1
|
Vernice NA, Dong X, Matavosian AA, Corpuz GS, Shin J, Bonassar LJ, Spector JA. Bioengineering Full-scale auricles using 3D-printed external scaffolds and decellularized cartilage xenograft. Acta Biomater 2024; 179:121-129. [PMID: 38494083 DOI: 10.1016/j.actbio.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Reconstruction of the human auricle remains a formidable challenge for plastic surgeons. Autologous costal cartilage grafts and alloplastic implants are technically challenging, and aesthetic and/or tactile outcomes are frequently suboptimal. Using a small animal "bioreactor", we have bioengineered full-scale ears utilizing decellularized cartilage xenograft placed within a 3D-printed external auricular scaffold that mimics the size, shape, and biomechanical properties of the native human auricle. The full-scale polylactic acid ear scaffolds were 3D-printed based upon data acquired from 3D photogrammetry of an adult ear. Ovine costal cartilage was processed either through mincing (1 mm3) or zesting (< 0.5 mm3), and then fully decellularized and sterilized. At explantation, both the minced and zested neoears maintained the size and contour complexities of the scaffold topography with steady tissue ingrowth through 6 months in vivo. A mild inflammatory infiltrate at 3 months was replaced by homogenous fibrovascular tissue ingrowth enveloping individual cartilage pieces at 6 months. All ear constructs were pliable, and the elasticity was confirmed by biomechanical analysis. Longer-term studies of the neoears with faster degrading biomaterials will be warranted for future clinical application. STATEMENT OF SIGNIFICANCE: Accurate reconstruction of the human auricle has always been a formidable challenge to plastic surgeons. In this article, we have bioengineered full-scale ears utilizing decellularized cartilage xenograft placed within a 3D-printed external auricular scaffold that mimic the size, shape, and biomechanical properties of the native human auricle. Longer-term studies of the neoears with faster degrading biomaterials will be warranted for future clinical application.
Collapse
Affiliation(s)
- Nicholas A Vernice
- Laboratory of Bioregenerative Medicine & Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Xue Dong
- Laboratory of Bioregenerative Medicine & Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Alicia A Matavosian
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - George S Corpuz
- Laboratory of Bioregenerative Medicine & Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, USA
| | - James Shin
- Department of Radiology, Well Cornell Medicine, New York, NY, USA
| | - Lawrence J Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Jason A Spector
- Laboratory of Bioregenerative Medicine & Surgery, Department of Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, NY, USA; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Brandt HH, Bodmer D. [Contemporary diagnosis and management of congenital microtia and aural atresia : Part 2: Overview of therapeutic approaches]. HNO 2024; 72:57-68. [PMID: 38047932 PMCID: PMC10781867 DOI: 10.1007/s00106-023-01386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 12/05/2023]
Abstract
Congenital malformations of the pinna and aural atresia can result in major aesthetic and functional deficits. Knowledge about embryologic developments and established classification systems is an essential requirement when dealing with affected patients. Early detection of deficiencies and introduction of appropriate diagnostic measures is vital to initiate adequate therapies and prevent long-term disabilities. Treatment for malformations of the pinna-if requested-is mostly surgical, infrequently an epithesis is applied. As in other surgical fields, tissue engineering will likely play a crucial role in the future. Treatment of aural stenosis and atresia aims at improvement of hearing levels and prevention of secondary complications like cholesteatoma and chronic otorrhea. Auditory rehabilitation comprises a spectrum from conventional hearing aids to invasive hearing implants, the latter being favored in recent years.
Collapse
Affiliation(s)
- Hannes H Brandt
- Klinische Abteilung für Hals‑, Nasen‑, Ohrenkrankheiten, Universitätsklinikum St. Pölten, Dunant-Platz 1, 3100, St. Pölten, Österreich.
- Karl Landsteiner Privatuniversität für Gesundheitswissenschaften, Krems, 3500, Dr. Karl-Dorrek-Straße 30, Österreich.
| | - Daniel Bodmer
- Hals-Nasen-Ohren-Klinik, Universitätsspital Basel, Basel, 4031, Petersgraben 4, Schweiz
| |
Collapse
|
3
|
Gardner OFW, Agabalyan N, Weil B, Ali MHI, Lowdell MW, Bulstrode NW, Ferretti P. Human platelet lysate enhances proliferation but not chondrogenic differentiation of pediatric mesenchymal progenitors. Cytotherapy 2023; 25:286-297. [PMID: 36599772 DOI: 10.1016/j.jcyt.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/26/2022] [Accepted: 11/20/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AIMS Cell therapies have the potential to improve reconstructive procedures for congenital craniofacial cartilage anomalies such as microtia. Adipose-derived stem cells (ADSCs) and auricular cartilage stem/progenitor cells (CSPCs) are promising candidates for cartilage reconstruction, but their successful use in the clinic will require the development of xeno-free expansion and differentiation protocols that can maximize their capacity for chondrogenesis. METHODS We assessed the behavior of human ADSCs and CSPCs grown either in qualified fetal bovine serum (FBS) or human platelet lysate (hPL), a xeno-free alternative, in conventional monolayer and 3-dimensional spheroid cultures. RESULTS We show that CSPCs and ADSCs display greater proliferation rate in hPL than FBS and express typical mesenchymal stromal cell surface antigens in both media. When expanded in hPL, both cell types, particularly CSPCs, maintain a spindle-like morphology and lower surface area over more passages than in FBS. Both media supplements support chondrogenic differentiation of CSPCs and ADSCs grown either as monolayers or spheroids. However, chondrogenesis appears less ordered in hPL than FBS, with reduced co-localization of aggrecan and collagen type II in spheroids. CONCLUSIONS hPL may be beneficial for the expansion of cells with chondrogenic potential and maintaining stemness, but not for their chondrogenic differentiation for tissue engineering or disease modeling.
Collapse
Affiliation(s)
- Oliver F W Gardner
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, London, UK
| | - Natacha Agabalyan
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, London, UK
| | - Ben Weil
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Mohammed H I Ali
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, London, UK; Department of Zoology, Faculty of Science, South Valley University, Qena, Egypt
| | - Mark W Lowdell
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free London NHS Foundation Trust, London, United Kingdom; Cancer Institute, UCL, London, United Kingdom
| | - Neil W Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Patrizia Ferretti
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, London, UK.
| |
Collapse
|
4
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Jia L, Zhang P, Ci Z, Zhang W, Liu Y, Jiang H, Zhou G. Immune-Inflammatory Responses of an Acellular Cartilage Matrix Biomimetic Scaffold in a Xenotransplantation Goat Model for Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:667161. [PMID: 34150731 PMCID: PMC8208476 DOI: 10.3389/fbioe.2021.667161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
The rapid development of tissue engineering and regenerative medicine has introduced a new strategy for ear reconstruction, successfully regenerating human-ear-shaped cartilage and achieving the first clinical breakthrough using a polyglycolic acid/polylactic acid (PGA/PLA) scaffold. However, its clinical repair varies greatly among individuals, and the quality of regenerated cartilage is unstable, which seriously limits further clinical application. Acellular cartilage matrix (ACM), with a cartilage-specific microenvironment, good biocompatibility, and potential to promote cell proliferation, has been used to regenerate homogeneous ear-shaped cartilage in immunocompromised nude mice. However, there is no evidence on whether ACM will regenerate homogeneous cartilage tissue in large animals or has the potential for clinical transformation. In this study, xenogeneic ACM assisted with gelatin (GT) with or without autologous chondrocytes was implanted subcutaneously into goats to establish a xenotransplantation model and compared with a PGA/PLA scaffold to evaluate the immune-inflammatory response and quality of regenerated cartilage. The results confirmed the superiority of the ACM/GT, which has the potential capacity to promote cell proliferation and cartilage formation. Although there is a slight immune-inflammatory response in large animals, it does not affect the quality of the regenerated cartilage and forms homogeneous and mature cartilage. The current study provides detailed insights into the immune-inflammatory response of the xenogeneic ACM/GT and also provides scientific evidence for future clinical application of ACM/GT in cartilage tissue engineering.
Collapse
Affiliation(s)
- Litao Jia
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, China.,Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Zheng Ci
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Wei Zhang
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, China.,Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Liu
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Haiyue Jiang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangdong Zhou
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, China.,Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| |
Collapse
|
6
|
Humphries S, Joshi A, Webb WR, Kanegaonkar R. Auricular reconstruction: where are we now? A critical literature review. Eur Arch Otorhinolaryngol 2021; 279:541-556. [PMID: 34076725 DOI: 10.1007/s00405-021-06903-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Deformities of the external ear can affect psychosocial well-being and hearing. Current gold-standard reconstructive treatment is autologous costal cartilage grafting despite the vast morbidity profile. Tissue engineering using stem cells and 3D printing can create patient-specific reconstructed auricles with superior cosmetic outcomes and reduced morbidity. This review critically analyses recent and breakthrough research in the field of regenerative medicine for the pinna, considering gaps in current literature and suggesting further steps to identify whether this could be the new gold-standard. METHODS A literature review was conducted. PubMed (MEDLINE) and Cochrane databases were searched using key terms regenerative medicine, tissue engineering, 3D printing, biofabrication, auricular reconstruction, auricular cartilage, chondrocyte, outer ear and pinna. Studies in which tissue-engineered auricles were implanted into animal or human subjects were included. Exclusion criteria included articles not in English and not published within the last ten years. Titles, abstracts and full texts were screened. Reference searching was conducted and significant breakthrough studies included. RESULTS 8 studies, 6 animal and 2 human, were selected for inclusion. Strengths and weaknesses of each are discussed. Common limitations include a lack of human studies, small sample sizes and short follow-up times. CONCLUSION Regenerative medicine holds significant potential to improve auricular reconstruction. To date there are no large multi-centred human studies in which tissue-engineered auricles have been implanted. However, recent human studies suggest promising results, raising the ever-growing possibility that tissue engineering is the future of auricular reconstruction. We aim to continue developing knowledge in this field.
Collapse
Affiliation(s)
- Sarah Humphries
- Institute of Medical Sciences, Faculty of Medicine, Canterbury Christchurch University, Chatham Maritime, Kent, UK.
| | - Anil Joshi
- Facial Plastics, University Hospital Lewisham, Lewisham, UK
| | - William Richard Webb
- Institute of Medical Sciences, Faculty of Medicine, Canterbury Christchurch University, Chatham Maritime, Kent, UK
| | - Rahul Kanegaonkar
- Institute of Medical Sciences, Faculty of Medicine, Canterbury Christchurch University, Chatham Maritime, Kent, UK
| |
Collapse
|
7
|
Chang B, Cornett A, Nourmohammadi Z, Law J, Weld B, Crotts SJ, Hollister SJ, Lombaert IMA, Zopf DA. Hybrid Three-Dimensional-Printed Ear Tissue Scaffold With Autologous Cartilage Mitigates Soft Tissue Complications. Laryngoscope 2021; 131:1008-1015. [PMID: 33022112 PMCID: PMC8021596 DOI: 10.1002/lary.29114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES/HYPOTHESIS To analyze the use of highly translatable three-dimensional (3D)-printed auricular scaffolds with and without novel cartilage tissue inserts in a rodent model. STUDY DESIGN Preclinical rodent animal model. METHODS This prospective study assessed a single-stage 3D-printed auricular bioscaffold with or without porcine cartilage tissue inserts in an athymic rodent model. Digital Imaging and Communications in Medicine computed tomography images of a human auricle were segmented to create an external anatomic envelope filled with orthogonally interconnected spherical pores. Scaffolds with and without tissue inset sites were 3D printed by laser sintering bioresorbable polycaprolactone, then implanted subcutaneously in five rats for each group. RESULTS Ten athymic rats were studied to a goal of 24 weeks postoperatively. Precise anatomic similarity and scaffold integrity were maintained in both scaffold conditions throughout experimentation with grossly visible tissue ingrowth and angiogenesis upon explantation. Cartilage-seeded scaffolds had relatively lower rates of nonsurgical site complications compared to unseeded scaffolds with relatively increased surgical site ulceration, though neither met statistical significance. Histology revealed robust soft tissue infiltration and vascularization in both seeded and unseeded scaffolds, and demonstrated impressive maintenance of viable cartilage in cartilage-seeded scaffolds. Radiology confirmed soft tissue infiltration in all scaffolds, and biomechanical modeling suggested amelioration of stress in scaffolds implanted with cartilage. CONCLUSIONS A hybrid approach incorporating cartilage insets into 3D-printed bioscaffolds suggests enhanced clinical and histological outcomes. These data demonstrate the potential to integrate point-of-care tissue engineering techniques into 3D printing to generate alternatives to current reconstructive surgery techniques and avoid the demands of traditional tissue engineering. LEVEL OF EVIDENCE NA Laryngoscope, 131:1008-1015, 2021.
Collapse
Affiliation(s)
- Brian Chang
- Department of Pediatrics, University of California Los Angeles Mattel Children's Hospital, Los Angeles, California, U.S.A
| | - Ashley Cornett
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, U.S.A
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, U.S.A
| | - Zahra Nourmohammadi
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, U.S.A
| | - Jadan Law
- Department of Biomedical Engineering, Michigan Engineering, Ann and Robert H. Lurie Biomedical Engineering Building, Ann Arbor, Michigan, U.S.A
| | - Blaine Weld
- Department of Biomedical Engineering, Michigan Engineering, Ann and Robert H. Lurie Biomedical Engineering Building, Ann Arbor, Michigan, U.S.A
| | - Sarah J Crotts
- Center for 3D Medical Fabrication, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, U.S.A
| | - Scott J Hollister
- Center for 3D Medical Fabrication, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, U.S.A
| | - Isabelle M A Lombaert
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, U.S.A
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, U.S.A
| | - David A Zopf
- Department of Biomedical Engineering, Michigan Engineering, Ann and Robert H. Lurie Biomedical Engineering Building, Ann Arbor, Michigan, U.S.A
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, C.S. Mott Children's Hospital, Ann Arbor, Michigan, U.S.A
| |
Collapse
|
8
|
Sánchez-Porras D, Durand-Herrera D, Paes AB, Chato-Astrain J, Verplancke R, Vanfleteren J, Sánchez-López JD, García-García ÓD, Campos F, Carriel V. Ex Vivo Generation and Characterization of Human Hyaline and Elastic Cartilaginous Microtissues for Tissue Engineering Applications. Biomedicines 2021; 9:biomedicines9030292. [PMID: 33809387 PMCID: PMC8001313 DOI: 10.3390/biomedicines9030292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Considering the high prevalence of cartilage-associated pathologies, low self-repair capacity and limitations of current repair techniques, tissue engineering (TE) strategies have emerged as a promising alternative in this field. Three-dimensional culture techniques have gained attention in recent years, showing their ability to provide the most biomimetic environment for the cells under culture conditions, enabling the cells to fabricate natural, 3D functional microtissues (MTs). In this sense, the aim of this study was to generate, characterize and compare scaffold-free human hyaline and elastic cartilage-derived MTs (HC-MTs and EC-MTs, respectively) under expansion (EM) and chondrogenic media (CM). MTs were generated by using agarose microchips and evaluated ex vivo for 28 days. The MTs generated were subjected to morphometric assessment and cell viability, metabolic activity and histological analyses. Results suggest that the use of CM improves the biomimicry of the MTs obtained in terms of morphology, viability and extracellular matrix (ECM) synthesis with respect to the use of EM. Moreover, the overall results indicate a faster and more sensitive response of the EC-derived cells to the use of CM as compared to HC chondrocytes. Finally, future preclinical in vivo studies are still needed to determine the potential clinical usefulness of these novel advanced therapy products.
Collapse
Affiliation(s)
- David Sánchez-Porras
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
- Doctoral Program in Biomedicine, Doctoral School, University of Granada, 18016 Granada, Spain
| | - Daniel Durand-Herrera
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
| | - Ana B. Paes
- Master Program in Tissue Engineering and Advanced Therapies, International School for Postgraduate Studies, University of Granada, 18016 Granada, Spain;
| | - Jesús Chato-Astrain
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
| | - Rik Verplancke
- Centre for Microsystems Technology (CMST), imec and Ghent University, 9052 Ghent, Belgium; (R.V.); (J.V.)
| | - Jan Vanfleteren
- Centre for Microsystems Technology (CMST), imec and Ghent University, 9052 Ghent, Belgium; (R.V.); (J.V.)
| | - José Darío Sánchez-López
- Division of Maxillofacial Surgery, University Hospital Complex of Granada, 18013 Granada, Spain;
| | - Óscar Darío García-García
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
| | - Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
- Correspondence: (F.C.); (V.C.); Tel.: +34-958-248-295 (V.C.)
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (D.S.-P.); (D.D.-H.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain; (J.C.-A.); (Ó.D.G.-G.)
- Correspondence: (F.C.); (V.C.); Tel.: +34-958-248-295 (V.C.)
| |
Collapse
|
9
|
Ear Reconstruction Simulation: From Handcrafting to 3D Printing. Bioengineering (Basel) 2019; 6:bioengineering6010014. [PMID: 30764524 PMCID: PMC6466171 DOI: 10.3390/bioengineering6010014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/05/2022] Open
Abstract
Microtia is a congenital malformation affecting one in 5000 individuals and is characterized by physical deformity or absence of the outer ear. Nowadays, surgical reconstruction with autologous tissue is the most common clinical practice. The procedure requires a high level of manual and artistic techniques of a surgeon in carving and sculpting of harvested costal cartilage of the patient to recreate an auricular framework to insert within a skin pocket obtained at the malformed ear region. The aesthetic outcomes of the surgery are highly dependent on the experience of the surgeon performing the surgery. For this reason, surgeons need simulators to acquire adequate technical skills out of the surgery room without compromising the aesthetic appearance of the patient. The current paper aims to describe and analyze the different materials and methods adopted during the history of autologous ear reconstruction (AER) simulation to train surgeons by practice on geometrically and mechanically accurate physical replicas. Recent advances in 3D modelling software and manufacturing technologies to increase the effectiveness of AER simulators are particularly described to provide more recent outcomes.
Collapse
|