1
|
Foltz L, Avabhrath N, Lanchy JM, Levy T, Possemato A, Ariss M, Peterson B, Grimes M. Craniofacial chondrogenesis in organoids from human stem cell-derived neural crest cells. iScience 2024; 27:109585. [PMID: 38623327 PMCID: PMC11016914 DOI: 10.1016/j.isci.2024.109585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Knowledge of cell signaling pathways that drive human neural crest differentiation into craniofacial chondrocytes is incomplete, yet essential for using stem cells to regenerate craniomaxillofacial structures. To accelerate translational progress, we developed a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cell-derived neural crest stem cells. Histological staining of cartilage organoids revealed tissue architecture and staining typical of elastic cartilage. Protein and post-translational modification (PTM) mass spectrometry and snRNA-seq data showed that chondrocyte organoids expressed robust levels of cartilage extracellular matrix (ECM) components: many collagens, aggrecan, perlecan, proteoglycans, and elastic fibers. We identified two populations of chondroprogenitor cells, mesenchyme cells and nascent chondrocytes, and the growth factors involved in paracrine signaling between them. We show that ECM components secreted by chondrocytes not only create a structurally resilient matrix that defines cartilage, but also play a pivotal autocrine cell signaling role in determining chondrocyte fate.
Collapse
Affiliation(s)
- Lauren Foltz
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Nagashree Avabhrath
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Tyler Levy
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Majd Ariss
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Mark Grimes
- Division of Biological Sciences, Center for Biomolecular Structure and Dynamics, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
2
|
Chen X, Xu Y, Li C, Lu X, Fu Y, Huang Q, Ma D, Ma J, Zhang T. Key Genes Identified in Nonsyndromic Microtia by the Analysis of Transcriptomics and Proteomics. ACS OMEGA 2022; 7:16917-16927. [PMID: 35647449 PMCID: PMC9134388 DOI: 10.1021/acsomega.1c07059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
As one of the common birth defects worldwide, nonsyndromic microtia is a complex disease that results from interactions between environmental and genetic factors. However, the underlying causes of nonsyndromic microtia are currently not well understood. The present study determined transcriptomic and proteomic profiles of auricular cartilage tissues in 10 patients with third-degree nonsyndromic microtia and five control subjects by RNA microarray and tandem mass tag-based quantitative proteomics technology. Relative mRNA and protein abundances were compared and evaluated for their function and putative involvement in nonsyndromic microtia. A total of 3971 differentially expressed genes and 256 differentially expressed proteins were identified. Bioinformatics analysis demonstrated that some of these genes and proteins showed potential associations with nonsyndromic microtia. Thirteen proteins with the same trend at the mRNA level obtained by the integrated analysis were validated by parallel reaction monitoring analysis. Several key genes, namely, LAMB2, COMP, APOA2, APOC2, APOC3, and A2M, were found to be dysregulated, which could contribute to nonsyndromic microtia. The present study is the first report on the transcriptomic and proteomic integrated analysis of nonsyndromic microtia using the same auricular cartilage sample. Additional studies are required to clarify the roles of potential key genes in nonsyndromic microtia.
Collapse
Affiliation(s)
- Xin Chen
- ENT
institute, Eye & ENT Hospital, Fudan
University, Shanghai 200031, China
| | - Yuexin Xu
- Key
Laboratory of Metabolism and Molecular Medicine, Ministry of Education,
Department of Biochemistry and Molecular Biology, School of Basic
Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenlong Li
- Department
of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Xinyu Lu
- ENT
institute, Eye & ENT Hospital, Fudan
University, Shanghai 200031, China
| | - Yaoyao Fu
- Department
of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Qingqing Huang
- Department
of Bioinformatics, Medical Laboratory of
Nantong Zhongke, Nantong, Jiangsu 226133, China
| | - Duan Ma
- Key
Laboratory of Metabolism and Molecular Medicine, Ministry of Education,
Department of Biochemistry and Molecular Biology, School of Basic
Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jing Ma
- ENT
institute, Eye & ENT Hospital, Fudan
University, Shanghai 200031, China
- Department
of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Tianyu Zhang
- ENT
institute, Eye & ENT Hospital, Fudan
University, Shanghai 200031, China
- Department
of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC
Key Laboratory of Hearing Medicine, Fudan
University, Shanghai 200031, China
| |
Collapse
|