1
|
Ivanovski S, Lee RSB, Fernandez-Medina T, Pinto N, Andrade C, Quirynen M. Impact of autologous platelet concentrates on the osseointegration of dental implants. Periodontol 2000 2024. [PMID: 38647020 DOI: 10.1111/prd.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/25/2024]
Abstract
Osseointegration is defined as the direct deposition of bone onto biomaterial devices, most commonly composed from titanium, for the purpose of anchoring dental prostheses. The use of autologous platelet concentrates (APC) has the potential to enhance this process by modifying the interface between the host and the surface of the titanium implant. The rationale is to modify the implant surface and implant-bone interface via "biomimicry," a process whereby the deposition of the host's own proteins and extracellular matrix enhances the biocompatibility of the implant and hence accelerates the osteogenic healing process. This review of the available evidence reporting on the effect of APC on osseointegration explores in vitro laboratory studies of the interaction of APC with different implant surfaces, as well as the in vivo and clinical effects of APC on osseointegration in animal and human studies. The inherent variability associated with using autologous products, namely the unique composition of each individual's blood plasma, as well as the great variety in APC protocols, combination of biomaterials, and clinical/therapeutic application, makes it is difficult to make any firm conclusions about the in vivo and clinical effects of APC on osseointegration. The available evidence suggests that the clinical benefits of adding PRP and the liquid form of L-PRF (liquid fibrinogen) to any implant surface appear to be limited. The application of L-PRF membranes in the osteotomy site, however, may produce positive clinical effects at the early stage of healing (up to 6 weeks), by promoting early implant stability and reducing marginal bone loss, although no positive longer term effects were observed. Careful interpretation and cautious conclusions should be drawn from these findings as there were various limitations in methodology. Future studies should focus on better understanding of the influence of APCs on the biomaterial surface and designing controlled preclinical and clinical studies using standardized APC preparation and application protocols.
Collapse
Affiliation(s)
- Sašo Ivanovski
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia
| | - Ryan S B Lee
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia
| | - Tulio Fernandez-Medina
- School of Dentistry, Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia
- College of Medicine and Dentistry, James Cook University, Cairns, Australia
| | - Nelson Pinto
- Department of Periodontology and Implantology, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Catherine Andrade
- Department of Periodontology and Implantology, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Marc Quirynen
- Department of Oral Health Sciences, Katholieke Universiteit Leuven (Periodontology), University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Anapu MP, Atluri KR, Chandra Tripuraneni S, Issrani R, Bader AK, Alkhalaf ZA, Sghaireen MG, Prabhu N, Rbea DH Alshammari R, Khalid G, Matab G, Khan FH. Evaluation of effect on stability of implants with and without platelet rich fibrin using a resonance frequency analyzer - An in-vivo study. Heliyon 2024; 10:e27971. [PMID: 38623195 PMCID: PMC11016576 DOI: 10.1016/j.heliyon.2024.e27971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024] Open
Abstract
Background Although the conventional replacement for lost teeth has been partial or full dentures, the need for a fixed, esthetic, and functional restoration makes dental implants a reliable alternative. Aim To evaluate the initial and final stability of platelet rich fibrin coated implants using resonance frequency analyzer. Method ology: Thirteen patients with two or more missing teeth were informed about the procedure, and a consent form was obtained after cone beam computer tomography evaluation. Blood was drawn from the anticubital area of the patient, which was centrifuged to obtain platelet-rich fibrin. In all, 26 implants were placed, among which 13 were platelet-rich fibrin-coated (test group) and 13 were without platelet-rich fibrin (control group), and implant stability quotient values were recorded. Results The mean age of the patients was 34.4 (SD = 4.28). Majority of the patients were males (9; 69.2%) whereas there were only four (30.8%) female patients. When comparison between overall primary implant stability with and without PRF was done, the mean difference was 5.12 and this difference was not statistically significant (p = 0.221) whereas a statistically significant difference (p = 0.019) was found when comparison between overall secondary implant stability was done with and without PRF. The primary and secondary stability values for the control group were 69.18 ± 7.45 and 73.84 ± 8.21 respectively, and the primary and secondary stability values for the test group were 64.06 ± 12.66 and 81.49 ± 7.61 respectively, which showed statistically significant differences among the groups. The difference in these values signify that primary stability is more in control group whereas secondary stability is more in case group. This signifies that PRF enhances the stability of implant. Conclusion Implants coated with platelet-rich fibrin exhibited better osseointegration than implants without platelet-rich fibrin.
Collapse
Affiliation(s)
- Mounica Priya Anapu
- Department of Prosthodontics, Drs. Sudha and Nageswara Rao Siddhartha Institute of Dental Sciences, Chinnaoutapalli, India
| | - Kaleswara Rao Atluri
- Department of Prosthodontics, Drs. Sudha and Nageswara Rao Siddhartha Institute of Dental Sciences, Chinnaoutapalli, India
| | - Sunil Chandra Tripuraneni
- Department of Prosthodontics, Drs. Sudha and Nageswara Rao Siddhartha Institute of Dental Sciences, Chinnaoutapalli, India
| | - Rakhi Issrani
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Alzarea K. Bader
- Department of Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Zainab A. Alkhalaf
- Department of Prosthetic Dental Sciences, Ministry of Health, Kingdom of Saudi Arabia
| | - Mohammed Ghazi Sghaireen
- Department of Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Namdeo Prabhu
- Department of Oral & Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Kingdom of Saudi Arabia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Ghosoun Khalid
- College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Ghada Matab
- College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Farida Habib Khan
- Department of Family and Community Medicine, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Liu M, Liu Y, Luo F. The role and mechanism of platelet-rich fibrin in alveolar bone regeneration. Biomed Pharmacother 2023; 168:115795. [PMID: 37918253 DOI: 10.1016/j.biopha.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Platelet-rich fibrin (PRF), as an autologous blood preparation, has been receiving increasing attention in recent years and has been successfully applied in various clinical treatments for alveolar bone regeneration in the oral field. This review focuses on analyzing and summarizing the role and mechanism of PRF in alveolar bone regeneration. We first provide a brief introduction to PRF, then summarize the mechanisms by which PRF promotes alveolar bone regeneration from three aspects: osteogenesis mechanism, bone induction mechanism, and bone conduction mechanism, involving multiple signaling pathways such as Smad, ERK1/2, PI3K/Akt, and Wnt/β-catenin. We also explore the various roles of PRF as a scaffold, filler, and in combination with bone graft materials, detailing how PRF promotes alveolar bone regeneration and provides a wealth of experimental evidence. Finally, we summarize the current applications of PRF in various oral fields. The role of PRF in alveolar bone regeneration is becoming increasingly important, and its role and mechanism are receiving more and more research and understanding. This article will provide a reference of significant value for research in related fields. The exploration of the role and mechanism of PRF in alveolar bone regeneration may lead to the discovery of new therapeutic targets and the development of more effective and efficient treatment strategies.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Pacheco-Vergara MJ, Benalcázar-Jalkh EB, Nayak VV, Bergamo ETP, Cronstein B, Zétola AL, Weiss FP, Grossi JRA, Deliberador TM, Coelho PG, Witek L. Employing Indirect Adenosine 2 A Receptors (A 2AR) to Enhance Osseointegration of Titanium Devices: A Pre-Clinical Study. J Funct Biomater 2023; 14:308. [PMID: 37367272 DOI: 10.3390/jfb14060308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The present study aimed to evaluate the effect of dipyridamole, an indirect adenosine 2A receptors (A2AR), on the osseointegration of titanium implants in a large, translational pre-clinical model. Sixty tapered, acid-etched titanium implants, treated with four different coatings ((i) Type I Bovine Collagen (control), (ii) 10 μM dipyridamole (DIPY), (iii) 100 μM DIPY, and (iv) 1000 μM DIPY), were inserted in the vertebral bodies of 15 female sheep (weight ~65 kg). Qualitative and quantitative analysis were performed after 3, 6, and 12 weeks in vivo to assess histological features, and percentages of bone-to-implant contact (%BIC) and bone area fraction occupancy (%BAFO). Data was analyzed using a general linear mixed model analysis with time in vivo and coating as fixed factors. Histomorphometric analysis after 3 weeks in vivo revealed higher BIC for DIPY coated implant groups (10 μM (30.42% ± 10.62), 100 μM (36.41% ± 10.62), and 1000 μM (32.46% ± 10.62)) in comparison to the control group (17.99% ± 5.82). Further, significantly higher BAFO was observed for implants augmented with 1000 μM of DIPY (43.84% ± 9.97) compared to the control group (31.89% ± 5.46). At 6 and 12 weeks, no significant differences were observed among groups. Histological analysis evidenced similar osseointegration features and an intramembranous-type healing pattern for all groups. Qualitative observation corroborated the increased presence of woven bone formation in intimate contact with the surface of the implant and within the threads at 3 weeks with increased concentrations of DIPY. Coating the implant surface with dipyridamole yielded a favorable effect with regard to BIC and BAFO at 3 weeks in vivo. These findings suggest a positive effect of DIPY on the early stages of osseointegration.
Collapse
Affiliation(s)
- Maria Jesus Pacheco-Vergara
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Ernesto Byron Benalcázar-Jalkh
- Department of Prosthodontic and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, SP, Brazil
| | - Vasudev V Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Edmara T P Bergamo
- Department of Prosthodontic and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru 17012-901, SP, Brazil
- Division of Biomaterials, New York University College of Dentistry, 345 E 24th St., Room 902D, New York, NY 10010, USA
| | - Bruce Cronstein
- Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - André Luis Zétola
- Oral and Maxillofacial Surgeon, Chairman of Implantology, SOEPAR, Curitiba 80730-000, PR, Brazil
| | | | | | | | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Plastic Surgery, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Division of Biomaterials, New York University College of Dentistry, 345 E 24th St., Room 902D, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| |
Collapse
|
5
|
Guan S, Xiao T, Bai J, Ning C, Zhang X, Yang L, Li X. Clinical application of platelet-rich fibrin to enhance dental implant stability: A systematic review and meta-analysis. Heliyon 2023; 9:e13196. [PMID: 36785817 PMCID: PMC9918761 DOI: 10.1016/j.heliyon.2023.e13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Objective To investigate the effect of platelet-rich fibrin application on implant stability. Study design Five databases, namely, PubMed, Embase, Web of Science, Wiley, and China National Knowledge Infrastructure, were searched for reports published up to November 20, 2022. Randomized controlled trials (RCT), including parallel RCTs and split-mouth RCTs, with at least 10 patients/sites were considered for inclusion. Results After screening based on the inclusion criteria, ten RCTs were included. Low heterogeneity was observed in study characteristics, outcome variables, and estimation scales (I2 = 27.2%, P = 0.19). The qualitative and meta-analysis results showed that PRF increased the effect of implant stabilizers after implant surgery. Conclusions The results of the present systematic review and meta-analysis suggest that PRF can increase implant stability after implant surgery. PRF may also have a role in accelerating bone healing and tends to promote new bone formation at the implant site.
Collapse
Affiliation(s)
- Shuai Guan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, 050017, PR China
| | - Tiepeng Xiao
- The Second Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Jiuping Bai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, 050017, PR China
| | - Chunliu Ning
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, 050017, PR China
| | - Xingkui Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, 050017, PR China
| | - Lei Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiangjun Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, 050017, PR China
| |
Collapse
|
6
|
Han JJ, Moon JE, Lee EH, Yang HJ, Hwang SJ. Clinical and radiographic outcomes of dental implant after maxillary sinus floor augmentation with rhBMP-2/hydroxyapatite compared to deproteinized bovine bone. PLoS One 2022; 17:e0273399. [PMID: 36007001 PMCID: PMC9409565 DOI: 10.1371/journal.pone.0273399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/24/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives This study aimed to evaluate the clinical and radiographic outcomes of early implant placement and functional loading in maxillary sinus floor augmentation (MSFA) using recombinant human bone morphogenetic protein 2/hydroxyapatite (rhBMP-2/HA) and to compare these outcomes with those of the conventional protocol in MSFA using deproteinized bovine bone (DBB). Materials and methods The rhBMP-2/HA and DBB groups consisted of 14 and 13 patients who underwent MSFA with BMP and DBB, respectively. After placement of 22 implants and 21 implants in the rhBMP-2/HA and DBB groups, respectively, abutment connections were performed 3 months after implant placement for the rhBMP-2/HA group and 6 months after implant placement for the DBB group. Changes in grafted sinus height (GSH), marginal bone loss (MBL), and implant stability were evaluated up to one year after functional loading. Results Survival rates for the rhBMP-2/HA and DBB groups after one year of functional loading were 90.9% and 90.5%, respectively. Both groups exhibited no significant time-course changes in GSH until one year of functional loading (rhBMP-2/HA, p = 0.124; DBB, p = 0.075). Although significant MBL occurred after one year of functional loading for both groups (rhBMP-2/HA, p < 0.001; DBB, p < 0.001), there were no significant differences in time-course changes in MBL between the two groups (p = 0.450). The mean implant stability quotient values in the rhBMP-2/HA and DBB groups were 75.3 and 75.4 after one year of functional loading, respectively, and there were no significant differences between the two groups (p = 0.557). Conclusions MSFA using rhBMP-2/HA allowed implant rehabilitation with early implant placement and functional loading and led to a comparable survival rate and implant stability after 1 year of functional loading with acceptable MBL and stable maintenance of GSH compared to the MSFA using DBB with 6 months of healing after implant placement.
Collapse
Affiliation(s)
- Jeong Joon Han
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Ji Eun Moon
- Department of Prosthodontics, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Eun-Hyuk Lee
- Department of Prosthodontics, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hoon Joo Yang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, Seoul, Republic of Korea
- * E-mail:
| | - Soon Jung Hwang
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Hwang Soon Jung’s Dental Clinic for Oral and Maxillofacial Surgery, Seoul, Republic of Korea
| |
Collapse
|
7
|
Kim UG, Choi JY, Lee JB, Yeo ISL. Platelet-rich plasma alone is unable to trigger contact osteogenesis on titanium implant surfaces. Int J Implant Dent 2022; 8:25. [PMID: 35666399 PMCID: PMC9170848 DOI: 10.1186/s40729-022-00427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Osseointegration consists of bidirectional bone formation around modified implant surfaces by contact osteogenesis and distance osteogenesis. This study tested whether contact osteogenesis on the surface of a modified titanium (Ti) implant is stimulated by cytokines in the blood. METHODS In the first two types of experiments, sandblasted, large-grit, acid-etched Ti implants and turned Ti tubes were inserted into rabbit tibiae. To exclude the influence of distance osteogenesis, the tubes were inserted into the tibiae, and implants were placed inside the tubes. In a third type of experiment, the implants and tubes were inserted into the rabbit tibiae, and platelet-rich plasma (PRP) or recombinant human bone morphogenetic protein-2 (rhBMP-2) was applied topically. Four weeks after implantation, undecalcified specimens were prepared for histomorphometry. Bone-to-implant contact (BIC) and bone area per tissue (BA) were measured, and the data were analysed using one-way ANOVA at a significance level of 0.05. RESULTS When the response of bone to Ti tubes with implants was compared to that without implants (first experiment), little bone formation was found inside the tubes. The mean BIC of implant specimens inside the tubes was 21.41 ± 13.81% in a second experiment that evaluated bone responses to implants with or without Ti tubes. This mean BIC value was significantly lower than that in the implant-only group (without tubes) (47.32 ± 12.09%, P = 0.030). The third experiment showed that rhBMP-2 significantly increased contact osteogenesis on the implant surface, whereas PRP had no effect (mean BIC: 66.53 ± 14.06% vs. 16.34 ± 15.98%, P = 0.004). CONCLUSIONS Platelet-rich plasma alone is unable to trigger contact osteogenesis on the modified titanium implant surface.
Collapse
Affiliation(s)
- Ung-Gyu Kim
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Jung-You Choi
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jun-Beom Lee
- Department of Periodontology, Seoul National University School of Dentistry, Seoul, Korea
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea. .,Dental Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
8
|
Qu C, Luo F, Hong G, Wan Q. Effects of platelet concentrates on implant stability and marginal bone loss: a systematic review and meta-analysis. BMC Oral Health 2021; 21:579. [PMID: 34772376 PMCID: PMC8588658 DOI: 10.1186/s12903-021-01929-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Background Osseointegration is essential for the success and stability of implants. Platelet concentrates were reported to enhance osseointegration and improve implant stability. The purpose of this review is to systematically analyze the effects of platelet concentrates on implant stability and marginal bone loss. Methods Two researchers independently performed searches in the following databases (last searched on 21 July 2021): MEDLINE (PubMed), Cochrane Library, EMBASE, and Web of Science. In addition, a manual search was carried out on references of relevant reviews and initially included studies. All randomized controlled trials (RCTs) and controlled clinical trials (CCTs) on the application of platelet concentrates in the implant surgery procedure were included. The risk of bias of RCTs and CCTs were assessed with a revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and the risk of bias in non-randomized studies—of interventions (ROBINS-I) tool, respectively. Meta-analyses on implant stability and marginal bone loss were conducted. Researchers used mean difference or standardized mean difference as the effect size and calculated the 95% confidence interval. In addition, subgroup analysis was performed based on the following factors: type of platelet concentrates, method of application, and study design. Results Fourteen studies with 284 participants and 588 implants were included in the final analysis. 11 studies reported implant stability and 5 studies reported marginal bone level or marginal bone loss. 3 studies had high risk of bias. The meta-analysis results showed that platelet concentrates can significantly increase implant stability at 1 week (6 studies, 302 implants, MD 4.26, 95% CI 2.03–6.49, P < 0.001) and 4 weeks (8 studies, 373 implants, MD 0.67, 95% CI 0.46–0.88, P < 0.001) after insertion, significantly reduced marginal bone loss at 3 months after insertion (4 studies, 95 implants, mesial: MD − 0.33, 95% CI − 0.46 to − 0.20, P < 0.001; distal: MD − 0.38, 95% CI − 0.54 to − 0.22, P < 0.001). However, the improvement of implant stability at 12 weeks after insertion was limited (P = 0.10). Subgroup analysis showed that PRP did not significantly improve implant stability at 1 week and 4 weeks after insertion (P = 0.38, P = 0.17). Platelet concentrates only placed in the implant sites did not significantly improve implant stability at 1 week after insertion (P = 0.20). Conclusions Platelet concentrates can significantly improve implant stability and reduce marginal bone loss in the short term. Large-scale studies with long follow‐up periods are required to explore their long-term effects and compare effects of different types. Trial registration This study was registered on PROSPERO, with the Registration Number being CRD42021270214. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01929-x.
Collapse
Affiliation(s)
- Changxing Qu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan.,Department of Prosthetic Dentistry, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Nourwali I. The effects of platelet-rich fibrin on post-surgical complications following removal of impacted wisdom teeth: A pilot study. J Taibah Univ Med Sci 2021; 16:521-528. [PMID: 34408609 PMCID: PMC8348291 DOI: 10.1016/j.jtumed.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Platelet-rich fibrin (PRF) is a fibrin matrix composed of cells, cytokines, and growth factors, which may be liberated from blood at specific times and act as a resorbable membrane. Many studies have demonstrated the benefits of PRF for bone healing in oral and maxillofacial implant surgery. Our study assesses the impact of PRF on postoperative complications following the extraction of impacted wisdom teeth. METHODS Twenty patients were recruited in this blind controlled randomised clinical trial, i.e. ten patients in the study group and ten patients in the control group. The patients were aged between 18 and 40 years. Surgical removal of impacted teeth #38 and #48 was performed in all the patients. The study group underwent dentoalveolar surgery with the use of PRF, while the control group underwent surgery without PRF. RESULTS All patients in the study group reported significantly less postoperative pain (p = 0.02) and excellent soft tissue healing during the follow-up period (p = 0.021). In contrast, only 80% of patients in the control group exhibited sufficient soft tissue healing. The difference in postoperative swelling between the two groups was not statistically significant. Additionally, 69% of patients in the study group reported comfortable night sleep during the first 24 h after the operation compared to 31% in the control group. This difference was statistically significant (p = 0.02). CONCLUSION Based on the outcomes of our study, implanting PRF into surgical extraction sites can be helpful in reducing postoperative pain and improving soft tissue healing. The use of PRF in extraction sockets is simple and biologically safe. The beneficial effects of PRF support its possible application in the field of dental surgery.
Collapse
Affiliation(s)
- Ibrahim Nourwali
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Taibah University, Germany
| |
Collapse
|
10
|
Zhang Y, Hu L, Lin M, Cao S, Feng Y, Sun S. RhBMP-2-Loaded PLGA/Titanium Nanotube Delivery System Synergistically Enhances Osseointegration. ACS OMEGA 2021; 6:16364-16372. [PMID: 34235307 PMCID: PMC8246472 DOI: 10.1021/acsomega.1c00851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Although Ti-based implants have been widely used, osseointegration failure can also be found between implants and the surrounding bone tissue, especially in aged patients or in patients with certain systemic diseases. Therefore, in this research, we establish a sustained rhBMP-2 delivery system on a titanium implant surface, an anodic oxidation TiO2 nanotube layer combined with the PLGA film, to enhance osseointegration. This designed system was characterized as follows: surface topography characterization by SEM and AFM; rhBMP-2 release; and the ability to influence MC3T3 cell adhesion, proliferation, and osteogenic differentiation in vitro. Additionally, we evaluated the ability of this system to generate new bone around implants in rabbit tibias by the histological assay and removal torque test. SEM and AFM showed that PLGA membranes were formed on the surfaces of TiO2 nanotube arrays using 1, 3, and 10% PLGA solutions. The 3% PLGA group showed a perfect sustained release of rhBMP-2, lasting for 28 days. Meanwhile, the 3% PLGA group showed improved cell proliferation and osteogenic mRNA expression levels. In the in vivo experiments, the 3% PLGA group had the ability to promote osteogenesis in experimental animals. The anodized TiO2 nanotube coated with a certain thickness of the PLGA layer was an ideal and suitable rhBMP-2 carrier. This modified surface enhances osseointegration and could be useful in clinical dental implant treatment.
Collapse
Affiliation(s)
- Yilin Zhang
- Department
of Stomatology, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Department
of Stomatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Lihua Hu
- Department
of Stomatology, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Department
of Stomatology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Meng Lin
- School
of Chemistry and Chemical Engineering, Shandong
University, Jinan 250012, China
| | - Shujie Cao
- School
and Hospital of Stomatology, Cheeloo College of Medicine, Shandong
Key Laboratory of Oral Tissue Regeneration & Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong 250012, China
| | - Yiting Feng
- School
and Hospital of Stomatology, Cheeloo College of Medicine, Shandong
Key Laboratory of Oral Tissue Regeneration & Shandong Engineering
Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong University, Jinan, Shandong 250012, China
| | - Shengjun Sun
- Department
of Prosthodontics, School and Hospital of Stomatology, Cheeloo College
of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration &
Shandong Engineering Laboratory for Dental Materials and Oral Tissue
Regeneration, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
11
|
Bone Morophogenetic Protein Application as Grafting Materials for Bone Regeneration in Craniofacial Surgery: Current Application and Future Directions. J Craniofac Surg 2021; 32:787-793. [PMID: 33705037 DOI: 10.1097/scs.0000000000006937] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ABSTRACT Rebuilding atrophied alveolar ridges can present a significant challenge for the maxillofacial surgeons. A multitude of treatment options including guided bone regeneration, onlay block grafting, and distraction osteogenesis are today available as safe procedures.The recent Food and Drug Administration approval of recombinant human bone morphogenetic proteins (rhBMPs) has given clinicians an added treatment option for reconstructing localized and large jaw defects. Currently, several patients have been successfully treated with the combination of bone graft and rhBMP-2 and the results have been documented as predictable and safe by clinical and radiologic examinations follow-up. In this study, a literature review was conducted using Medline, Medpilot, and Cochrane Database of Systematic Reviews. It was concentrated on manuscripts and overviews published in the last 20 years (2000-2020). The key terms employed were platelet-rich plasma, rhBMPs, and their combinations with the common scaffolds used for bone regeneration techniques. The results of clinical studies and animal trials were especially emphasized. The statements from the literature were compared with authors' own clinical data.The potential to reconstruct these large bone defects with a growth factor thus limiting or even avoiding a secondary harvest site is exciting and it represents a new frontier in the field of surgery. This study data confirm how there are excellent documents about the possible combination of using substitute materials and growth factor for treating large and minor craniofacial bone defects.
Collapse
|
12
|
Fiorillo L, Bocchieri S, Stumpo C, Mastroieni R, Amoroso G, Russo D, D'Amico C, Cervino G. Multicenter clinical trial on dental implants survival rate: a FDS76® study. Minerva Dent Oral Sci 2020. [PMID: 33205924 DOI: 10.23736/s0026-4970.20.04449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Implantology, thanks to its predictability in oral rehabilitations, has become a widespread method for rehabilitating edentulous patients, offering excellent patient satisfaction. Improving the quality of oral health, especially if rehabilitation involves minimal short and long-term complications, leads to an improvement in the quality of life of our patients. METHODS This clinical study was conducted to evaluate the short and long-term complications (up to 18 months) of implant-prosthetic rehabilitations performed with a new dental implant (FDS76®, Italy). RESULTS The results showed a limited number of complications or implant failures. CONCLUSIONS Knowing the latter could certainly help improve both surgical and dental materials performance.
Collapse
Affiliation(s)
- Luca Fiorillo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy - .,Multidisciplinary Department of Medical-Surgical and Dental Specialties, Luigi Vanvitelli University of Campania, Naples, Italy -
| | - Salvatore Bocchieri
- Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| | - Chiara Stumpo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Roberta Mastroieni
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giulia Amoroso
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Diana Russo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Cesare D'Amico
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gabriele Cervino
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
13
|
Fiorillo L, Bocchieri S, Stumpo C, Mastroieni R, Amoroso G, Russo D, D'Amico C, Cervino G. Multicenter clinical trial on dental implants survival rate: a FDS76® study. Minerva Dent Oral Sci 2020; 70:190-195. [PMID: 33205924 DOI: 10.23736/s2724-6329.20.04449-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Implantology, thanks to its predictability in oral rehabilitations, has become a widespread method for rehabilitating edentulous patients, offering excellent patient satisfaction. Improving the quality of oral health, especially if rehabilitation involves minimal short and long-term complications, leads to an improvement in the quality of life of our patients. METHODS This clinical study was conducted to evaluate the short and long-term complications (up to 18 months) of implant-prosthetic rehabilitations performed with a new dental implant (FDS76®, Italy). RESULTS The results showed a limited number of complications or implant failures. CONCLUSIONS Knowing the latter could certainly help improve both surgical and dental materials performance.
Collapse
Affiliation(s)
- Luca Fiorillo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy - .,Multidisciplinary Department of Medical-Surgical and Dental Specialties, Luigi Vanvitelli University of Campania, Naples, Italy -
| | - Salvatore Bocchieri
- Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| | - Chiara Stumpo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Roberta Mastroieni
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giulia Amoroso
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Diana Russo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Luigi Vanvitelli University of Campania, Naples, Italy
| | - Cesare D'Amico
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gabriele Cervino
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|