1
|
Wang Y, Hou L, Wang M, Xiang F, Zhao X, Qian M. Autologous Fat Grafting for Functional and Aesthetic Improvement in Patients with Head and Neck Cancer: A Systematic Review. Aesthetic Plast Surg 2023; 47:2800-2812. [PMID: 37605032 DOI: 10.1007/s00266-023-03331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION The efficacy and safety of autologous fat grafting for use in oncology patients are controversial. Patients with head and neck cancer have complex anatomy and require reconstructive repair of the head and neck after comprehensive treatment. The limited additional aesthetic and functional studies on the use of autologous fat fillers in patients with head and neck cancer are unclear. This study systematically evaluates the additional function of autologous fat fillers in the head and neck and systematically reviews issues related to autologous fat grafting after comprehensive head and neck cancer treatment, including current indications, techniques, potential complications, graft survival, and patient satisfaction. METHODS A systematic literature review was performed using PubMed, The Cochrane Library, EMBASE, and Web of Science (last accessed on January 9, 2023). RESULTS A total of 249 cases of autologous fat fillers in patients with head and neck cancer were reported in 10 clinical publications. Observations were based mainly on subjective physician and patient evaluation indicators, and all studies reported the beneficial effects of autologous fat fillers on aesthetics and function after treatment for head and neck cancer. CONCLUSIONS Autologous fat fillers are effective in improving the aesthetics and function of head and neck cancer, and due to the limitations of the original study, future studies with large samples are needed to support this. PROSPERO registration number is CRD42020222870. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yu Wang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Nursing Department, Affiliated Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Lili Hou
- Nursing Department, Affiliated Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingyi Wang
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Fuping Xiang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Nursing Department, Affiliated Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaomei Zhao
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Meizhen Qian
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| |
Collapse
|
2
|
Prescher H, Froimson JR, Hanson SE. Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis. Bioengineering (Basel) 2023; 10:742. [PMID: 37370673 DOI: 10.3390/bioengineering10060742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Adipose tissue is composed of a collection of cells with valuable structural and regenerative function. Taken as an autologous graft, these cells can be used to address soft tissue defects and irregularities, while also providing a reparative effect on the surrounding tissues. Adipose-derived stem or stromal cells are primarily responsible for this regenerative effect through direct differentiation into native cells and via secretion of numerous growth factors and cytokines that stimulate angiogenesis and disrupt pro-inflammatory pathways. Separating adipose tissue into its component parts, i.e., cells, scaffolds and proteins, has provided new regenerative therapies for skin and soft tissue pathology, including that resulting from radiation. Recent studies in both animal models and clinical trials have demonstrated the ability of autologous fat grafting to reverse radiation induced skin fibrosis. An improved understanding of the complex pathologic mechanism of RIF has allowed researchers to harness the specific function of the ASCs to engineer enriched fat graft constructs to improve the therapeutic effect of AFG.
Collapse
Affiliation(s)
- Hannes Prescher
- Section of Plastic & Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL 60615, USA
| | - Jill R Froimson
- Section of Plastic & Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL 60615, USA
| | - Summer E Hanson
- Section of Plastic & Reconstructive Surgery, University of Chicago Medical Center, Chicago, IL 60615, USA
| |
Collapse
|
3
|
Kim LN, Rubenstein RN, Chu JJ, Allen RJ, Mehrara BJ, Nelson JA. Noninvasive Systemic Modalities for Prevention of Head and Neck Radiation-Associated Soft Tissue Injury: A Narrative Review. J Reconstr Microsurg 2022; 38:621-629. [PMID: 35213927 PMCID: PMC9402815 DOI: 10.1055/s-0042-1742731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Radiation-associated soft tissue injury is a potentially devastating complication for head and neck cancer patients. The damage can range from minor sequelae such as xerostomia, which requires frequent daily maintenance, to destructive degenerative processes such as osteoradionecrosis, which can contribute to flap failure and delay or reverse oral rehabilitation. Despite the need for effective radioprotectants, the literature remains sparse, primarily focused on interventions beyond the surgeon's control, such as maintenance of good oral hygiene or modulation of radiation dose. METHODS This narrative review aggregates and explores noninvasive, systemic treatment modalities for prevention or amelioration of radiation-associated soft tissue injury. RESULTS We highlighted nine modalities with the most clinical potential, which include amifostine, melatonin, palifermin, hyperbaric oxygen therapy, photobiomodulation, pentoxifylline-tocopherol-clodronate, pravastatin, transforming growth factor-β modulators, and deferoxamine, and reviewed the benefits and limitations of each modality. Unfortunately, none of these modalities are supported by strong evidence for prophylaxis against radiation-associated soft tissue injury. CONCLUSION While we cannot endorse any of these nine modalities for immediate clinical use, they may prove fruitful areas for further investigation.
Collapse
Affiliation(s)
- Leslie N. Kim
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robyn N. Rubenstein
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacqueline J. Chu
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J. Allen
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J. Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonas A. Nelson
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
4
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|