1
|
Yu BF, Li XQ, Chen XX, Dai CC, He JG, Wei J. Analysis of the Dynamic Expression of the SMAD Family in the Periosteum During Guided Bone Regeneration. J Craniofac Surg 2024:00001665-990000000-01875. [PMID: 39221952 DOI: 10.1097/scs.0000000000010498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the dynamic expression of the SMAD family during guided bone regeneration for the reconstruction of cranio-maxillofacial bone defects. METHODS A swine model of guided bone regeneration was established with one side of the rib as the trauma group and the contralateral as control group. Periosteal and regenerative tissue specimens were harvested at 9 time points in the early, middle, and late phases, and were subjected to gene sequencing and tissue staining. Expression data of each SMAD family were extracted for further analysis, in which the correlation of the expression of the respective members within and between groups and at different time points was analyzed. RESULTS The expression of individual members of the SMAD family fluctuates greatly, especially during the first month. The SMAD3 and SMAD4 genes were the most highly expressed. The foldchange value of SMAD6 was the largest and remained above 1.5 throughout the process. The dynamic expression levels of SMAD2, SMAD4, SMAD5, SMAD6, and SMAD9 showed a significant positive correlation in both groups. The expression levels of each gene showed a positive correlation with other SMAD genes. Tissue staining showed that the overall contour of the regenerated bone tissue was basically formed within the first 1 month. CONCLUSION The first month of guided bone regeneration is a critical period for bone regeneration and is an important period for the SMAD family to play a role. The SMAD6 may play an important role in the whole process of guided bone regeneration.
Collapse
Affiliation(s)
- Bao-Fu Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Qing Li
- Department of Anesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Xue Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuan-Chang Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jin-Guang He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiao Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Chen X, Yu B, Wang Z, Zhou Q, Wu Q, He J, Dai C, Li Q, Wei J. Dynamic Transcriptome Analysis of SFRP Family in Guided Bone Regeneration With Occlusive Periosteum in Swine Model. J Craniofac Surg 2024; 35:1432-1437. [PMID: 39042069 DOI: 10.1097/scs.0000000000010365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND A variety of congenital or acquired conditions can cause craniomaxillofacial bone defects, resulting in a heavy financial burden and psychological stress. Guided bone self-generation with periosteum-preserved has great potential for reconstructing large bone defects. METHODS A swine model of guided bone regeneration with occlusive periosteum was established, the rib segment was removed, and the periosteum was sutured to form a closed regeneration chamber. Hematoxylin and eosin staining, Masson's staining, and Safranine O-Fast Green staining were done. Nine-time points were chosen for collecting the periosteum and regenerated bone tissue for gene sequencing. The expression level of each secreted frizzled-related protein (SFRP) member and the correlations among them were analyzed. RESULTS The process of bone regeneration is almost complete 1 month after surgery, and up to 1 week after surgery is an important interval for initiating the process. The expression of each SFRP family member fluctuated greatly. The highest expression level of all members ranged from 3 days to 3 months after surgery. The expression level of SFRP2 was the highest, and the difference between 2 groups was the largest. Secreted frizzled-related protein 2 and SFRP4 showed a notable positive correlation between the control and model groups. Secreted frizzled-related protein 1, SFRP2, and SFRP4 had a significant spike in fold change at 1 month postoperatively. Secreted frizzled-related protein 1 and SFRP2 had the strongest correlation. CONCLUSIONS This study revealed the dynamic expression of the SFRP family in guided bone regeneration with occlusive periosteum in a swine model, providing a possibility to advance the clinical application of bone defect repair.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ma C, Tao C, Zhang Z, Zhou H, Fan C, Wang DA. Development of artificial bone graft via in vitro endochondral ossification (ECO) strategy for bone repair. Mater Today Bio 2023; 23:100893. [PMID: 38161510 PMCID: PMC10755541 DOI: 10.1016/j.mtbio.2023.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Endochondral ossification (ECO) is a form of bone formation whereby the newly deposited bone replaces the cartilage template. A decellularized artificial cartilage graft (dLhCG), which is composed of hyaline cartilage matrixes, has been developed in our previous study. Herein, the osteogenesis of bone marrow-derived MSCs in the dLhCG through chondrogenic differentiation, chondrocyte hypertrophy, and subsequent transdifferentiation induction has been investigated by simulating the physiological processes of ECO for repairing critical-sized bone defects. The MSCs were recellularized into dLhCGs and subsequently allowed to undergo a 14-day proliferation period (mrLhCG). Following this, the mrLhCG constructs were subjected to two distinct differentiation induction protocols to achieve osteogenic differentiation: chondrogenic medium followed by chondrocytes culture medium with a high concentration of fetal bovine serum (CGCC group) and canonical osteogenesis inducing medium (OI group). The formation of a newly developed artificial bone graft, ossified dLhCG (OsLhCG), as well as its capability of aiding bone defect reconstruction were characterized by in vitro and in vivo trials, such as mRNA sequencing, quantitative real-time PCR (qPCR), immunohistochemistry, the greater omentum implantation in nude mice, and repair for the critical-sized femoral defects in rats. The results reveal that the differentiation induction of MSCs in the CGCC group can realize in vitro ECO through chondrogenic differentiation, hypertrophy, and transdifferentiation, while the MSCs in the OI group, as expected, realize ossification through direct osteogenic differentiation. The angiogenesis and osteogenesis of OsLhCG were proved by being implanted into the greater omentum of nude mice. Besides, the OsLhCG exhibits the capability to achieve the repair of critical-size femoral defects.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong
| | - Chao Tao
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong
| | - Zhen Zhang
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong
| | - Huiqun Zhou
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong
| | - Changjiang Fan
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, Shandong, 266071, China
| | - Dong-an Wang
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong
| |
Collapse
|
4
|
Yu BF, Wang Z, Chen XX, Zeng Q, Dai CC, Wei J. Continuous dynamic identification of key genes and molecular signaling pathways of periosteum in guided bone self-generation in swine model. J Orthop Surg Res 2023; 18:53. [PMID: 36653843 PMCID: PMC9847205 DOI: 10.1186/s13018-023-03524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Guided bone self-generation with periosteum-preserved has successfully regenerated mandibular, temporomandibular and interphalangeal joint. The aim of this study was to investigate the dynamic changes of gene expression of periosteum which was involved in the guided bone self-generation. METHODS Rib defects of critical size were created in mature swine with periosteum-preserved. The periosteum was sutured into a sealed sheath that closed the bone defect. The periosteum of trauma and control sites were harvested at postoperative 9 time points, and total RNA was extracted. Microarray analysis was conducted to identify the differences in the transcriptome of different time points between two groups. RESULTS The differentially expressed genes (DEGs) between control and trauma group were different at postoperative different time points. The dynamic changes of the number of DEGs fluctuated a lot. There were 3 volatility peaks, and we chose 3 time points of DEG number peak (1 week, 5 weeks and 6 months) to study the functions of DEGs. Oxidoreductase activity, oxidation-reduction process and mitochondrion are the most enriched terms of Go analysis. The major signaling pathways of DEGs enrichment include oxidative phosphorylation, PI3K-Akt signaling pathway, osteoclast differentiation pathway and Wnt signaling. CONCLUSIONS The oxidoreductase reaction was activated during this bone regeneration process. The oxidative phosphorylation, PI3K-Akt signaling pathway, osteoclast differentiation pathway and Wnt signaling may play important roles in the guided bone self-generation with periosteum-preserved. This study can provide a reference for how to improve the application of this concept of bone regeneration.
Collapse
Affiliation(s)
- Bao-Fu Yu
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Zi Wang
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Xiao-Xue Chen
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Qi Zeng
- grid.415002.20000 0004 1757 8108Department of Plastic Surgery, Jiangxi Province People’s Hospital, Nanchang, China
| | - Chuan-Chang Dai
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Jiao Wei
- grid.412523.30000 0004 0386 9086Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiaotong University School of Medicine, No. 639 Zhi Zao Ju Road, Shanghai, 200011 China
| |
Collapse
|
5
|
Dynamic transcriptome analysis of NFAT family in guided bone regeneration with occlusive periosteum in swine model. J Orthop Surg Res 2022; 17:364. [PMID: 35883195 PMCID: PMC9327338 DOI: 10.1186/s13018-022-03252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/09/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the dynamic expression of NFAT family of periosteum in guided bone regeneration process. MATERIAL AND METHODS The swine ribs on one side were used as the trauma group and the contralateral side as the control group. After rib segment was removed, periosteum was sutured to form a closed cavity mimicking guided bone regeneration. The periosteum and regenerated bone tissue were collected at nine time points for gene sequencing and hematoxylin-eosin staining. The expression data of each member were extracted for analysis. Expression correlations among various members were analyzed. RESULTS Staining showed the guided bone regeneration was almost completed 1 month after the operation with later stage for bone remodeling. The expression levels of each member in both groups changed greatly, especially within postoperative 1.5 months. The expression of NFATc1 and NFATC2IP in trauma group was significantly correlated with those of control group. The foldchange of each member also had large fluctuations especially within 1.5 months. In the trauma group, NFATc2 and NFATc4 were significantly upregulated, and there was a significant aggregation correlation of NFAT family expression between the various time points within one month, similar to the "pattern-block" phenomenon. CONCLUSION This study revealed the dynamic expression of NFAT family in guided bone regeneration, and provided a reference for the specific mechanism. The first 1.5 months is a critical period and should be paid attention to. The significant high-expression of NFATc2 and NFATc4 may role importantly in this process, which needs further research to verify it.
Collapse
|
6
|
Chen X, Yu B, Wang Z, Li Q, Dai C, Wei J. Progress of Periosteal Osteogenesis: The Prospect of In Vivo Bioreactor. Orthop Surg 2022; 14:1930-1939. [PMID: 35794789 PMCID: PMC9483074 DOI: 10.1111/os.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
Repairing large segment bone defects is still a clinical challenge. Bone tissue prefabrication shows great translational potentials and has been gradually accepted clinically. Existing bone reconstruction strategies, including autologous periosteal graft, allogeneic periosteal transplantation, xenogeneic periosteal transplantation, and periosteal cell tissue engineering, are all clinically valuable treatments and have made significant progress in research. Herein, we reviewed the research progress of these techniques and briefly explained the relationship among in vivo microenvironment, mechanical force, and periosteum osteogenesis. Moreover, we also highlighted the importance of the critical role of periosteum in osteogenesis and explained current challenges and future perspective.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Baofu Yu
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Zi Wang
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Chuanchang Dai
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Jiao Wei
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| |
Collapse
|
7
|
Cao SS, Li SY, Geng YM, Kapat K, Liu SB, Perera FH, Li Q, Terheyden H, Wu G, Che YJ, Miranda P, Zhou M. Prefabricated 3D-Printed Tissue-Engineered Bone for Mandibular Reconstruction: A Preclinical Translational Study in Primate. ACS Biomater Sci Eng 2021; 7:5727-5738. [PMID: 34808042 PMCID: PMC8672350 DOI: 10.1021/acsbiomaterials.1c00509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
advent of three dimensionally (3D) printed customized bone
grafts using different biomaterials has enabled repairs of complex
bone defects in various in vivo models. However, studies related to
their clinical translations are truly limited. Herein, 3D printed
poly(lactic-co-glycolic acid)/β-tricalcium
phosphate (PLGA/TCP) and TCP scaffolds with or without recombinant
bone morphogenetic protein −2 (rhBMP-2) coating were utilized
to repair primate’s large-volume mandibular defects and compared
efficacy of prefabricated tissue-engineered bone (PTEB) over direct
implantation (without prefabrication). 18F-FDG PET/CT was
explored for real-time monitoring of bone regeneration and vascularization.
After 3-month’s prefabrication, the original 3D-architecture
of the PLGA/TCP-BMP scaffold was found to be completely lost, while
it was properly maintained in TCP-BMP scaffolds. Besides, there was
a remarkable decrease in the PLGA/TCP-BMP scaffold density and increase
in TCP-BMP scaffolds density during ectopic (within latissimus dorsi
muscle) and orthotopic (within mandibular defect) implantation, indicating
regular bone formation with TCP-BMP scaffolds. Notably, PTEB based
on TCP-BMP scaffold was successfully fabricated with pronounced effects
on bone regeneration and vascularization based on radiographic, 18F-FDG PET/CT, and histological evaluation, suggesting a promising
approach toward clinical translation.
Collapse
Affiliation(s)
- Shuai-Shuai Cao
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shu-Yi Li
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China.,Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, de Boelelaan, Vrije Universiteit Amsterdam 1117, Amsterdam, The Netherlands
| | - Yuan-Ming Geng
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kausik Kapat
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shang-Bin Liu
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Fidel Hugo Perera
- Department of Mechanical, Energy and Materials Engineering, University of Extremadura, Industrial Engineering School, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Qian Li
- Hangzhou Jiuyuan Gene Engineering Co., Ltd., Hangzhou 3100018, China
| | - Hendrik Terheyden
- Department of Oral and Maxillofacial Surgery, Red Cross Hospital, Kassel 34117, Germany
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam 1117, The Netherlands
| | - Yue-Juan Che
- Department of Anesthesia, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Pedro Miranda
- Department of Mechanical, Energy and Materials Engineering, University of Extremadura, Industrial Engineering School, Avda. de Elvas s/n, 06006 Badajoz, Spain
| | - Miao Zhou
- Department of Oral and Maxillofacial Surgery, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
8
|
Wang J, Wang X, Zhen P, Fan B. [Research progress of in vivo bioreactor for bone tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:627-635. [PMID: 33998218 DOI: 10.7507/1002-1892.202012083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research progress of in vivo bioreactor (IVB) for bone tissue engineering in order to provide reference for its future research direction. Methods The literature related to IVB used in bone tissue engineering in recent years was reviewed, and the principles of IVB construction, tissue types, sites, and methods of IVB construction, as well as the advantages of IVB used in bone tissue engineering were summarized. Results IVB takes advantage of the body's ability to regenerate itself, using the body as a bioreactor to regenerate new tissues or organs at injured sites or at ectopic sites that can support the regeneration of new tissues. IVB can be constructed by tissue flap (subcutaneous pocket, muscle flap/pocket, fascia flap, periosteum flap, omentum flap/abdominal cavity) and axial vascular pedicle (axial vascular bundle, arteriovenous loop) alone or jointly. IVB is used to prefabricate vascularized tissue engineered bone that matched the shape and size of the defect. The prefabricated vascularized tissue engineered bone can be used as bone graft, pedicled bone flap, or free bone flap to repair bone defect. IVB solves the problem of insufficient vascularization in traditional bone tissue engineering to a certain extent. Conclusion IVB is a promising method for vascularized tissue engineered bone prefabrication and subsequent bone defect reconstruction, with unique advantages in the repair of large complex bone defects. However, the complexity of IVB construction and surgical complications hinder the clinical application of IVB. Researchers should aim to develop a simple, safe, and efficient IVB.
Collapse
Affiliation(s)
- Jian Wang
- First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou Gansu, 730000, P.R.China.,Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| | - Xiao Wang
- School of Design and Art, Lanzhou University of Technology, Lanzhou Gansu, 730000, P.R.China
| | - Ping Zhen
- Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| | - Bo Fan
- Orthopaedic Center, the 940th Hospital of PLA Joint Logistics Support Force, Lanzhou Gansu, 730000, P.R.China
| |
Collapse
|
9
|
Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 2021; 9:21. [PMID: 33753717 PMCID: PMC7985324 DOI: 10.1038/s41413-021-00138-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and osteogenesis are coupled. However, the cellular and molecular regulation of these processes remains to be further investigated. Both tissues have recently been recognized as endocrine organs, which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues. This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature. In addition, research progress related to the bone vasculature, vessel-related skeletal diseases, pathological conditions, and angiogenesis-targeted therapeutic strategies are also summarized. With respect to future perspectives, new techniques such as single-cell sequencing, which can be used to show the cellular diversity and plasticity of both tissues, are facilitating progress in this field. Moreover, extracellular vesicle-mediated nuclear acid communication deserves further investigation. In conclusion, a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ya Gu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| |
Collapse
|
10
|
Wu P, Wang Y, Sun D, Luo Y, Chen C, Tang Z, Liao Y, Cao X, Xu L, Cheng C, Liu W, Liang X. In-vivo histocompatibility and osteogenic potential of biodegradable PLDLA composites containing silica-based bioactive glass fiber. J Biomater Appl 2020; 35:59-71. [PMID: 32233716 DOI: 10.1177/0885328220911598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this two-year study was to evaluate the histocompatibility and osteogenic properties of a composite material consisting of poly(l-co-d,l lactide) (PLDLA) and silica-based bioactive glass fibers in vivo. PLDLA and PLDLA/silica-based bioactive glass fibers pins were implanted into the erector spinae muscles and femurs of beagles. Muscle and bone tissue samples were harvested 6, 12, 16, 26, 52, 78, and 104 weeks after implantation. Histology analysis was used to assess the histocompatibility, angiogenesis, and bone-implant contact. Micro-computed tomography was used to evaluate bone formation around the pins. Immunohistochemistry and western blotting revealed the expression level of the osteogenesis-related proteins. Addition of bioactive glass was demonstrated to possess better histocompatibility and reduce the inflammatory reactions in vivo. Moreover, PLDLA/silica-based bioactive glass fibers pins were demonstrated to promote angiogenesis and increase osteogenesis-related proteins expression, and thus played a positive role in osteogenesis and osseointegration after implantation. Our findings indicated that a composite of PLDLA and silica-based bioactive glass fiber is a promising biodegradable material for clinical use.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongyuan Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Youran Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziqing Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunmao Liao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Xiaoyan Cao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Lijun Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
| | - Chengkung Cheng
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weiqing Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 2017; 20:291-302. [PMID: 28194536 PMCID: PMC5511612 DOI: 10.1007/s10456-017-9541-1] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022]
Abstract
Bone is a richly vascularized connective tissue. As the main source of oxygen, nutrients, hormones, neurotransmitters and growth factors delivered to the bone cells, vasculature is indispensable for appropriate bone development, regeneration and remodeling. Bone vasculature also orchestrates the process of hematopoiesis. Blood supply to the skeletal system is provided by the networks of arteries and arterioles, having distinct molecular characteristics and localizations within the bone structures. Blood vessels of the bone develop through the process of angiogenesis, taking place through different, bone-specific mechanisms. Impaired functioning of the bone blood vessels may be associated with the occurrence of some skeletal and systemic diseases, i.e., osteonecrosis, osteoporosis, atherosclerosis or diabetes mellitus. When a disease or trauma-related large bone defects appear, bone grafting or bone tissue engineering-based strategies are required. However, a successful bone regeneration in both approaches largely depends on a proper blood supply. In this paper, we review the most recent data on the functions, molecular characteristics and significance of the bone blood vessels, with a particular emphasis on the role of angiogenesis and blood vessel functioning in bone development and regeneration, as well as the consequences of its impairment in the course of different skeletal and systemic diseases.
Collapse
|