability and safety of LF in breast oncological surgery. Cellular and molecular players in the crosstalk between adipose tissue and cancer are described, and heterogeneous contradictory results are discussed, highlighting that important issues still remain to be solved to get a clear understanding of LF safety in breast cancer patients.
Collapse
Affiliation(s)
- Francesca Piccotti
- Laboratorio di Nanomedicina ed Imaging Molecolare, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (F.P.); (C.M.); (A.R.)
| | - Ilona Rybinska
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (I.R.); (T.T.)
| | - Elisabetta Scoccia
- Breast Unit, Surgery Department, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (E.S.); (F.C.)
| | - Carlo Morasso
- Laboratorio di Nanomedicina ed Imaging Molecolare, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (F.P.); (C.M.); (A.R.)
| | - Alessandra Ricciardi
- Laboratorio di Nanomedicina ed Imaging Molecolare, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (F.P.); (C.M.); (A.R.)
| | - Lorena Signati
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università Degli Studi di Milano, 20157 Milano, Italy;
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (I.R.); (T.T.)
| | - Fabio Corsi
- Breast Unit, Surgery Department, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (E.S.); (F.C.)
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università Degli Studi di Milano, 20157 Milano, Italy;
| | - Marta Truffi
- Laboratorio di Nanomedicina ed Imaging Molecolare, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (F.P.); (C.M.); (A.R.)
- Correspondence: ; Tel.: +39-0382-592219
| |
Collapse
|
7
|
Fang J, Chen F, Liu D, Gu F, Wang Y. Adipose tissue-derived stem cells in breast reconstruction: a brief review on biology and translation. Stem Cell Res Ther 2021; 12:8. [PMID: 33407902 PMCID: PMC7789635 DOI: 10.1186/s13287-020-01955-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Recent developments in adipose-derived stromal/stem cell (ADSC) biology provide new hopes for tissue engineering and regeneration medicine. Due to their pluripotent activity, paracrine activity, and immunomodulatory function, ADSCs have been widely administrated and exhibited significant therapeutic effects in the treatment for autoimmune disorders, neurodegenerative diseases, and ischemic conditions both in animals and human clinical trials. Cell-assisted lipotransfer (CAL) based on ADSCs has emerged as a promising cell therapy technology and significantly improved the fat graft retention. Initially applied for cosmetic breast and facial enhancement, CAL has found a potential use for breast reconstruction in breast cancer patients. However, more challenges emerge related to CAL including lack of a standardized surgical procedure, the controversy in the effectiveness of CAL, and the potential oncogenic risk of ADSCs in cancer patients. In this review, we summarized the latest research and intended to give an outline involving the biological characteristics of ADSCs as well as the preclinical and clinical application of ADSCs.
Collapse
Affiliation(s)
- Jun Fang
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feng Chen
- Department of Breast Tumor Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dong Liu
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feiying Gu
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China.,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China.,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yuezhen Wang
- Zhejiang Key Laboratory of Radiation Oncology, Hangzhou, China. .,Department of Radiation Therapy, Zhejiang Cancer Hospital, Hangzhou, China. .,Radiotherapy, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.
| |
Collapse
|
8
|
Abu-Shahba N, Mahmoud M, Abdel-Rasheed M, Darwish Y, AbdelKhaliq A, Mohammed E, ElHefnawi M, Azmy O. Immunomodulatory and Antioxidative potentials of adipose-derived Mesenchymal stem cells isolated from breast versus abdominal tissue: a comparative study. ACTA ACUST UNITED AC 2020; 9:18. [PMID: 33020894 PMCID: PMC7536259 DOI: 10.1186/s13619-020-00056-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) are considered ideal candidates for both research and cellular therapy due to ease of access, large yield, feasibility, and efficacy in preclinical and clinical studies. Unlike the subcutaneous abdominal fat depot, breast ASCs features are still not well recognized, limiting their possible therapeutic use. ASCs were found to exert immunomodulatory and antioxidative activities for maintaining homeostasis and functionality of diseased/damaged tissues. This study aims to investigate the immunomodulatory and antioxidative potentials of breast versus abdominal isolated ASCs to find out which anatomical site provides ASCs with better immunoregulatory and oxidative stress resistance capabilities. METHODS ASCs were isolated from abdominal and breast tissues. Gene expression analysis was conducted for a panel of immunomodulatory and antioxidative genes, as well as adipokines and proliferation genes. Flow cytometric analysis of a group of immunomodulatory surface proteins was also performed. Finally, the significantly expressed genes have undergone protein-protein interaction and functional enrichment in silico analyses. RESULTS Our results revealed similar morphological and phenotypic characteristics for both breast and abdominal ASCs. However, a significant elevation in the expression of two potent immunosuppressive genes, IL-10 and IDO as well as the expression of the multifaceted immunomodulatory adipokine, visfatin, was detected in breast versus abdominal ASCs. Moreover, a significant overexpression of the antioxidative genes, GPX1, SIRT5, and STAT3 and the proliferation marker, Ki67, was also observed in breast ASCs relative to abdominal ones. In silico analysis showed that both of the differentially upregulated immunomodulatory and antioxidative mediators integratively involved in multiple biological processes and pathways indicating their functional association. CONCLUSION Breast ASCs possess superior immunomodulatory and antioxidative capabilities over abdominal ASCs. Our findings shed light on the possible therapeutic applications of breast ASCs in immune-related and oxidative stress-associated diseases.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt. .,Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt.
| | - Marwa Mahmoud
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Department of Reproductive Health Research, Medical Research Division. National Research Centre, Cairo, Egypt
| | - Yasmine Darwish
- Plastic and Reconstructive Surgery Unit, General Surgery Department, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Ahmad AbdelKhaliq
- Plastic and Reconstructive Surgery Unit, General Surgery Department, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt
| | - Eman Mohammed
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12622, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Centre of Excellence for Medical Research, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Osama Azmy
- Stem Cell Research Group, Centre of Excellence for Medical Research, National Research Centre, Cairo, Egypt.,Department of Reproductive Health Research, Medical Research Division. National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Zhang D, He S, Wang Q, Pu S, Zhou Z, Wu Q. Impact of Aging on the Characterization of Brown and White Adipose Tissue-Derived Stem Cells in Mice. Cells Tissues Organs 2020; 209:26-36. [PMID: 32526740 DOI: 10.1159/000507434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue enriched with adipose tissue-derived stem cells (ASCs) is often used for stem cell-based therapies. However, the characteristics of ASCs from different types of adipose tissue have varying biochemical and functional properties. We aimed to investigate how age affected the biological and functional characteristics of ASCs from brown (BAT) and white adipose tissue (WAT). ASCs were obtained and cultured from mouse BAT and WAT at different ages: young (2 months of age) and older mice (22 months of age). Mesenchymal markers were characterized by flow cytometry, and cell proliferation, apoptosis, differentiation potential, senescence, and metabolism were then determined. The percentage of WAT was higher in elderly mice, and the percentage of BAT was higher in young mice. All ASC sample phenotypes were characterized as CD29+/CD44+/CD105+/CD45-; the proliferation rate was not statistically different among all age groups. However, the number of senescent cells and the percentage of apoptosis in elderly mouse ASCs were significantly increased, and the ability of osteogenic and lipogenic differentiation was decreased in these same animals. In addition, ASCs from young mice were more inclined to undergo osteogenic differentiation, especially BAT-ASCs, whose gene expression of fat-consuming components was also significantly higher than of WAT-ASCs. The results indicated that ASCs derived from both WAT and BAT possessed different characteristics of fat metabolism and cell differentiation relative to the osteo- and adipolineages. In particular, because BAT-ASCs from young mice contributed to fat consumption, if used for cell grafting, they may potentially be attractive vehicles for treating obesity.
Collapse
Affiliation(s)
- Daxiu Zhang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shuangli He
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qian Wang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China, .,Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China, .,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China,
| |
Collapse
|
10
|
Peng Q, Alipour H, Porsborg S, Fink T, Zachar V. Evolution of ASC Immunophenotypical Subsets During Expansion In Vitro. Int J Mol Sci 2020; 21:E1408. [PMID: 32093036 PMCID: PMC7073142 DOI: 10.3390/ijms21041408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) are currently being considered for clinical use for a number of indications. In order to develop standardized clinical protocols, it is paramount to have a full characterization of the stem cell preparations. The surface marker expression of ASCs has previously been characterized in multiple studies. However, most of these studies have provided a cross-sectional description of ASCs in either earlier or later passages. In this study, we evaluate the dynamic changes of 15 different surface molecules during culture. Using multichromatic flow cytometry, ASCs from three different donors each in passages 1, 2, 4, 6, and 8 were analyzed for their co-expression of markers associated with mesenchymal stem cells, wound healing, immune regulation, ASC markers, and differentiation capacity, respectively. We confirmed that at an early stage, ASC displayed a high heterogeneity with a plethora of subpopulations, which by culturing became more homogeneous. After a few passages, virtually all ASCs expressed CD29, CD166 and CD201, in addition to canonical markers CD73, CD90, and CD105. However, even at passage 8, there were several predominant lineages that differed with respect to the expression of CD34, CD200 and CD271. Although the significance of remaining subpopulations still needs to be elucidated, our results underscore the necessity to fully characterize ASCs prior to clinical use.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir Zachar
- Department of Health Science and Technology, Regenerative Medicine Group, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark; (Q.P.); (H.A.); (S.P.); (T.F.)
| |
Collapse
|
11
|
Dziedzic DSM, Mogharbel BF, Ferreira PE, Irioda AC, de Carvalho KAT. Transplantation of Adipose-derived Cells for Periodontal Regeneration: A Systematic Review. Curr Stem Cell Res Ther 2019; 14:504-518. [PMID: 30394216 DOI: 10.2174/1574888x13666181105144430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
This systematic review evaluated the transplantation of cells derived from adipose tissue for applications in dentistry. SCOPUS, PUBMED and LILACS databases were searched for in vitro studies and pre-clinical animal model studies using the keywords "ADIPOSE", "CELLS", and "PERIODONTAL", with the Boolean operator "AND". A total of 160 titles and abstracts were identified, and 29 publications met the inclusion criteria, 14 in vitro and 15 in vivo studies. In vitro studies demonstrated that adipose- derived cells stimulate neovascularization, have osteogenic and odontogenic potential; besides adhesion, proliferation and differentiation on probable cell carriers. Preclinical studies described improvement of bone and periodontal healing with the association of adipose-derived cells and the carrier materials tested: Platelet Rich Plasma, Fibrin, Collagen and Synthetic polymer. There is evidence from the current in vitro and in vivo data indicating that adipose-derived cells may contribute to bone and periodontal regeneration. The small quantity of studies and the large variation on study designs, from animal models, cell sources and defect morphology, did not favor a meta-analysis. Additional studies need to be conducted to investigate the regeneration variability and the mechanisms of cell participation in the processes. An overview of animal models, cell sources, and scaffolds, as well as new perspectives are provided for future bone and periodontal regeneration study designs.
Collapse
Affiliation(s)
- Dilcele Silva Moreira Dziedzic
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
- Dentistry Faculty, Universidade Positivo, Curitiba, Brazil
| | - Bassam Felipe Mogharbel
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Priscila Elias Ferreira
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | - Ana Carolina Irioda
- Pele Pequeno Principe Institute for Child and Adolescent Health Research, Pequeno Principe Faculty, Curitiba, Brazil
| | | |
Collapse
|
12
|
Guneta V, Zhou Z, Tan NS, Sugii S, Wong MTC, Choong C. Recellularization of decellularized adipose tissue-derived stem cells: role of the cell-secreted extracellular matrix in cellular differentiation. Biomater Sci 2018; 6:168-178. [PMID: 29167844 DOI: 10.1039/c7bm00695k] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adipose-derived stem cells (ASCs) are found in a location within the adipose tissue known as the stem cell niche. The ASCs in the niche are maintained in the quiescent state, and upon exposure to various microenvironmental triggers are prompted to undergo proliferation or differentiation. These microenvironmental triggers also modulate the extracellular matrix (ECM), which interacts with the cells through the cytoskeleton and induces downstream events inside the cells that bring about a change in cell behaviour. In response to these changes, the cells remodel the ECM, which will differ according to the type of tissue being formed by the cells. As the ECM itself plays an important role in the regulation of cellular differentiation, this study aims to explore the role of the cell-secreted ECM at various stages of differentiation of stem cells in triggering the differentiation of ASCs. To this end, the ASCs cultured in proliferation, osteogenic and adipogenic media were decellularized and the secreted ECM was characterized. Overall, it was found that osteo-differentiated ASCs produced higher amounts of collagen and glycosaminoglycans (GAG) compared to the undifferentiated and adipo-differentiated ASCs. The two types of differentiated ECMs were subsequently shown to trigger initial but not terminal differentiation of ASCs into osteo- and adipo-lineages respectively, as indicated by the upregulation of lineage specific markers. In addition, integrin subunits alpha (α) 6 and integrin beta (β) 1 were found to be produced by ASCs cultured on cell-secreted ECM-coated substrates, suggesting that the integrins α6 and β1 play an instrumental role in cell-ECM interactions. Taken together, this study demonstrates the importance of the ECM in cellular fate decisions and how ECM-coated substrates can potentially be used for various tissue engineering applications.
Collapse
Affiliation(s)
- V Guneta
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | | | |
Collapse
|
13
|
Baaße A, Machoy F, Juerß D, Baake J, Stang F, Reimer T, Krapohl BD, Hildebrandt G. Radiation Sensitivity of Adipose-Derived Stem Cells Isolated from Breast Tissue. Int J Mol Sci 2018; 19:ijms19071988. [PMID: 29986519 PMCID: PMC6073524 DOI: 10.3390/ijms19071988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
Within their niche, adipose-derived stem cells (ADSCs) are essential for homeostasis as well as for regeneration. Therefore, the interest of physicians is to use ADSCs as a tool for radiation oncology and regenerative medicine. To investigate related risks, this study analyses the radiation response of adult stem cells isolated from the adipose tissue of the female breast. To avoid donor-specific effects, ADSCs isolated from breast reduction mammoplasties of 10 donors were pooled and used for the radiobiological analysis. The clonogenic survival fraction assay was used to classify the radiation sensitivity in comparison to a more radiation-sensitive (ZR-75-1), moderately sensitive (MCF-7), and resistant (MCF10A) cell lines. Afterwards, cytotoxicity and genotoxicity of irradiation on ADSCs were investigated. On the basis of clonogenic cell survival rates of ADSCs after irradiation, we assign ADSCs an intermediate radiation sensitivity. Furthermore, a high repair capacity of double-strand breaks is related to an altered cell cycle arrest and increased expression of cyclin-dependent kinase (CDK) inhibitor p21. ADSCs isolated from breast tissue exhibit intermediate radiation sensitivity, caused by functional repair mechanisms. Therefore, we propose ADSCs to be a promising tool in radiation oncology.
Collapse
Affiliation(s)
- Annemarie Baaße
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Friederike Machoy
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Dajana Juerß
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Jana Baake
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Felix Stang
- Clinic for Plastic, Hand and Reconstructive Surgery, University Hospital Schleswig-Holstein, Campus Luebeck. Ratzeburger Allee 160, 23538 Luebeck, Germany.
| | - Toralf Reimer
- Department of Obstetrics and Gynecology, University of Rostock, Women's Hospital, Suedring 81, 18059 Rostock, Germany.
| | - Björn Dirk Krapohl
- Berliner Centrum für Musikermedizin, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University Medical Centre Rostock, Suedring 75, 18059 Rostock, Germany.
| |
Collapse
|
14
|
Skalska U, Kuca-Warnawin E, Kornatka A, Janicka I, Musiałowicz U, Burakowski T, Kontny E. Articular and subcutaneous adipose tissues of rheumatoid arthritis patients represent equal sources of immunoregulatory mesenchymal stem cells. Autoimmunity 2017; 50:441-450. [PMID: 29212384 DOI: 10.1080/08916934.2017.1411481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have immunoregulatory properties, but their activity is dependent on signals provided by the local microenvironment. It is likely that highly inflammatory milieu of rheumatoid joint affects ASCs activity. To test this hypothesis, the function of rheumatoid ASCs derived from articular adipose tissue (AT-ASCs) and ASCs derived from subcutaneous adipose tissue (Sc-ASCs) has been analysed. Articular adipose tissue (infrapatellar fat pad) and subcutaneous adipose tissue (from the site of skin closure with sutures) were obtained from rheumatoid arthritis (RA) patients undergoing total knee joint replacement surgery. ASCs were isolated accordingly to the routinely applied procedure, expanded and treated or not with IFNγ and TNF (10 ng/ml). To evaluate immunomodulatory properties of AT- and Sc-ASCs, co-cultures with peripheral blood mononuclear cells (PBMCs) from healthy donors have been set. Proliferation of activated PBMCs (3H-thymidine incorporation method), secretion of IL-10 and IL-17A in co-culture supernatants (specific ELISA tests) and T regulatory FoxP3+ cells (Tregs) percentage have been evaluated (flow cytometry). Performed experiments demonstrated that ASCs from both sources have comparable properties. They suppress proliferation of activated PBMCs to the similar extent, induce IL-10 secretion by resting PBMCs and moderately induce generation of FoxP3+ Treg cells. Interestingly, both AT-ASCs and Sc-ASCs cause increase of IL-17A secretion by activated PBMCs as well as induce up-regulation of IL-6 concentration in co-culture supernatants. We demonstrated that AT-ASCs and Sc-ASCs obtained from RA patients possess similar immunomodulatory properties despite different localization and distinct cytokine milieu of tissue of origin. Our results indicate that ASCs derived from rheumatoid adipose tissues are not strongly immunosuppressive in vitro and that they may contribute to the pathogenesis of RA due to IL-17A secretion enhancement.
Collapse
Affiliation(s)
- Urszula Skalska
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology and Rehabilitation , Warsaw , Poland
| | - Ewa Kuca-Warnawin
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology and Rehabilitation , Warsaw , Poland
| | - Anna Kornatka
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology and Rehabilitation , Warsaw , Poland
| | - Iwona Janicka
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology and Rehabilitation , Warsaw , Poland
| | - Urszula Musiałowicz
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology and Rehabilitation , Warsaw , Poland
| | - Tomasz Burakowski
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology and Rehabilitation , Warsaw , Poland
| | - Ewa Kontny
- a Department of Pathophysiology and Immunology , National Institute of Geriatrics, Rheumatology and Rehabilitation , Warsaw , Poland
| |
Collapse
|
15
|
Survival and Inflammatory Response in Adipose-derived Mesenchymal Stem Cell-enriched Mouse Fat Grafts. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e1110. [PMID: 28293494 PMCID: PMC5222639 DOI: 10.1097/gox.0000000000001110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 01/22/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Adipose tissue-derived mesenchymal stem cells (ATMSCs) are currently used in grafting procedures in a number of clinical trials. The reconstructive role of such cells in fat graft enrichment is largely unclear. This study was undertaken to assess survival and inflammatory response in fat grafts enriched with ATMSCs in mice. Methods: ATMSC-enriched adipose tissue was grafted subcutaneously in a clinically relevant manner in mice, and survival and inflammatory response were determined by bioluminescence imaging of transgenic tissue constitutively expressing luciferase or driven by inflammation in wild-type animals. Results: Only a minor fraction of ATMSCs transplanted subcutaneously were found to survive long term, yet fat grafts enriched with ATMSCs showed improved survival for a limited period, compared with no enrichment. NF-κB activity was transiently increased in ATMSC-enriched grafts, and the grafts responded adequately to a proinflammatory stimulus. In one animal, cells originating from the subcutaneous graft were found at a site of inflammation distant from the site of engraftment. Conclusion: ATMSCs display limited subcutaneous survival. Still, ATMSC enrichment may improve the outcome of adipose tissue grafting procedures by facilitating short-term graft survival and adequate inflammatory responses. Migration of cells from grafted adipose tissue requires further investigation.
Collapse
|
16
|
Guneta V, Tan NS, Chan SKJ, Tanavde V, Lim TC, Wong TCM, Choong C. Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions. Exp Cell Res 2016; 348:155-164. [PMID: 27658569 DOI: 10.1016/j.yexcr.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/20/2016] [Accepted: 09/18/2016] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs), which were first isolated from the bone marrow, are now being extracted from various other tissues in the body, including the adipose tissue. The current study presents systematic evidence of how the adipose tissue-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (Bm-MSCs) behave when cultured in specific pro-adipogenic microenvironments. The cells were first characterized and identified as MSCs in terms of their morphology, phenotypic expression, self-renewal capabilities and multi-lineage potential. Subsequently, the proliferation and gene expression profiles of the cell populations cultured on two-dimensional (2D) adipose tissue extracellular matrix (ECM)-coated tissue culture plastic (TCP) and in three-dimensional (3D) AlgiMatrix® microenvironments were analyzed. Overall, it was found that adipogenesis was triggered in both cell populations due to the presence of adipose tissue ECM. However, in 3D microenvironments, ASCs and Bm-MSCs were predisposed to the adipogenic and osteogenic lineages respectively. Overall, findings from this study will contribute to ongoing efforts in adipose tissue engineering as well as provide new insights into the role of the ECM and cues provided by the immediate microenvironment for stem cell differentiation.
Collapse
Affiliation(s)
- Vipra Guneta
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nguan Soon Tan
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore; Institute of Molecular and Cell Biology, Agency for Science Technology & Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Soon Kiat Jeremy Chan
- School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Vivek Tanavde
- Bioinformatics Institute, Agency for Science Technology & Research (A⁎STAR), 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Thiam Chye Lim
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, National University Hospital (NUH) and National University of Singapore (NUS), Kent Ridge Wing, Singapore 119074, Singapore
| | - Thien Chong Marcus Wong
- Plastic, Reconstructive and Aesthetic Surgery Section, Tan Tock Seng Hospital (TTSH), 11, Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Cleo Choong
- Division of Materials Technology, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; KK Research Centre, KK Women's and Children Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore.
| |
Collapse
|