Lin W, Wang K, Zheng Z, Chen Y, Fu C, Lin Y, Chen D. Newborn screening for primary carnitine deficiency in Quanzhou, China.
Clin Chim Acta 2020;
512:166-171. [PMID:
33181153 DOI:
10.1016/j.cca.2020.11.005]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS
Primary carnitine deficiency (PCD) is an autosomal recessive disease caused by functional defects in the carnitine transporter OCTN2 due to mutations in SLC22A5. Here, we aimed to understand the incidence, clinical, biochemical, and molecular features of PCD in Quanzhou, China.
MATERIALS AND METHODS
Newborn screening (NBS) was performed through tandem mass spectrometry (MS/MS) to detect genetic metabolic diseases. Next-generation sequencing was used to detect SLC22A5 mutations in patients with suspected PCD.
RESULTS
From 364,545 newborns screened, 36 were diagnosed with PCD, in addition to five mothers. The incidence of PCD in children in the Quanzhou area was 1:10126. Eighteen SLC22A5 variants were found, with five novel ones. The most prevalent variant in neonatal and maternal patients was c.760C > T (p.R254*). Twenty-five neonatal patients received L-carnitine supplementation; however, one patient discontinued treatment and sudden death occurred. One sibling presented repeated fatigue, hypoglycemia, and coma, but the symptoms disappeared after treatment. Two mothers with PCD claimed to feel weak and easily fatigued.
CONCLUSION
The incidence of PCD is relatively high in the Quanzhou area. Five novel variants were found, broadening the mutation spectrum of SLC22A5. NBS is effective in identifying PCD, and sudden death may be prevented with timely treatment.
Collapse