1
|
Liu HY, Alessandri-Bonetti M, Shockey S, Corcos AC, Ziembicki JA, Stofman GM, Egro FM. Management of Acute Hand Burns: A Survey of American Burn Association-Verified Burn Centers. J Burn Care Res 2025; 46:430-437. [PMID: 39292520 DOI: 10.1093/jbcr/irae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 09/20/2024]
Abstract
Hand burns have a significant impact on the long-term function of burn patients. Recently, new protocols and technologies, such as dermal substitutes, have been introduced for the treatment of hand burns. This cross-sectional study investigates the preferred current management of acute hand burns and the role of dermal substitutes in treatment. A 10-question survey related to acute hand burns management was sent to 64 directors of American Burn Association (ABA)-verified burn centers. A total of 51.6% (n = 33) directors of ABA-verified burn centers responded to the survey. For the treatment of superficial partial-thickness hand burns, 90.9% preferred a nonoperative approach. Conversely, most respondents chose a single-stage excision and skin graft for deep partial-thickness hand burns (75.8%) and full-thickness hand burns (51.5%). However, for full-thickness hand burns, some surgeons prefer a 2-stage reconstruction involving excision and placement of a skin substitute (27.3%) or allograft (9.1%), followed by a skin graft. Only 6.1% would utilize a 3-stage reconstruction involving excision and allograft, excision and skin substitute, followed by skin grafting. Among surgeons who used skin substitutes (n = 26), Integra (42.3%) and Novosorb-Biodegradable Temporizing Matrix (23.1%) were preferred. The top reasons for choosing 1 specific dermal substitute were surgeon's preference (n = 20; 76.9%) and cost (n = 9; 34.6%). While a conservative nonoperative approach is preferred for superficial partial-thickness hand burns, excision and skin grafting as a 1-stage procedure remains the most common strategy for deep partial-thickness and full-thickness hand burns.
Collapse
Affiliation(s)
- Hilary Y Liu
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Mario Alessandri-Bonetti
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Siddhi Shockey
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Alain C Corcos
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Jenny A Ziembicki
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Guy M Stofman
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Francesco M Egro
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| |
Collapse
|
2
|
Song YT, Liu PC, Zhou XL, Chen YM, Wu W, Zhang JY, Li-Ling J, Xie HQ. Extracellular matrix-based biomaterials in burn wound repair: A promising therapeutic strategy. Int J Biol Macromol 2024; 283:137633. [PMID: 39549816 DOI: 10.1016/j.ijbiomac.2024.137633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Burns are common traumatic injuries affecting many people worldwide. Development of specialized burn units, advances in acute care modalities, and burn prevention programs have successfully reduced the mortality rate of severe burns. Autologous skin grafting has been considered as the gold standard for wound coverage after the removal of burned skin. For full-thickness burns of a larger scale, however, the autograft donor site may be quickly exhausted, so that alternative skin coverage is necessary. Although rapid progress has been made in the development of skin substitutes for burn wounds during the last decade, no skin substitute has fulfilled the criteria as a perfect replacement for the damaged skin. Extracellular matrix (ECM) derived components have emerged as a source for the engineering of biomaterials capable of inducing desirable cell-specific responses and one of the most promising biomaterials for burn wound healing. Among these, acellular dermal matrix, small intestinal submucosa, and amniotic membrane have been applied to treat burn wounds with acceptable outcomes. This review has explored the use of biomaterials derived from naturally occurring ECM and their derivatives for approaches aiming to promote burn wound healing, and summarized the ECM-based wound dressings products applicable in burn wound and postburn scar contracture to date.
Collapse
Affiliation(s)
- Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Peng-Cheng Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing-Li Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan-Ming Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wu Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China.
| |
Collapse
|
3
|
Trivedi AH, Wang VZ, McClain EJ, Vyas PS, Swink IR, Snell ED, Cheng BC, DeMeo PJ. The Categorization of Perinatal Derivatives for Orthopedic Applications. Biomedicines 2024; 12:1544. [PMID: 39062117 PMCID: PMC11274709 DOI: 10.3390/biomedicines12071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Musculoskeletal (MSK) pathology encompasses an array of conditions that can cause anything from mild discomfort to permanent injury. Their prevalence and impact on disability have sparked interest in more effective treatments, particularly within orthopedics. As a result, the human placenta has come into focus within regenerative medicine as a perinatal derivative (PnD). These biologics are sourced from components of the placenta, each possessing a unique composition of collagens, proteins, and factors believed to aid in healing and regeneration. This review aims to explore the current literature on PnD biologics and their potential benefits for treating various MSK pathologies. We delve into different types of PnDs and their healing effects on muscles, tendons, bones, cartilage, ligaments, and nerves. Our discussions highlight the crucial role of immune modulation in the healing process for each condition. PnDs have been observed to influence the balance between anti- and pro-inflammatory factors and, in some cases, act as biologic scaffolds for tissue growth. Additionally, we assess the range of PnDs available, while also addressing gaps in our understanding, particularly regarding biologic processing methods. Although certain PnD biologics have varying levels of support in orthopedic literature, further clinical investigations are necessary to fully evaluate their impact on human patients.
Collapse
Affiliation(s)
- Amol H. Trivedi
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
- Drexel University College of Medicine, Drexel University, University City Campus, Philadelphia, PA 19104, USA
| | - Vicki Z. Wang
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward J. McClain
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Praveer S. Vyas
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Isaac R. Swink
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Edward D. Snell
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Boyle C. Cheng
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| | - Patrick J. DeMeo
- Orthopaedic Institute, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; (A.H.T.); (V.Z.W.); (E.J.M.IV); (P.S.V.); (I.R.S.); (E.D.S.); (P.J.D.)
| |
Collapse
|
4
|
Pfister P, Wendel-Garcia PD, Meneau I, Vasella M, Watson JA, Bühler P, Rittirsch D, Lindenblatt N, Kim BS. Human amniotic membranes as an allogenic biological dressing for the treatment of burn wounds: Protocol for a randomized-controlled study. Contemp Clin Trials Commun 2023; 36:101209. [PMID: 37753391 PMCID: PMC10518583 DOI: 10.1016/j.conctc.2023.101209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Background Burn wounds pose significant challenges in medical treatment due to their devastating nature and resource-intensive requirements. Temporary coverage of burn wounds using synthetic or biological dressings allows for reepithelization before definitive skin grafting. Allogenic skin grafts have been widely used but come with drawbacks such as rejection and disease transmission. The use of amniotic membranes (AMs) offers a promising alternative for temporary coverage, as they possess biological properties that promote faster healing and improved scar quality. The various components of the amniotic membrane, including pluripotent stem cells, extracellular matrix proteins, and regenerative factors, contribute to cell growth, migration, and differentiation, as well as preservation of the original epithelial phenotype. Objective Reliable information on the treatment of burn wounds with AM is needed. The knowledge gained in this project may help to include this advantageous modern concept of biological dressings in clinical practice. The purpose of this study is to use human amniotic membranes from our in hospital laboratory, as an allogenic biological dressing after enzymatic debridement in superficial partial thickness, deep partial thickness or full thickness burn wounds. Methods We will include 30 patients in a randomized-controlled trial with each patient receiving the study intervention and the control intervention. Two 7 × 7 cm burn wound areas will be compared regarding percentage of skin graft take, healing time, healing percentage value and total healing time. Human amniotic membranes will be compared to allogenic skin grafts.
Collapse
Affiliation(s)
- Pablo Pfister
- Department of Intensive Care, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | | | - Isabelle Meneau
- Department of Ophtalmology, Eye Bank Laboratory, University Hospital Zurich, Zurich, Switzerland
| | - Mauro Vasella
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | - Jennifer Ashley Watson
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Bühler
- Department of Intensive Care, Burn Center, University Hospital Zurich, Zurich, Switzerland
- Department of Intensive Care, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Daniel Rittirsch
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, Burn Center, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Tople T, Skokan A, Ettinger R, Morrison S. Managing Thermal Injuries of the Penis and Scrotum: A Narrative Review. EUROPEAN BURN JOURNAL 2023; 4:184-194. [PMID: 39599925 PMCID: PMC11571853 DOI: 10.3390/ebj4020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 11/29/2024]
Abstract
While thermal injuries to the external genitalia occur less often than burns to the trunk and extremities, such injuries can potentially leave patients with devastating lifelong sequelae. Though much is known about treating burns in commonly exposed areas of the body, there is a lack of agreement concerning the management of genital thermal injuries. In this review, we seek to synthesize the past and existing literature into a clear analysis while reviewing current recommendations and new developments in the management of genital thermal injuries of the penis and scrotum. Specifically, recommendations for managing genital burns are discussed, including the role of urinary and fecal diversion, debridement, use of skin grafts, and flap coverage choice. Finally, less common thermal injuries, such as frostbite of the genitalia, are discussed.
Collapse
Affiliation(s)
- Tannon Tople
- School of Medicine, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Alexander Skokan
- Department of Urology, University of Washington Medical Center, Seattle, WA 98104, USA
| | - Russell Ettinger
- Division of Plastic Surgery, Department of Surgery, University of Washington Medical Center, Seattle, WA 98104, USA
| | - Shane Morrison
- Division of Plastic Surgery, Department of Surgery, University of Washington Medical Center, Seattle, WA 98104, USA
| |
Collapse
|
6
|
Jahanafrooz Z, Bakhshandeh B, Behnam Abdollahi S, Seyedjafari E. Human amniotic membrane as a multifunctional biomaterial: recent advances and applications. J Biomater Appl 2023; 37:1341-1354. [PMID: 36331116 DOI: 10.1177/08853282221137609] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The developing fetus is wrapped by a human amniotic membrane or amnion. Amnion is a promising human tissue allograft in clinical application because of its chemical composition, collagen-based, and mechanical properties of the extracellular matrix. In addition, amnion contains cells and growth factors; therefore, meets the essential parameters of tissue engineering. No donor morbidity, easy processing and storage, fewer ethical issue, anti-inflammatory, antioxidant, antibacterial, and non-immunogenic properties are other advantages of amnion usage. For these reasons, amnion can resolve some bottlenecks in the regenerative medicine issues such as tissue engineering and cell therapy. Over the last decades, biomedical applications of amnion have evolved from a simple sheet for skin or cornea repair to high-technology applications such as amnion nanocomposite, powder, or hydrogel for the regeneration of cartilage, muscle, tendon, and heart. Furthermore, amnion has anticancer as well as drug/cell delivery capacity. This review highlights various ancient and new applications of amnion in research and clinical applications, from regenerative medicine to cancer therapy, focusing on articles published during the last decade that also revealed information regarding amnion-based products. Challenges and future perspectives of the amnion in regenerative medicine are also discussed.
Collapse
|
7
|
Naasani LIS, Pretto L, Zanatelli C, Paim TC, Souza AFD, Pase PF, Fernandes MDC, Sévigny J, Wink MR. Bioscaffold developed with decellularized human amniotic membrane seeded with mesenchymal stromal cells: assessment of efficacy and safety profiles in a second-degree burn preclinical model. Biofabrication 2022; 15. [PMID: 36327453 DOI: 10.1088/1758-5090/ac9ff4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Therapies to deep burn injuries remain a global challenge. Human amniotic membrane (hAM) is a biomaterial that has been increasingly explored by the field of regenerative medicine. A decellularized hAM (DhAM) can be used as scaffold for mesenchymal stromal cells (MSCs) to grow without the loss of their stemness potential, allowing its application as cell therapy for wound healing. In this work, we associated DhAM with adipose-derived MSCs (DhAM + AD-MSCs), as a therapy strategy for second-degree burns in a preclinical model. Animals with induced second-degree burns were divided into four groups: control, which consists of a non-adherent gauze; a synthetic commercial dressing as the positive control (Control+); DhAM; and DhAM plus rat AD-MSCs (DhAM + AD-MSCs), followed by detailed and long term analysis (5 weeks). The macroscopical analysis showed the healing improvement in the wound area after the DhAM + AD-MSC treatment. Histological analysis also showed no alteration in the animal organs and a regular epithelial progression in comparison to the control. This observation was also confirmed by the analysis of suprabasal layers in the neoepidermis with CK10, showing a stratified and differentiated epithelium, when compared to Control and Control+. A strong CD73 (ecto-5'-nucleotidase) labeling was observed in the first 2 weeks postburn in dermis and epidermis. The expression in dermis was stronger in the second week in the middle of the wound, when comparing the Control+ with DhAM + AD-MSCs (p= 0.0238). In the epidermis the expression of CD73 was increased in all regions when compared to the control. This data suggests the involvement of this protein on wound healing. A low CD11b labeling was observed in DhAM + AD-MSCs treatment group mainly in the last treatment week, in comparison to Control and Control+ (p< 0.0001), which indicates a reduction in the inflammatory process. MSCs through CD73 can release high concentrations of adenosine, an immunosuppressive molecule, suggesting that this could be the mechanism by which the inflammation was better modulated in the DhAM + AD-MSCs group. The results obtained with this preclinical model confirm the effectiveness and safety of this low-cost and highly available dressing for future clinical application as a therapy for burn treatments.
Collapse
Affiliation(s)
- Liliana Ivet Sous Naasani
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | - Luiza Pretto
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | - Carla Zanatelli
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | - Thaís Casagrande Paim
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | - Aline Francielle Damo Souza
- Banco de Tecidos Humanos-Pele Dr. Roberto Corrêa Chem, Hospital Irmandade da Santa Casa de Misericórdia de Porto Alegre-ISCMPA, Porto Alegre, RS, Brazil
| | - Pablo Fagundes Pase
- Cirurgia Plástica-Hospital de Pronto Socorro e Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Marilda Da Cruz Fernandes
- Departamento de Ciências Básicas da Saúde, Laboratório de Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Márcia Rosângela Wink
- Departamento de Ciências Básicas da Saúde, Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Abstract
ABSTRACT Management of the metabolic responses to severe burn injury is recognized as a fundamental part of burn care. Definition of burn hypermetabolism is being refined to subcellular and genomic levels, and treatment concepts are need to be refined into increasingly sophisticated strategies.
Collapse
Affiliation(s)
- David Herndon
- From the Joseph M. Still Research Foundation, Inc., Augusta, GA
| | | | | |
Collapse
|
9
|
Shariatzadeh S, Shafiee S, Zafari A, Tayebi T, Yazdanpanah G, Majd A, Haj-Mirzaian A, Bahrami S, Niknejad H. Developing a pro-angiogenic placenta derived amniochorionic scaffold with two exposed basement membranes as substrates for cultivating endothelial cells. Sci Rep 2021; 11:22508. [PMID: 34795361 PMCID: PMC8602627 DOI: 10.1038/s41598-021-01922-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Decellularized and de-epithelialized placenta membranes have widely been used as scaffolds and grafts in tissue engineering and regenerative medicine. Exceptional pro-angiogenic and biomechanical properties and low immunogenicity have made the amniochorionic membrane a unique substrate which provides an enriched niche for cellular growth. Herein, an optimized combination of enzymatic solutions (based on streptokinase) with mechanical scrapping is used to remove the amniotic epithelium and chorion trophoblastic layer, which resulted in exposing the basement membranes of both sides without their separation and subsequent damages to the in-between spongy layer. Biomechanical and biodegradability properties, endothelial proliferation capacity, and in vivo pro-angiogenic capabilities of the substrate were also evaluated. Histological staining, immunohistochemistry (IHC) staining for collagen IV, and scanning electron microscope demonstrated that the underlying amniotic and chorionic basement membranes remained intact while the epithelial and trophoblastic layers were entirely removed without considerable damage to basement membranes. The biomechanical evaluation showed that the scaffold is suturable. Proliferation assay, real-time polymerase chain reaction for endothelial adhesion molecules, and IHC demonstrated that both side basement membranes could support the growth of endothelial cells without altering endothelial characteristics. The dorsal skinfold chamber animal model indicated that both side basement membranes could promote angiogenesis. This bi-sided substrate with two exposed surfaces for cultivating various cells would have potential applications in the skin, cardiac, vascularized composite allografts, and microvascular tissue engineering.
Collapse
Affiliation(s)
- Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Zafari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Alireza Majd
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|